The recent Ebola epidemic provides a dramatic example of the devastation and fear generated by epidemics, particularly those caused by new emerging or reemerging diseases. A focus on the control and prevention of diseases in living populations dominates most epidemic disease research. However, research on epidemics in the past provides a temporal depth to our understanding of the context and consequences of diseases and is crucial for predicting how diseases might shape human biology and demography in the future. This article reviews recent research on historic epidemics of plague and tuberculosis, both of which have affected human populations for millennia. Research on these diseases demonstrates the range (and differential availability) of various lines of evidence (e.g., burial context, diagnostic skeletal lesions, molecular data) that inform about past disease in general. I highlight how research on past epidemics may be informative in ways that benefit living populations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abramowitz SA, McLean KE, McKune SL, Bardosh KL, Fallah M. et al. 2015. Community-centered responses to Ebola in urban Liberia: the view from below. PLOS Negl. Trop. Dis. 9:e0003706 [Google Scholar]
  2. Agusto FB, Teboh-Ewungkem MI, Gumel AB. 2015. Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks. BMC Med. 13:96 [Google Scholar]
  3. Alizon S, Hurford A, Mideo N, Van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:245–59 [Google Scholar]
  4. Anastasiou E, Mitchell PD. 2013. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations. Gene 528:33–40 [Google Scholar]
  5. André J-B, Hochberg ME. 2005. Virulence evolution in emerging infectious diseases. Evolution 59:1406–12 [Google Scholar]
  6. Azarian T, Lo Presti A, Giovanetti M, Cella E, Rife B. et al. 2015. Impact of spatial dispersion, evolution, and selection on Ebola Zaire Virus epidemic waves. Sci. Rep. 5:10170 [Google Scholar]
  7. Baker O, Lee OYC, Wu HHT, Besra GS, Minnikin DE. et al. 2015. Human tuberculosis predates domestication in ancient Syria. Tuberculosis 95:S4–12 [Google Scholar]
  8. Barnes I, Duda A, Pybus OG, Thomas MG. 2011. Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65:842–48 [Google Scholar]
  9. Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M. 2008. Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (southeastern France, 16th–18th centuries). Am. J. Phys. Anthropol. 136:361–67 [Google Scholar]
  10. Blondiaux J, de Broucker A, Colard T, Haque A, Naji S. 2015. Tuberculosis and survival in past populations: a paleo-epidemiological appraisal. Tuberculosis 95:S93–100 [Google Scholar]
  11. Bos K, Schuenemann V, Golding G, Burbano H, Waglechner N. et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–10 [Google Scholar]
  12. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N. et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–97 [Google Scholar]
  13. Bouwman AS, Kennedy SL, Müller R, Stephens RH, Holst M. et al. 2012. Genotype of a historic strain of Mycobacterium tuberculosis. PNAS 109:18511–16 [Google Scholar]
  14. Breman JG, Johnson KM. 2014. Ebola then and now. N. Engl. J. Med. 371:1663–66 [Google Scholar]
  15. Castex D. 2008. Identification and interpretation of historical cemeteries linked to epidemics. Paleomicrobiology: Past Human Infections D Raoult, M Drancourt 23–48 Berlin: Springer-Verlag [Google Scholar]
  16. CDC (Cent. Dis. Control Prev.) 2016. 2014 Ebola outbreak in West Africa—case counts Updated April 13, CDC, Atlanta. http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
  17. Chaussinand R. 1948. Tuberculose et lepre, maladies antagoniques. Int. J. Lepr. Other Mycobact. Dis. 16:431–38 [Google Scholar]
