1932

Abstract

Osteoporosis is a systemic disease characterized by bone mass reductions and heightened fracture risk; its global prevalence rates are projected to increase precipitously over the next few decades. Evolutionary and life-history perspectives have proven valuable for offering a different lens with which to consider the etiologies of common chronic diseases, and in this review, these approaches are applied to osteoporosis. Although there are many perspectives on human susceptibility to bone loss, this article explores the most prominent and empirically studied theories. Osteoporosis is considered within the context of theories on aging (e.g., antagonistic pleiotropy, disposable soma) and mismatch theory. Female vulnerability is considered within a separate evolutionary framework and has been articulated as a trade-off between reproduction and skeletal health. Recent advancements in bone imaging techniques for skeletal and living human and nonhuman primate populations (i.e., CT scans, ultrasonometry) have facilitated huge strides in contextualizing osteoporosis within evolutionary theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102214-013954
2015-10-21
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/anthro/44/1/annurev-anthro-102214-013954.html?itemId=/content/journals/10.1146/annurev-anthro-102214-013954&mimeType=html&fmt=ahah

Literature Cited

  1. Affinito P, Tommaselli GA, di Carlo C, Guida F, Nappi C. 1996. Changes in BMD and calcium metabolism in breastfeeding women: a one year follow-up study. J. Clin. Endocrinol. Metab. 81:2314–18 [Google Scholar]
  2. Agarwal SC, Glencross B. 2010. Examining nutritional aspects of bone loss and fragility across the life course in bioarchaeology. Human Diet and Nutrition in Biocultural Perspective T Moffat, T Prowse 197–222 Oxford/New York: Berghahn [Google Scholar]
  3. Agarwal SC, Stout SD. 2003. Bone Loss and Osteoporosis: An Anthropological Perspective New York: Plenum
  4. Anderson JB. 1999. Nutritional mechanisms of age-related bone loss. See Rosen et al. 1999 229–34
  5. Arden N, Baker J, Hogg C, Baan K, Spector TD. 1996. The heritability of BMD, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res. 11:530–34 [Google Scholar]
  6. Bartl R, Frisch B. 2004. Osteoporosis: Diagnosis, Prevention, Therapy Berlin: Springer-Verlag
  7. Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S. et al. 2010. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 25:91948–57 [Google Scholar]
  8. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. 2012. PBM and its regulation. Pediatric Bone FH Glorieux, JM Pettior, H Jüppner 189–221 London: Academic, 2nd ed.. [Google Scholar]
  9. Bramble D, Lieberman D. 2004. Endurance running and the evolution of Homo. Nature 432:345–52 [Google Scholar]
  10. Brandi M. 2009. Microarchitecture, the key to bone quality. Rheumatology 48:Suppl.iv3–8 [Google Scholar]
  11. Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V. et al. 2013. Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology 269:2534–41 [Google Scholar]
  12. Bredella MA, Lin E, Gerweck AV, Landa MG, Thomas BJ. et al. 2012. Determinants of bone microarchitecture and mechanical properties in obese men. J. Clin. Endocrinol. Metab. 97:114115–22 [Google Scholar]
