HDSM, high-density survey and measurement, is the collective term for a range of new technologies that give us the ability to measure, record, and analyze the spatial, locational, and morphological properties of objects, sites, structures, and landscapes with higher density and more precision than ever before. This article considers HDSM technologies, including airborne lidar, real-time kinematic global navigation satellite system (GNSS) survey, robotic total stations, terrestrial laser scanning, structured light scanning and close-range photogrammetry [CRP, also known as structure from motion (SfM)], and unmanned aerial vehicle (UAV)-based SfM/CRP and scanning, and we discuss the impact of these technologies on contemporary archaeological practice. This article reflects on how the democratization and proliferation of HDSM opens various applications and greatly broadens the set of problems being addressed explicitly and directly through shape and place.

Keyword(s): 3Dgeospatiallandscapesmaterialism

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Addison AC, De Luca L, Guidi G, Pescarin S. 2013. Proc. 2013 Digit. Herit. Int. Congr., Oct. 28—Nov. 1, Marseille, Fr. IEEE, Vols. I, II [Google Scholar]
  2. Adkins L, Adkins RA. 1989. Archaeological Illustration Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Agache R, Bréart B. 1983. De merveilleux jouets au service de l'archéologie: les ULM. Archéology 175:28–31 [Google Scholar]
  4. Allen KM, Green SW, Zubrow EB. 1990. Interpreting Space: GIS and Archaeology London: Taylor & Francis [Google Scholar]
  5. Anderson RC. 1982. Photogrammetry: the pros and cons for archaeology. World Archaeol. 14:2200–5 [Google Scholar]
  6. Barber D, Mills J. 2007. 3D Laser Scanning for Heritage: Advice and Guidance to Users on Laser Scanning in Archaeology and Architecture. London: Engl. Herit http://www.english-heritage.org.uk/publications/3d-laser-scanning-for-heritage/ [Google Scholar]
  7. Barber D, Mills J, Bryan P. 2001. Laser scanning and photogrammetry: 21st century metrology. Presented at Int. Symp. CIPA, 18th, Potsdam, Ger., Herit. Doc., Proc. XVIII CIPA Symp. http://cipa.icomos.org/index.php?id=60 [Google Scholar]
  8. Barceló JA. 2010. Visual analysis in archaeology. An artificial intelligence approach. See Elewa 2010 93–156
  9. Barratt G, Gaffney V, Goodchild H, Wilkes S. 2000. Survey at Wroxeter using carrier phase, differential GPS surveying techniques. Archaeol. Prospect. 7:2133–43 [Google Scholar]
  10. Beach TP, Luzzadder-Beach S. 2008. Geoarchaeology and aggradation around Kinet Höyük, an archaeological mound in the Eastern Mediterranean, Turkey. Geomorphology 101:3416–28 [Google Scholar]
  11. Beale G, Reilly P. 2014. Additive archaeology: the spirit of virtual archaeology reprinted. Presented at CAAGR Conf. 2014, Rethymno, Crete, March 7–8 [Google Scholar]
  12. Benazzi S, Panetti D, Fornai C, Toussaint M, Gruppioni, Hublin JJ. 2014. Guidelines for the digital computation of 2D and 3D enamel thickness. Am. J. Phys. Anthropol. 153:2305–13 [Google Scholar]
  13. Borji A, Itti L. 2013. State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:1185–207 [Google Scholar]
  14. Brophy K, Cowley D. 2005. From the Air: Understanding Aerial Archaeology Stroud, UK: Tempus [Google Scholar]
  15. Buckley S, Howell J, Enge HD, Kurz TH. 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J. Geol. Soc. 165:3625–38 [Google Scholar]
  16. Butzer KW. 2008. Challenges for a cross-disciplinary geoarchaeology: the intersection between environmental history and geomorphology. Geomorphology 101:402–11 [Google Scholar]
  17. Cardillo M. 2010. Some applications of geometric morphometrics to archaeology. See Elewa 2010 325–41
  18. Chase AF, Chase DZ, Fisher CT, Leisz SJ, Weishampel JF. 2012. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS 109:3212916–21 [Google Scholar]