  18. Cleaveland S, Haydon DT, Taylor L. 2007. Overviews of pathogen emergence: Which pathogens emerge, when and why?. Curr. Top. Microbiol. Immunol. 315:85–111 [Google Scholar]
  19. Devault AM, McLoughlin K, Jaing C, Gardner S, Porter TM. et al. 2014. Ancient pathogen DNA in archaeological samples detected with a microbial detection array. Sci. Rep. 4:4245 [Google Scholar]
  20. DeWitte SN. 2010. Age patterns of mortality during the Black Death in London, A.D. 1349–1350. J. Archaeol. Sci. 37:3394–400 [Google Scholar]
  21. DeWitte SN. 2014a. Health in post-Black Death London (1350–1538): age patterns of periosteal new bone formation in a post-epidemic population. Am. J. Phys. Anthropol. 155:260–67 [Google Scholar]
  22. DeWitte SN. 2014b. Mortality risk and survival in the aftermath of the medieval Black Death. PLOS ONE 9:e96513 [Google Scholar]
  23. DeWitte SN. 2015. Setting the stage for medieval plague: pre-Black Death trends in survival and mortality. Am. J. Phys. Anthropol. 158:441–51 [Google Scholar]
  24. DeWitte SN, Hughes-Morey G. 2012. Stature and frailty during the Black Death: the effect of stature on risks of epidemic mortality in London, A.D. 1348–1350. J. Archaeol. Sci. 39:1412–19 [Google Scholar]
  25. DeWitte SN, Wood JW. 2008. Selectivity of Black Death mortality with respect to preexisting health. PNAS 105:1436–41 [Google Scholar]
  26. Donoghue HD. 2011. Insights gained from palaeomicrobiology into ancient and modern tuberculosis. Clin. Microbiol. Infect. 17:821–29 [Google Scholar]
  27. Donoghue HD, Marcsik A, Matheson C, Vernon K, Nuorala E. et al. 2005. Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc. Biol. Sci. 272:389–94 [Google Scholar]
  28. Donoghue HD, Spigelman M, O'Grady J, Szikossy I, Pap I. et al. 2015. Ancient DNA analysis—an established technique in charting the evolution of tuberculosis and leprosy. Tuberculosis 95:S140–44 [Google Scholar]
  29. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. PNAS 95:12637–40 [Google Scholar]
  30. Ebert D. 1999. The evolution and expression of parasite virulence. Evolution in Health and Disease S Stearns 161–72 Oxford, UK: Oxford Univ. Press [Google Scholar]
  31. Engering A, Hogerwerf L, Slingenbergh J. 2013. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2:e5 [Google Scholar]
  32. Farrar JJ, Piot P. 2014. The Ebola emergency—immediate action, ongoing strategy. N. Engl. J. Med. 371:1545–46 [Google Scholar]
  33. Fauci AS, Touchette NA, Folkers GK. 2005. Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg. Infect. Dis. 11:519–25 [Google Scholar]
  34. Faustini A, Hall AJ, Perucci CA. 2006. Risk factors for multidrug resistant tuberculosis in Europe: a systematic review. Thorax 61:158–63 [Google Scholar]
  35. Feldmann H, Czub M, Jones S, Dick D, Garbutt M. et al. 2002. Emerging and re-emerging infectious diseases. Med. Microbiol. Immunol. 191:63–74 [Google Scholar]
  36. Gagneux S. 2012. Host-pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. B 367:850–59 [Google Scholar]
  37. Ghazanfar H, Orooj F, Abdullah MA, Ghazanfar A. 2015. Ebola, the killer virus. Infect. Dis. Poverty 4:15 [Google Scholar]
  38. Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S. et al. 2006. A universal vaccine for serogroup B meningococcus. PNAS 103:10834–39 [Google Scholar]
  39. Gowland RL, Chamberlain AT. 2005. Detecting plague: palaeodemographic characterisation of a catastrophic death assemblage. Antiquity 79:146–57 [Google Scholar]
  40. Grainger I, Hawkins D, Cowal L, Mikulski R. 2008. The Black Death Cemetery, East Smithfield, London. Mus. London Archaeol. Serv. Monogr. 43 London: Mus. London Archaeol. Serv.