  13. Brickley M, Agarwal S. 2003. Techniques for the investigation of age-related bone loss and osteoporosis in archaeological bone. See Agarwal & Stout 2003 157–72
  14. Bridges P. 1989. Changes in activities with the shift to agriculture in the southeastern US. Curr. Anthropol. 30:385–94 [Google Scholar]
  15. Bunker VW. 1994. The role of nutrition in osteoporosis. Br. J. Biomed. Sci. 51:228–40 [Google Scholar]
  16. Carter AJ, Nguyen AW. 2011. Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles. BMC Med. Genet. 12:160 [Google Scholar]
  17. Cerroni AM, Tomlinson GA, Turnquist JE, Grynpas MD. 2000. Bone mineral density, osteopenia, and osteoporosis in the rhesus macaques of Cayo Santiago. Am. J. Phys. Anthropol. 113:389–410 [Google Scholar]
  18. Cherniack EP, Troen BR. 2009. Calciotropic hormones. Osteoporosis in Older Persons G Duque, DP Kiel 34–46 London: Springer [Google Scholar]
  19. Cheung C, Chan V, Kung A. 2008. A differential association of ALOX15 polymorphisms with BMD in pre- and post-menopausal women. Hum. Hered. 1:1–8 [Google Scholar]
  20. Chirchir H, Kivell TL, Ruff CB, Hublin JJ, Carlson KJ. et al. 2015. Recent origin of low trabecular bone density in modern humans. PNAS 112:2366–71 [Google Scholar]
  21. Clarke BL, Khosla S. 2009. Androgens and bone. Steroids 74:296–305 [Google Scholar]
  22. Cotter M, Loomis DA, Simpson SW, Latimer B, Hernandez CJ. 2011. Human evolution and osteoporosis-related spinal fractures. PLOS ONE 6:10e26658 [Google Scholar]
  23. Dargeant-Molina P, Favier F, Grandjean H. 1996. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet 348:145–49 [Google Scholar]
  24. Dawson-Hughes B. 2004. Calcium and vitamin D for bone health in adults. Nutrition and Bone Health M Holick, B Dawson-Hughes 197–210 Totowa, NJ: Humana [Google Scholar]
  25. Drinkwater BL, Chestnut CH. 1991. Bone density changes during pregnancy and lactation in active women: a longitudinal study. Bone Miner. 14:153–60 [Google Scholar]
  26. Duncan Bassett J, Gogakos A, White JK, Evans H, Jacques RM. et al. 2012. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLOS Genet. 8:8e1002858 [Google Scholar]
  27. Ensom MH, Liu PY, Stephenson MD. 2002. Effect of pregnancy on BMD in healthy women. Obstet. Gynecol. Surv. 57:99–111 [Google Scholar]
  28. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA. et al. 2010. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308 [Google Scholar]
  29. Finck H, Cassidy A, Lentjes M, Jennings A, Luben R. et al. 2013. Dietary vitamin C is positively associated with heel bone density but not with fracture risk in men and women in the EPIC-Norfolk study. Proc. Nutr. Soc. 72:OCE4E254 [Google Scholar]
  30. Francis R. 1999. The effects of testosterone on osteoporosis in men. Clin. Endocrinol. 50:4411–14 [Google Scholar]
  31. Fukumoto S, Martin TJ. 2009. Bone as an endocrine organ. Trends Endocrinol. Metab. 20:5230–36 [Google Scholar]
  32. Galloway A. 1997. The cost of reproduction and the evolution of postmenopausal osteoporosis. The Evolving Female: A Life-History Perspective ME Morbeck, A Galloway, A Zihlman 132–46 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  33. Gullberg B, Johnell O, Kanis J. 1997. World-wide projections for hip fracture. Osteoporos. Int. 7:407–13 [Google Scholar]