  19. Chase AF, Chase DZ, Weishampel JF, Drake JB, Shrestha RL. et al. 2011. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci. 38:2387–98 [Google Scholar]
  20. Chrysanthi A, Earl GP, Pagi H. 2012. Visitor movement and tracking techniques. A visitor-sourced methodology for the interpretation of archaeological sites. Int. J. Herit. Digit. Era 1:33–38 [Google Scholar]
  21. Clouten N. 1974. The application of photogrammetry to recording rock art. Aust. Inst. Aborig. Stud. Newsl. 1:33–34 [Google Scholar]
  22. Coluzzi R, Lanorte A, Lasaponara R. 2010. On the LiDAR contribution for landscape archaeology and palaeoenvironmental studies: the case study of Bosco dell'Incoronata (Southern Italy). Adv. Geosci. 24:125–32 [Google Scholar]
  23. Conolly J, Lake M. 2006. Geographical Information Systems in Archaeology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  24. Conolly J, Lake M. 2007. Geographical Information Systems in Archaeology. Cambridge, UK: Cambridge Univ. Press. Repr., ed.. [Google Scholar]
  25. Counc. Eur 1992. European Convention on the Protection of the Archaeological Heritage (Revised). Eur. Treaty Ser. 14 Strasbourg, Fr: Counc. Eur. [Google Scholar]
  26. Counc. Eur 2000. European Landscape Convention. Eur. Treaty Ser. 176 Strasbourg, Fr: Counc. Eur. [Google Scholar]
  27. Crawford OGS. 1928. Air Survey and Archaeology Ordnance Surv. Prof. Pap. NS 7 Southampton, UK: HMSO, 2nd ed.. [Google Scholar]
  28. Crutchley S, Crow P. 2010. The Light Fantastic: Using Airborne LiDAR in Archaeological Survey Swindon, UK: Engl. Herit. [Google Scholar]
  29. Davies TG, Shaw CN, Stock JT. 2012. A test of a new method and software for the rapid estimation of cross-sectional geometric properties of long bone diaphyses from 3D laser surface scans. J. Anthropol. Archaeol. 4:277–90 [Google Scholar]
  30. Debevec PE, Taylor CJ, Malik J. 1996. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech11–20 New York: Assoc. Comput. Mach. (ACM) [Google Scholar]
  31. Dell'Unto N, Landeschi G, Leander Touati AM, Matteo D, Callieri M, Ferdani D. 2015. Experiencing ancient buildings from a 3D GIS perspective: a case drawn from the Swedish Pompeii Project. J. Archaeol. Method Theory. doi: 10.1007/s10816-014-9226-7 [Google Scholar]
  32. Dennett S, Muessig H. 1980. Archaeological applications for close-range photography. Am. Soc. Photogramm. Annu. Conv., 46th, Falls Church, Va. Tech. Pap. 335–41 [Google Scholar]
  33. Dobie J, Evans C. 2010. A History of the Ancient Monuments Drawing Office Res. Dep. Rep. Ser. No. 33—2010 Portsmouth, UK: Engl. Herit http://services.english-heritage.org.uk/ResearchReportsPdfs/033_2010WEB.pdf [Google Scholar]
  34. Dobson S, Selman P. 2012. Applying historic landscape characterization in spatial planning: from remnants to remanence. Plan. Pract. Res. 27:4459–74 [Google Scholar]
  35. Donahue B, Wentzel J, Berg R. 2013. Guidelines for RTK/RTN GNSS Surveying in Canada Gen. Inf. Prod. 100-E Ottawa/Hull, Can: Surv. Gen. Branch, Natl. Res. Counc. Can ftp://ftp.nrcan.gc.ca/ess/sgb_pub/CS/Canada%20RTK_UserGuide_v1%201_EN.pdf [Google Scholar]
  36. Doneus M, Neubauer W. 1998. 2D combination of prospection data. Archaeol. Prospect. 5:29–56 [Google Scholar]
  37. Doneus M, Neubauer W. 2005. Laser scanners for 3D documentation of stratigraphic excavations. Recording, Modeling and Visualization of Cultural Heritage E Baltsavias, A Gruen, L Van Gool, M Pateraki 193–203 Abingdon, UK: Taylor & Francis [Google Scholar]
  38. Doneus M, Verhoeven G, Fera M, Briese C, Kucera M, Neubauer W. 2011. From deposit to point cloud: a study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. Proc. XXIIIrd Int. CIPA Symp., Sept. 12, Prague, Czech Repub. 6:81–88 [Google Scholar]