  41. Green MH. 2014. Editor's introduction to “Pandemic disease in the medieval world: Rethinking the Black Death.”. Mediev. Globe 1:9–26 [Google Scholar]
  42. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM. et al. 2004. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303:327–32 [Google Scholar]
  43. Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M. et al. 2010. Distinct clones of Yersinia pestis caused the Black Death. PLOS Pathog. 6:e1001134 [Google Scholar]
  44. Harkins KM, Stone AC. 2015. Ancient pathogen genomics: insights into timing and adaptation. J. Hum. Evol. 79:137–49 [Google Scholar]
  45. Hawkins D. 1990. Black Death and the new London cemeteries of 1348. Antiquity 64:637–42 [Google Scholar]
  46. Herring A, Swedlund AC. 2010a. Plagues and Epidemics: Infected Spaces Past and Present Oxford, UK: Berg
  47. Herring A, Swedlund AC. 2010b. Plagues and epidemics in anthropological perspective. See Herring & Swedlund 2010a 1–19
  48. Hershkovitz I, Donoghue HD, Minnikin DE, May H, Lee OYC. et al. 2015. Tuberculosis origin: the Neolithic scenario. Tuberculosis 95:S122–26 [Google Scholar]
  49. Hohmann N, Voss-Böhme A. 2013. The epidemiological consequences of leprosy-tuberculosis co-infection. Math. Biosci. 241:225–37 [Google Scholar]
  50. Kacki S, Rahalison L, Rajerison M, Ferroglio E, Bianucci R. 2011. Black Death in the rural cemetery of Saint-Laurent-de-la-Cabrerisse Aude-Languedoc, southern France, 14th century: immunological evidence. J. Archaeol. Sci. 38:581–87 [Google Scholar]
  51. Kendall E, Montgomery J, Evans J, Stantis C, Mueller V. 2013. Mobility, mortality, and the middle ages: identification of migrant individuals in a 14th century Black Death cemetery population. Am. J. Phys. Anthropol. 150:210–22 [Google Scholar]
  52. Keusch GT, Pappaioanou M, Gonzalez MC, Scott KA, Tsai P. 2009. Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases Washington, DC: Natl. Acad. Press
  53. Konigsberg LW, Frankenberg SR. 2002. Deconstructing death in paleodemography. Am. J. Phys. Anthropol. 117:297–309 [Google Scholar]
  54. Lietman T, Porco T, Blower S. 1997. Leprosy and tuberculosis: the epidemiological consequences of cross-immunity. Am. J. Public Health 87:1923–27 [Google Scholar]
  55. Littleton J, Park J, Bryder L. 2010. The end of a plague? Tuberculosis in New Zealand. See Herring & Swedlund 2010a 119–36
  56. Margerison BJ, Knüsel CJ. 2002. Paleodemographic comparison of a catastrophic and an attritional death assemblage. Am. J. Phys. Anthropol. 119:134–43 [Google Scholar]
  57. Matos VMJ, Santos AL. 2015. Trends in mortality from pulmonary tuberculosis before and after antibiotics in the Portuguese sanatorium Carlos Vasconcelos Porto (1918–1991): archival evidence and its paleopathological relevance. Tuberculosis 95:S101–4 [Google Scholar]
  58. McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M. et al. 2003. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res. 13:1665–74 [Google Scholar]
  59. Milner GR, Wood JW, Boldsen JL. 2008. Paleodemography. Biological Anthropology of the Human Skeleton M Katzenberg, S Saunders 561–600 New York: Wiley-Liss [Google Scholar]
  60. Morens DM, Folkers GK, Fauci AS. 2004. The challenge of emerging and re-emerging infectious diseases. Nature 430:242–49 [Google Scholar]
  61. Moriel DG, Bertoldi I, Spagnuolo A, Marchi S, Rosini R. et al. 2010. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. PNAS 107:9072–77 [Google Scholar]
  62. Morse SS. 1995. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1:7–15 [Google Scholar]
  63. Natl. Res. Counc. Comm. Genom. Databases for Terror. Threat Agents 2004. Seeking Security: Pathogens, Open Access, and Genome Databases. Washington, DC: Natl. Acad. Press
  64. Noymer A. 2010. Epidemics and time: influenza and tuberculosis during and after the 1918–1919 pandemic. See Herring & Swedlund 2010a 137–52
  65. Olabode AS, Jiang X, Robertson DL, Lovell SC. 2015. Ebolavirus is evolving but not changing: no evidence for functional change in EBOV from 1976 to the 2014 outbreak. Virology 482:202–7 [Google Scholar]
  66. Pálfi G, Dutour O, Perrin P, Sola C, Zink A. 2015. Tuberculosis in evolution. Tuberculosis 95:S1–3 [Google Scholar]
  67. Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. 2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval Black Death. PNAS 97:12800–3 [Google Scholar]
  68. Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M. et al. 2015. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163:571–82 [Google Scholar]
  69. Resnick D, Niwayama G. 1995. Osteomyelitis, septic arthritis, and soft tissue infection: organisms. Diagnosis of Bone and Joint Disorders D Resnick 2467–74 Edinburgh: W. B. Saunders, 3rd ed.. [Google Scholar]
  70. Roberts CA. 2011. The bioarchaeology of leprosy and tuberculosis: a comparative study of perceptions, stigma, diagnosis, and treatment. Social Bioarchaeology SC Agarwal, BA Glencross 252–82 Malden, MA: Wiley-Blackwell [Google Scholar]
  71. Roberts CA. 2012. Re-emerging infections: developments in bioarchaeological contributions to understanding tuberculosis today. A Companion to Paleopathology AL Grauer 434–57 Malden, MA: Wiley-Blackwell [Google Scholar]
  72. Roberts CA. 2015. Old World tuberculosis: evidence from human remains with a review of current research and future prospects. Tuberculosis 95:S117–21 [Google Scholar]
  73. Roberts CA, Buikstra JE. 2003. The Bioarchaeology of Tuberculosis: A Global View on a Reemerging Disease Gainesville: Univ. Press Fla.