  34. Gundberg CM, Lian JB, Booth SL. 2012. Vitamin K-dependent carboxylation of osteocalcin: friend or foe. Adv. Nutr. 3:149–57 [Google Scholar]
  35. Gunji H, Hosaka K, Huffman MA, Kawanaka K, Matsumoto-Oda A. et al. 2003. Extraordinarily low bone mineral density in an old female chimpanzee from the Mahale Mountains National Park. Primates 44:145–49 [Google Scholar]
  36. Gurven M, Kaplan H, Gutierrez M. 2006. How long does it take to become a proficient hunter? Implications for the evolution of delayed growth. J. Hum. Evol. 51:454–70 [Google Scholar]
  37. Hawkes K, Blurton Jones NG. 2005. Human age structures, paleodemography, and the grandmother hypothesis. Grandmotherhood: The Evolutionary Significance of the Second Half of Female Life E Voland, A Chasiotis, W Schiefenhovel 118–40 New Brunswick, NJ: Rutgers Univ. Press [Google Scholar]
  38. Hawkes K, O'Connell J, Blurton-Jones N. 1997. Hadza women's time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Curr. Anthropol. 38:551–77 [Google Scholar]
  39. Hernández-Avila M, Stampfer MJ, Ravnikar VA, Willett WC, Schiff I. et al. 1993. Caffeine and other predictors of bone density among pre-and perimenopausal women. Epidemiology 4:128–34 [Google Scholar]
  40. Hill K, Kaplan H. 1999. Life-history traits in humans: theory and empirical studies. Annu. Rev. Anthropol. 28:397–430 [Google Scholar]
  41. Hodsman AB, Fraher LH, Watson PH. 1999. Parathyroid hormone. See Rosen et al. 1999 563–78
  42. Holick MF. 2003. Vitamin D: a millennium perspective. J. Cell Biochem. 88:296–307 [Google Scholar]
  43. Hreschchyshyn MM, Hopkins A, Zulstra S. 1988. Associations of parity, breastfeeding, and birth control pills with lumbar spine and femoral neck bone densities. Am. J. Obstet. Gynecol. 159:318–22 [Google Scholar]
  44. Imai Y, Youn MY, Kondoh S, Nakamura T, Kouzmenko A. et al. 2009. Estrogens maintain bone mass by regulating expression of genes controlling function and lifespan in mature osteoclasts. Ann. N.Y. Acad. Sci. 1173:Suppl. 1e31–39 [Google Scholar]
  45. James GD. 2014. Human evolution and chronic diseases: genes, allostasis, and cut-points. Anthropology 2:e122 [Google Scholar]
  46. Kalkwarf HJ, Specker BL. 2002. Bone mineral changes during pregnancy and lactation. Endocrine 17:149–53 [Google Scholar]
  47. Kanis JA. 2007. Assessment of osteoporosis at the primary health-care level Tech. Rep., World Health Organ. Collab. Cent. Metab. Bone Dis., Univ. Sheffield, UK
  48. Karasik D. 2008. Osteoporosis: an evolutionary perspective. Hum. Genet. 124:349–56 [Google Scholar]
  49. Karsenty G. 2014. Regulation of male fertility by bone. Cold Spring Harb. Symp. Quant. Biol. 76:279–83 [Google Scholar]
  50. Karsenty G, Oury F. 2014. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell Endocrinol. 382:1521–26 [Google Scholar]
  51. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA. 1995. Genetic influences on bone turnover, bone density and fracture. Eur. J. Endocrinol. 133:265–71 [Google Scholar]
  52. Kemper H, Twisk J, van Mechelen W, Post GB, Roos JC, Lips P. 2000. A fifteen-year longitudinal study in young adults on the relation of physical activity and fitness with the development of the bone mass: the Amsterdam Growth and Health Longitudinal Study. Bone 27:847–53 [Google Scholar]
