1932

Abstract

Stable isotope analysis of carbon and nitrogen has revolutionized anthropology's approach and understanding of the evolution of human diet. A baseline comparison across extant nonhuman primates reveals that they all depend on C plants in forests, forest patches, and woodlands except during rare seasonal intake, in marginal regions, or where maize fields exist. Even large-bodied hominoids that could theoretically rely on hard-to-digest C plants do not do so. Some Plio-Pleistocene hominins, however, apparently relied heavily on C and/or CAM plants, which suggests that they relied extensively on cecal-colon microbial fermentation. Neanderthals seem less carnivorous than is often assumed when we compare their δ15N values with those of recent human populations, including recent human foragers who also fall at or near the top of their local trophic system. Finally, the introduction of maize into North America is shown to have been more sporadic and temporally variable than previously assumed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102313-025935
2014-10-21
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/anthro/43/1/annurev-anthro-102313-025935.html?itemId=/content/journals/10.1146/annurev-anthro-102313-025935&mimeType=html&fmt=ahah

Literature Cited

  1. Aiello LC, Wheeler P. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36:199–221 [Google Scholar]
  2. Ambrose S, Norr L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. Prehistoric Human Bone: Archaeology at the Molecular Level JB Lambert, G Grupe 1–29 Berlin: Springer-Verlag [Google Scholar]
  3. Ambrose SH, Buikstra J, Krueger HW. 2003. Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. J. Anthropol. Archaeol. 22:217–26 [Google Scholar]
  4. Ambrose SH, DeNiro MJ. 1986. The isotopic ecology of East African mammals. Oecologia 69:395–406 [Google Scholar]
  5. Ambrose SH, Katzenberg MA. 2000. Biogeochemical Approaches to Paleodietary Analysis New York: Kluwer Acad./Plenum
  6. Balter V, Simon L. 2006. Diet and behavior of the Saint-Césaire Neanderthal inferred from biogeochemical data inversion. J. Hum. Evol. 51:329–38 [Google Scholar]
  7. Blumenthal SA, Chritz KL, Rothman JM, Cerling TE. 2012. Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces. Proc. Natl. Acad. Sci. USA 109:21277–82 [Google Scholar]
  8. Bocherens H, Billiou D, Mariotti A, Toussaint M, Patou-Mathis M. et al. 2001. New isotopic evidence for dietary habits of Neandertals from Belgium. J. Hum. Evol. 40:497–505 [Google Scholar]
  9. Bocherens H, Drucker C, Billiou D, Patou-Mathis M, Vandermeersch B. 2005. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-sourcing mixing model. J. Hum. Evol. 49:71–87 [Google Scholar]
  10. Bocherens H, Fizet M, Mariotti A, Lange-Badre B, Vandermeersch B. et al. 1991. Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. J. Hum. Evol. 20:481–92 [Google Scholar]
  11. Bocherens H, van Klinken GJ, Pollard AM. 1999. Proceedings of the 5th Advanced Seminar on Paleodiet. J. Archaeol. Sci. 26:593–728 [Google Scholar]
  12. Bunn HT. 2001. Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. Meat-Eating and Human Evolution CB Stanford, HT Bunn 199–218 New York: Oxford Univ. Press [Google Scholar]
  13. Carter ML. 2001. Sensitivity of stable isotopes (13C, 15N, and 18O) in bone to dietary specialization and niche separation among sympatric primates in Kibale National Park, Uganda PhD Thesis, Univ. Chicago [Google Scholar]
  14. Cerling TE. 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97:241–47 [Google Scholar]
  15. Cerling TE, Hart JA, Hart TB. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:5–12 [Google Scholar]
  16. Cerling TE, Manthi FK, Mbua EN, Leakey LN, Leakey MG. et al. 2013. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110:10501–6 [Google Scholar]
  17. Chivers DJ, Hladik CM. 1980. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J. Morphol. 166:337–86 [Google Scholar]