  74. Roberts CA, Manchester K. 2005. The Archaeology of Disease Ithaca, NY: Cornell Univ. Press
  75. Sawchuk LA. 2010. Deconstructing an epidemic: cholera in Gibraltar. See Herring & Swedlund 2010a 95–117
  76. Seib KL, Dougan G, Rappuoli R. 2009. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLOS Genet. 5:e1000612–12 [Google Scholar]
  77. Sette A, Rappuoli R. 2010. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–41 [Google Scholar]
  78. Shea DA. 2007. Oversight of dual-use biological research: The National Science Advisory Board for Biosecurity. CRS Rep. for Congr., April 27. http://ncseonline.org/nle/crs/abstract.cfm?NLEid=1597
  79. Signoli M, Seguy I, Biraben JN, Dutour O, Belle P. 2002. Paleodemography and historical demography in the context of an epidemic: plague in Provence in the eighteenth century. Population 57:829–54 [Google Scholar]
  80. Singer M. 2010. Ecosyndemics: global warming and the coming plagues of the twenty-first century. See Herring & Swedlund 2010a 21–37
  81. Singer M, Clair S. 2003. Syndemics and public health: reconceptualizing disease in bio-social context. Med. Anthropol. Q. 17:423–41 [Google Scholar]
  82. Smiley ST. 2008. Immune defense against pneumonic plague. Immunol. Rev. 225:256–71 [Google Scholar]
  83. Stone AC, Wilbur AK, Buikstra JE, Roberts CA. 2009. Tuberculosis and leprosy in perspective. Am. J. Phys. Anthropol. 140:66–94 [Google Scholar]
  84. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 2005. Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–93 [Google Scholar]
  85. Tomori O. 2015. Will Africa's future epidemic ride on forgotten lessons from the Ebola epidemic?. BMC Med. 13:116 [Google Scholar]
  86. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A. et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80 [Google Scholar]
  87. van Aken J. 2007. Ethics of reconstructing Spanish flu: Is it wise to resurrect a deadly virus?. Heredity 98:1–2 [Google Scholar]
  88. Vaupel JW, Manton KG, Stallard E. 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–54 [Google Scholar]
  89. Vora S, Damon I, Fulginiti V, Weber SG, Kahana M. et al. 2008. Severe eczema vaccinatum in a household contact of a smallpox vaccinee. Clin. Infect. Dis. 46:1555–61 [Google Scholar]
  90. Waldron HA. 2001. Are plague pits of particular use to palaeoepidemiologists?. Int. J. Epidemiol. 30:104–8 [Google Scholar]
  91. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N. et al. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46:336–44 [Google Scholar]
  92. Wheelis M. 2002. Biological warfare at the 1346 Siege of Caffa. Emerg. Infect. Dis. 8:971–75 [Google Scholar]
  93. WHO (World Health Organ.) 2015. Global Tuberculosis Report 2015 Geneva: WHO, 20th ed..
  94. WHO (World Health Organ.) Ebola Response Team 2014. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371:1481–95 [Google Scholar]
  95. Wilbur AK, Farnbach AW, Knudson KJ, Buikstra JE. 2008. Diet, tuberculosis, and the paleopathological record. Curr. Anthropol. 49:963–77 [Google Scholar]
  96. Wood JW, Holman DJ, O'Connor KA, Ferrell RJ. 2002. Mortality models for paleodemography. Paleodemography: Age Distributions from Skeletal Samples RD Hoppa, JW Vaupel 129–68 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  97. Yang G, Pevear DC, Davies MH, Collett MS, Bailey T. et al. 2005. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 79:13139–49 [Google Scholar]
  98. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N. et al. 2003. Characterization of Mycobacterium tuberculosis Complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41:359–67 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error