  53. Kent GN, Price RI, Gutteridge DH, Allen JR, Rosman KJ. et al. 1993. Effect of pregnancy and lactation on maternal bone mass and calcium metabolism. Osteoporos. Int. 3:Suppl. 144–47 [Google Scholar]
  54. Kirkwood TB, Rose MR. 1991. Evolution of senescence: late survival sacrificed for reproduction.. Philos. Trans. R. Soc. B 332:15–24 [Google Scholar]
  55. Latimer B. 2005. The perils of being bipedal. Ann. Biomed. Eng. 33:13–6 [Google Scholar]
  56. Lazenby R. 1997. Bone loss, traditional diet, and cold adaptation in Arctic populations. Am. J. Hum. Biol. 9:329–41 [Google Scholar]
  57. Lees CJ, Jerome CP, Register TC, Carlson CS. 1998. Changes in bone mass and bone biomarkers of cynomolgus monkeys during pregnancy and lactation. J. Clin. Endocrinol. Metab. 83:4298–302 [Google Scholar]
  58. Li W, Hou S, Yu B, Jin D, Ferec C, Chen J. 2010. Genetics of osteoporosis: perspectives for personalized medicine. Personalized Med. 7:6655–68 [Google Scholar]
  59. Madimenos FC, Snodgrass JJ, Blackwell AB, Liebert MA, Cepon TJ, Sugiyama LS. 2011. Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. Arch. Osteoporos. 6:39–49 [Google Scholar]
  60. Madimenos FC, Snodgrass JJ, Liebert MA, Cepon TJ, Sugiyama LS. 2012. Reproductive effects on skeletal health in Shuar women of Amazonian Ecuador: a life-history perspective. Am. J. Hum. Biol. 24:6841–52 [Google Scholar]
  61. Manifold BM. 2014. BMD in children from anthropological and clinical sciences: a review. Anthropol. Rev. 77:2111–35 [Google Scholar]
  62. Marlowe F. 2000. The patriarch hypothesis. Hum. Nat. 1:27–42 [Google Scholar]
  63. Maurel DB, Boisseau B, Benhamou CL, Jaffre C. 2011. Alcohol and bone: review of dose effects and mechanisms. Osteoporos. Int. 23:11–16 [Google Scholar]
  64. Morbey Y, Abrams P. 2004. The interaction between reproductive lifespan and protandry in seasonal breeders. J. Evol. Biol. 17:768–78 [Google Scholar]
  65. Naveh-Many T, Silver J. 1990. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J. Clin. Investig. 86:1313–19 [Google Scholar]
  66. Nelson DA, Weiss ML. 1999. Aging through the ages. See Rosen et al. 1999 3–9
  67. Nguyen TV, Jones G, Sambrook PN, White CP, Kelly PJ, Eisman JA. 1995. Effects of estrogen exposure and reproductive factors on BMD and osteoporotic fractures. J. Clin. Endocrinol. Metab. 80:2709–14 [Google Scholar]
  68. Ohman C, Mensforth R, Latimer B. 1997. Age-related osteopenia in Gorilla gorilla and Pan troglodytes. Am. J. Phys. Anthropol. 24:Suppl.181 [Google Scholar]
  69. Oury F, Sumara G, Sumara O, Ferron M, Chang H. et al. 2011. Endocrine regulation of male fertility by the skeleton. Cell 144:5796–809 [Google Scholar]
  70. Pacifici R. 2007. Estrogen deficiency, T cells and bone loss. Cell Immunol. 252:68–80 [Google Scholar]
  71. Partridge L, Barton N. 1993. Optimality, mutation and the evolution of aging. Nature 362:305–11 [Google Scholar]
  72. Pattou F, Combemale F, Fabre S, Carnaille B, Decoulx M. et al. 1998. Hypocalcemia following thyroid surgery: incidence and prediction of outcome. World J. Surg. 22:7718–24 [Google Scholar]