  39. Douka K, Jacobs Z, Lane C, Grün R, Farr L. et al. 2014. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). J. Hum. Evol. 66:39–63 [Google Scholar]
  40. Ebert JI. 1984. Remote sensing applications in archaeology. Adv. Archaeol. Method Theory 7:293–362 [Google Scholar]
  41. Elewa AMT. 2010. Morphometrics for Nonmorphometricians Berlin: Springer [Google Scholar]
  42. Engl. Herit 2011. 3D Laser Scanning for Heritage: Advice and Guidance to Users on Laser Scanning in Archaeology and Architecture. London: Engl. Herit, 2nd. https://historicengland.org.uk/images-books/publications/3d-laser-scanning-heritage2/ [Google Scholar]
  43. Evans DH, Fletcher RJ, Pottier C, Chevance JB, Soutif D. et al. 2013. Uncovering archaeological landscapes at Angkor using lidar. PNAS 110:3112595–600 [Google Scholar]
  44. Eve S. 2012. Augmenting phenomenology: using augmented reality to aid archaeological phenomenology in the landscape. J. Archaeol. Method Theory 19:4582–600 [Google Scholar]
  45. Fernández-Lozano J, Gutiérrez-Alonso G, Fernández-Morán M. 2014. Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León). J. Archaeol. Sci. 53:356–73 [Google Scholar]
  46. Forte M, Dell'Unto N, Issavi J, Onsurez L, Lercari N. 2012. 3D archaeology at Çatalhöyük. Int. J. Herit. Digit. Era 1:3351–78 [Google Scholar]
  47. Frankl A, Stal C, Abraha A, Nyssen J, Rieke-Zapp D. et al. 2015. Detailed recording of gully morphology in 3D through image-based modelling. CATENA 127:92–101 [Google Scholar]
  48. Fruchart C. 2014. Analyse spatiale et temporelle des paysages de la forêt de Chailluz (Besançon, Doubs) de l'Antiquité à nos jours PhD Thesis. Archaeol. Prehist., Univ. Franche-Comté. https://hal.archives-ouvertes.fr/tel-01099184 [Google Scholar]
  49. Garvin HM, Ruff CB. 2012. Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am. J. Phys. Anthropol. 147:4661–70 [Google Scholar]
  50. Georges-Leroy M. 2011. Airborne laser scanning for the management of archaeological sites in Lorraine (France). Remote Sens. Archaeol. Herit. Manag. Proc. EAC Herit. Manag. Symp., 11th, Reykjavik, Iceland, March 25–27, 2010 DC Cowley 229–34 (EAC Occas. Pap. Ser. No. 5) [Google Scholar]
  51. Georges-Leroy M, Bock J, Dambrine É, Dupouey JL. 2012. Apport du lidar à la connaissance de l'histoire de l'occupation du sol en forêt de Haye. ArchéoSciences 1:117–29 [Google Scholar]
  52. Gilboa A, Tal A, Shimshoni I, Kolomenkin M. 2013. Computer-based, automatic recording and illustration of complex archaeological artifacts. J. Archaeol. Sci. 40:21329–39 [Google Scholar]
  53. Gisiger A, Cooper ES, Yuan Y, Limp WF. 1997. Development and implementation of a rapid low-cost photogrammetric data archival system for artifact and osteological inventory. Archaeol. Appl. GIS: Proc. Colloq. II, UISPP XIIIth Congr., Forli, Italy, Sept. 1996 CD- ROM Sydney: Sydney Univ. [Google Scholar]
  54. Hammond AS, Plavcan JM, Ward CV. 2013. Precision and accuracy of acetabular size measures in fragmentary hominin pelves obtained using sphere-fitting techniques. Am. J. Phys. Anthropol. 150:4565–78 [Google Scholar]
  55. Hanes D. 2013. Review of “An Illuminated iDentity” an art exhibit at the Ontario College of art and design. Main Space, Toronto. http://xpace.info/wp-content/uploads/2013/04/Main-Space_iDentity_2013.pdf [Google Scholar]
  56. Hanke K, Grussenmeyer P. 2002. Architectural photogrammetry: basic theory, procedures, tools. Tutor. Architech. Photogramm. Corfu, Greece [Google Scholar]
  57. Henning W. 2011. User Guidelines for Single Base Real Time GNSS Positioning Washington, DC: Natl. Geodetic Surv http://www.ngs.noaa.gov/PUBS_LIB/NGSRealTimeUserGuidelines.v2.1.pdf [Google Scholar]
  58. Hesse R. 2013. The changing picture of archaeological landscapes: Lidar prospection over very large areas as part of a cultural heritage strategy. See Opitz & Cowley 2013 171–83
  59. Hodder I. 2012. Entangled: An Archaeology of the Relationships Between Humans and Things New York: Wiley [Google Scholar]
  60. Ioannides M, Magnenat-Thalmann N, Fink E, Zarnic R, Yen A-Y, Quak E. 2014. Digital Heritage: Progress in Cultural Heritage. Documentation, Preservation, and Protection: 5th Int. Conf. EuroMed 2014, Limassol, Cyprus, Nov. 3–8. Proc. Lect. Notes Comput. Sci. Vol. 8740 Cham, Switz: Springer Int. [Google Scholar]
  61. Kaiser A, Neugirg F, Rock G, Müller C, Haas F. et al. 2014. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan gully morphology using structure from motion. Remote Sens. 6:87050–80 [Google Scholar]
  62. Kansa E. 2005. A community approach to data integration: authorship and building meaningful links across diverse archaeological data sets. Geosphere 1:297–109 [Google Scholar]
  63. Koutsoudis A, Chamzas C. 2011. 3D pottery shape matching using depth map images. J. Cult. Herit. 12:2128–33 [Google Scholar]
  64. Koutsoudis A, Pavlidis G, Liami V, Tsiafakis D, Chamzas C. 2010. 3D pottery content-based retrieval based on pose normalisation and segmentation. J. Cult. Herit. 11:3329–38 [Google Scholar]
  65. Kvamme KL. 1989. Geographic information systems in regional archaeological research and data management. J. Archaeol. Method Theory 1:139–203 [Google Scholar]
  66. Kvamme KL, Ernenwein EG, Markussen CJ. 2006. Robotic total station for microtopographic mapping: an example from the Northern Great Plains. Archaeol. Prospect. 13:291–102 [Google Scholar]
  67. Lagerqvist B. 1999. A system approach to conservation and cultural resources management. Photogrammetry as a base for designing documentation models. Mapp. Preserv. for the New Millenn, CIPA Int. Symp., Olinda, Braz., Oct. 3–6 [Google Scholar]
  68. Leckebusch J. 2005. Precision real-time positioning for fast geophysical prospection. Archaeol. Prospect. 12:3199–202 [Google Scholar]
  69. Lenoble A, Bertran P. 2004. Fabric of Palaeolithic levels: methods and implications for site formation processes. J. Archaeol. Sci. 31:4457–69 [Google Scholar]
  70. Limp F, Payne A, Simon K, Winters S, Cothren J. 2011. Developing a 3-D digital heritage ecosystem: From object to representation and the role of a virtual museum in the 21st century. Internet Archaeol. Issue 30. http://intarch.ac.uk/journal/issue30/limp_toc.html [Google Scholar]
  71. Limp W (Fred), Barnes A 2014. Solving the grid-to-ground problem when using high precision GNSS in archaeological mapping. Adv. Archaeol. Pract. J. Soc. Am. Archaeol. 2:2138–43 [Google Scholar]
  72. Llobera M. 2012. Life on a pixel: challenges in the development of digital methods within an “interpretive” landscape archaeology framework. J. Archaeol. Method Theory 19:4495–509 [Google Scholar]
  73. Lock GR. 2000. Beyond the Map: Archaeology and Spatial Technologies 321 Amsterdam: IOS Press [Google Scholar]
  74. Macintosh AA, Pinhasi R, Stock JT. 2014. Lower limb skeletal biomechanics track long-term decline in mobility across ∼6150 years of agriculture in Central Europe. J. Archaeol. Sci. 52:376–90 [Google Scholar]
  75. McCoy MD, Ladefoged TN. 2009. New developments in the use of spatial technology in archaeology. J. Archaeol. Res. 17:3263–95 [Google Scholar]
  76. McCoy SW, Kean JW, Coe JA, Staley DM, Wasklewicz TA, Tucker GE. 2010. Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology 38:8735–38 [Google Scholar]
  77. McEwan DG, Millican K. 2012. In search of the middle ground: quantitative spatial techniques and experiential theory in archaeology. J. Archaeol. Method Theory 19:4491–94 [Google Scholar]
  78. McPherron SJ. 2005. Artifact orientations and site formation processes from total station proveniences. J. Archaeol. Sci. 32:71003–14 [Google Scholar]
  79. Mehrer MW, Wescott KL. 2005. GIS and Archaeological Site Location Modeling Boca Raton, FL: CRC Press [Google Scholar]