  73. Pearce KL. 2006. Breastfeeding and bone density change PhD Diss., Univ. Mass.
  74. Peccei JS. 2001. Menopause: adaptation or epiphenomenon. Evol. Anthropol. 10:43–57 [Google Scholar]
  75. Pollock NK, Bernard PJ, Gutin B, Davis CL, Zhu H, Dong Y. 2011. Adolescent obesity, bone mass and cardiometabolic risk factors. J. Pediatr. 158:5727–34 [Google Scholar]
  76. Raichlen D, Foster AD, Gerdeman GL, Seillier A, Guiffrida A. 2012. Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner's’ high. J. Exp. Biol. 215:Pt. 81331–36 [Google Scholar]
  77. Ralston S, Uitterlinden A. 2010. Genetics of osteoporosis. Endocr. Rev. 31:5629–62 [Google Scholar]
  78. Roberts C, Manchester K. 2005. The Archaeology of Disease. New York: Cornell Univ. Press
  79. Rosen CJ, Bouxsein ML. 2006. Mechanisms of disease: Is osteoporosis the obesity of bone?. Nat. Clin. Pract. Rhematol. 2:135–43 [Google Scholar]
  80. Rosen CJ, Glowacki J, Bilezikian JP. 1999. The Aging Skeleton San Diego: Academic
  81. Rosen CJ, Klibanski A. 2009. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122:5409–14 [Google Scholar]
  82. Ryan TM, Shaw CN. 2015. Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. PNAS 112:372–77 [Google Scholar]
  83. Scheffler C, Gniosdorz B, Staub K, Rühli F. 2014. Skeletal robustness and bone strength as measured by anthropometry and ultrasonography as a function of physical activity in young adults. Am. J. Hum. Biol. 26:2215–20 [Google Scholar]
  84. Seeman E, Delmas P. 2006. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354:212250–61 [Google Scholar]
  85. Shokier M. 1975. Investigation on Huntington's disease in the Canadian Prairies. Clin. Genet. 7:349–53 [Google Scholar]
  86. Siefert-Klaus V, Prior JC. 2010. Progesterone and bone: actions promoting bone health in women. J. Osteoporos. 2010:845180 [Google Scholar]
  87. Sorenson S, Fenger K, Olsen J. 1999. Significantly lower incidence of cancer among patients with Huntington's disease. Cancer 6:1342–46 [Google Scholar]
  88. Sowers MF. 1996. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J. Bone Miner. Res. 11:1052–60 [Google Scholar]
  89. Sowers MF. 2001. Premenopausal reproductive and hormonal characteristics and the risk for osteoporosis. Osteoporosis R Marcus, D Feldman, J Kelsey 721–39 San Diego: Academic, 2nd ed.. [Google Scholar]
  90. Sowers MF, Corton G, Shapiro B, Jannausch ML, Crutchfield M. et al. 1993. Changes in bone density with lactation. J. Am. Med. Assoc. 269:3130–35 [Google Scholar]
  91. Stieglitz J, Beheim BA, Trumble BC, Madimenos FC, Kaplan H, Gurven M. 2015. Low mineral density of a weight-bearing bone among adult women in a high fertility population. Am. J. Phys. Anthropol. 156:4637–48 [Google Scholar]
  92. Stini W. 1995. Osteoporosis in biocultural perspective. Annu. Rev. Anthropol. 24:397–421 [Google Scholar]
  93. Stini W. 1998. Calcium homeostasis and human evolution. Coll. Anthropol. 22:2411–25 [Google Scholar]
  94. Streeten EA, Ryan KA, McBride DJ, Pollin TI, Shuldiner AR, Mitchell BD. 2005. The relationship between parity and BMD in women characterized by a homogenous lifestyle and high parity. J. Clin. Endocrinol. Metab. 90:4536–41 [Google Scholar]
  95. Streeter M, Stout SD. 2003. The histomorphometry of the subadult rib: age-associated changes in bone mass and the creation of PBM. See Agarwal & Stout 2003 91–101
  96. Tintut Y, Morony S, Demer LL. 2004. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler. Thromb. Vasc. Biol. 25:2e6–e10 [Google Scholar]
  97. Tung S, Iqbal J. 2007. Evolution, aging and osteoporosis. Ann. N.Y. Acad. Sci. 1116:499–506 [Google Scholar]
  98. Turnquist JE, Cerroni AM, Faccia KJ, Boyd SK, Hallgrimsson B. 2012. Fragile spines on Cayo Santiago: bone mineral density, trabecular morphology, and the potential for exploring the genetics of osteoporosis in rhesus macaques. Bones, Genetics, and Behavior of Rhesus Macaques Q Wang 85–116 London: Spring [Google Scholar]
  99. van der Meulen M, Carter D. 1999. Mechanical determinants of PBM. See Rosen et al. 1999 105–25
  100. Waud CE, Stock JL. 1999. Calcitonin. See Rosen et al. 1999 551–61
/content/journals/10.1146/annurev-anthro-102214-013954
Loading
/content/journals/10.1146/annurev-anthro-102214-013954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error