  80. Niven L, Steele TE, Finke H, Gernat T, Hublin J-J. 2009. Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. J. Archaeol. Sci. 36:2018–23 [Google Scholar]
  81. Olsen B, Shanks M, Webmoor T, Witmore C. 2012. Archaeology: The Discipline of Things Berkeley: Univ. Calif. Press [Google Scholar]
  82. Olson BR, Gordon JM, Runnels C, Chomyszak S. 2014. Experimental three-dimensional printing of a lower Palaeolithic handaxe: an assessment of the technology and analytical value. Lithic Technol. 39:3162–72 [Google Scholar]
  83. Opitz R, Nowlin J. 2012. Photogrammetric modeling + GIS. Better methods for working with mesh data. ArcUser Spring ed. http://www.esri.com/news/arcuser/0312/files/archaeology-inventory.pdf [Google Scholar]
  84. Opitz RS, Cowley DC. 2013. Interpreting Archaeological Topography: 3D Data, Visualisation and Observation Oxford, UK: Oxbow Books [Google Scholar]
  85. Paliou E, Lieberwirth U, Polla S. 2014. Spatial Analysis and Social Spaces: Interdisciplinary Approaches to the Interpretation of Prehistoric and Historic Built Environments Berlin: de Gruyter [Google Scholar]
  86. Patterson H, di Gennaro F, Di Giuseppe H, Fonatana S, Gaffney V. et al. 2000. The Tiber Valley Project: the Tiber and Rome through two millennia. Antiquity 74:284395–403 [Google Scholar]
  87. Penasa L, Franceschi M, Preto N, Teza G, Polito V. 2014. Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops. ISPRS J. Photogramm. Remote Sens. 93:88–97 [Google Scholar]
  88. Pizlo Z. 2010. 3D Shape: Its Unique Place in Visual Perception Boston: MIT Press [Google Scholar]
  89. Poidebard A. 1929. Les révélations archéologiques de la photographie aérienne—une nouvelle méthode de recherches et d'obersations en région de Steppe Paris: Ed. Plon [Google Scholar]
  90. Powlesland D, Clemence H, Lyall J. 1998. West Heslerton: WEB-CD—the application of HTML and WEB tools for creating a distributed excavation archive in the form of a WEB-CD. Internet Archaeol. Issue 5 [Google Scholar]
  91. Powlesland D. with the West Heslerton Team 1998. The West Heslerton Assessment. Internet Archaeol. Issue 5 http://dx.doi.org/10.11141/ia.5.4 [Google Scholar]
  92. Powlesland D, May K. 2010. Excavations in Heslerton: DigIT approaches to digital recording. Internet Archaeol. Issue 27 [Google Scholar]
  93. Ravanel L, Bodin X, Deline P. 2014. Using terrestrial laser scanning for the recognition and promotion of high-alpine geomorphosites. Geoheritage 6:129–40 [Google Scholar]
  94. Remondino F, Campana S. 2014. 3D Recording and Modelling in Archaeology and Cultural Heritage: Theory and Best Practices BAR Int. Ser. 2598 Oxford, UK: Archaeopress [Google Scholar]
  95. Ricks JW. 1976. Downslope movement and archaeological intrasite spatial analysis. Am. Antiquity 41:133–44 [Google Scholar]
  96. Rippon S. 2012. Making Sense of an Historic Landscape Oxford, UK: Oxford Univ. Press [Google Scholar]
  97. Roames J. 2011. The Early Iron Age metal workshop at Tell Tayinat, Turkey. MRS Proc. 1319:149–55 [Google Scholar]
  98. Roosevelt CH. 2014. Mapping site-level microtopography with real-time kinematic global navigation satellite systems (RTK GNSS) and unmanned aerial vehicle photogrammetry (UAVP). Open Archaeol. 1, Issue 1. http://www.degruyter.com/view/j/opar.2014.1.issue-1/opar-2014-0003/opar-2014-0003.xml [Google Scholar]
  99. Roskam S. 2001. Excavation. Cambridge Manuals in Archaeology. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  100. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Childs BE. et al. 2006. Dental microwear texture analysis: technical considerations. J. Hum. Evol. 51:4339–49 [Google Scholar]
  101. Selden RZ Jr, Perttula T, O'Brien M. 2014. Advances in documentation, digital curation, virtual exhibition, and a test of 3D geometric morphometrics: a case study of the Vanderpool vessels from the ancestral Caddo territory. Adv. Archaeol. Pract. 2:264–79 [Google Scholar]
  102. Sfikas K, Pratikakis I, Koutsoudis A, Savelonas M, Theoharis T. 2013. 3D object partial matching using panoramic views. New Trends in Image Analysis and Processing—ICIAP 2013 A Petrosino, L Maddalena, P Pala 169–78 Berlin/Heidelberg: Springer [Google Scholar]
  103. Simons DJ, Chabris CF. 1999. Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28:91059–74 [Google Scholar]
  104. Smith N, Levy T. 2014. Archfield: a digital application for real-time acquisition and dissemination—from the field to the virtual museum. Mediterr. Archaeol. Archaeom. 14:465–74 [Google Scholar]
  105. Snyder GI. 2012. National enhanced elevation assessment at a glance. USGS Fact Sheet 2012—3088, June 27. http://pubs.usgs.gov/fs/2012/3088/ [Google Scholar]
  106. Spaulding AC. 1960. The dimensions of archaeology. Essays in the Science of Culture in Honor of Leslie A. White GE Dole, RL Carneiro 437–56 New York: Crowell [Google Scholar]
  107. Tocheri MW, Razdan A, Williams RC, Marzke MW. 2005. A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes. J. Hum. Evol. 49:5570–86 [Google Scholar]
  108. TSA (The Survey Assoc.) 2012. Guidance notes for GNSS Network Surveying in Great Britain. http://www.tsa-uk.org.uk/for-clients/guidance-notes/ [Google Scholar]
  109. Turner S. 2006. Historic landscape characterisation: a landscape archaeology for research, management and planning. Landsc. Res. 31:4385–98 [Google Scholar]
  110. Ungar PS, Krueger KL, Blumenschine RJ, Njau J, Scott RS. 2012. Dental microwear texture analysis of hominins recovered by the Olduvai Landscape Paleoanthropology Project, 1995–2007. J. Hum. Evol. 63:429–37 [Google Scholar]
  111. USGS (U.S. Geol. Survey), Natl. Ocean. Atmos. Adm., FEMA (Fed. Emerg. Manag. Agency) 2011. Publicly available lidar point cloud data (map). Natl. Map, USGS, Reston, VA. http://nationalmap.gov/3DEP/documents/lidar_point_cloud.pdf [Google Scholar]
  112. Van Genechten B. 2008. Theory and practice on terrestrial laser scanning: training material based on practical applications. Learning Tools for Advanced Three-Dimensional Surveying in Risk Awareness Project (3DRiskMapping) Ver. 4 (June), ed. H Caner, R Poelman, E Heine, JL Lerma, H Reiner. Camino de Vera, Spain: Univ. Politec. Valencia Editor. https://lirias.kuleuven.be/handle/123456789/201130 [Google Scholar]
  113. Vitek JD. 2013. Geomorphology: perspectives on observation, history, and the field tradition. Geomorphology 200:120–33 [Google Scholar]
  114. von Cramon-Taubadel N, Stock JT, Pinhasi R. 2013. Skull and limb morphology differentially track population history and environmental factors in the transition to agriculture in Europe. Proc. R. Soc. B 280:176720131337 [Google Scholar]
  115. Vosselman G, Maas HG. 2010. Airborne and Terrestrial Laser Scanning Dunbeath, Caithness, Scotl: Whittles [Google Scholar]
  116. Warnock S, Griffiths G. 2014. Landscape characterisation: the living landscapes approach in the UK. Landsc. Res. 40:261–78 [Google Scholar]
  117. Waters MR, Pevny CD, Carlson DL, Dickens WA, Smallwood AM. et al. 2011. Clovis Lithic Technology: Investigation of a Stratified Workshop at the Gault Site, Texas College Station: Tex. A&M Univ. Press [Google Scholar]
  118. Wickstead H, Barber M. 2012. A spectacular history of survey by flying machine!. Camb. Archaeol. J. 22:171–88 [Google Scholar]
  119. Willey GR. 1953. Prehistoric settlement patterns in the Virú Valley, Peru Bur. Am. Ethnol. Bull. 155. Washington, DC [Google Scholar]
  120. Wu J, Shen X, Zhu W, Liu L. 2013. Mesh saliency with global rarity. Graph. Models 75:5255–64 [Google Scholar]
  121. Yun-sheng MA, Chang-qing LI. 2008. On the application of RTK technique in the measurement of city. Shanxi Arch. 3:221 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error