  18. Codron D, Lee-Thorp JA, Sponheimer M, de Ruiter D, Codron J. 2006. Inter- and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N, and %N. Am. J. Phys. Anthropol. 129:204–14 [Google Scholar]
  19. Codron D, Lee-Thorp JA, Sponheimer M, de Ruiter D, Codron J. 2008. What insights can baboon feeding ecology provide for early hominin niche differentiation?. Int. J. Primatol. 29:757–72 [Google Scholar]
  20. Coltrain JB, Stafford TWJ. 2002. Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake basin. Am. Antiq. 67:453–85 [Google Scholar]
  21. Colyer AM. 1996. Testing dietary change at the Pithouse to Pueblo transition MA Thesis, Mich. State Univ.
  22. Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD. 2000. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am. J. Clin. Nutr. 71:682–92 [Google Scholar]
  23. Crowley BE, Carter ML, Karpanty SM, Zihlman AL, Koch PL, Dominy NJ. 2010. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164:611–26 [Google Scholar]
  24. Crowley BE, Thorén S, Rasoazanabary E, Vogel ER, Barrett MA. et al. 2011. Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). J. Biogeogr. 38:2106–21 [Google Scholar]
  25. Dammhahn M, Kappeler PM. 2010. Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): new insights from stable isotopes. Am. J. Phys. Anthropol. 141:181–89 [Google Scholar]
  26. Darwin C. 1871. The Descent of Man, and Selection in Relation to Sex London: John Murray
  27. Deblauwe I, Janssens GP. 2008. New insights in insect prey choice by chimpanzees and gorillas in southeast Cameroon: the role of nutritional value. Am. J. Phys. Anthropol. 135:42–55 [Google Scholar]
  28. DeNiro MJ, Epstein S. 1978. Influence of diet on distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42:495–506 [Google Scholar]
  29. Domínguez-Rodrigo M, Pickering TR, Semaw S, Rogers MJ. 2005. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world's oldest stone tools. J. Hum. Evol. 48:109–21 [Google Scholar]
  30. Dyson FJ. 2012. Is science mostly driven by ideas or by tools?. Science 338:1426–27 [Google Scholar]
  31. El Zaatari S, Grine F, Ungar P, Hublin JJ. 2011. Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear texture analysis. J. Hum. Evol. 61:411–24 [Google Scholar]
  32. Engel G, O'Hara TM, Cardona-Marek T, Heidrich J, Chalise MK. et al. 2010. Synanthropic primates in Asia: potential sentinels for environmental toxins. Am. J. Phys. Anthropol. 142:453–60 [Google Scholar]
  33. Ezzo JA. 1992. Dietary change and variability at Grasshopper Pueblo, Arizona. J. Anthropol. Archaeol. 11:219–89 [Google Scholar]
  34. Fahy GE, Richards M, Riedel J, Hublin J-J, Boesch C. 2013. Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees. Proc. Natl. Acad. Sci. USA 110:5829–33 [Google Scholar]
  35. Fleagle JG. 2013. Primate Adaptation and Evolution Oxford, UK: Elsevier
  36. Fry B. 2006. Stable Isotope Ecology New York: Springer
  37. Galison PL. 1997. Image and Logic: A Material Culture of Microphysics Chicago: Univ. Chicago Press
  38. Gaudzinski S, Roebroeks W. 2000. Adults only. Reindeer hunting at the Middle Palaeolithic site Salzgitter Lebenstedt, Northern Germany. J. Hum. Evol. 38:497–521 [Google Scholar]
  39. Gaulin SJC. 1979. A Jarman/Bell model of primate feeding niches. Hum. Ecol. 7:1–20 [Google Scholar]
  40. Gibson L. 2011. Possible shift in macaque trophic level following a century of biodiversity loss in Singapore. Primates 52:217–20 [Google Scholar]
  41. Gremillion KJ. 2004. Seed processing and the origins of food production in eastern North America. Am. Antiq. 69:215–33 [Google Scholar]
  42. Grine FE, Judex S, Daegling DJ, Ozcivici E, Ungar P. et al. 2010. Craniofacial biomechanics and functional and dietary inferences in hominin paleontology. J. Hum. Evol. 58:293–308 [Google Scholar]
  43. Habicht-Mauche JA, Levendosky AA, Schoeninger MJ. 1994. Antelope Creek phase subsistence: the bone chemistry evidence. Skeletal Biology in the Great Plains: Migration, Warfare, Health, and Subsistence DW Owsley, RL Jantz 291–304 Washington, DC: Smithson. Inst. Press [Google Scholar]
  44. Hard RJ, Mauldin RP, Raymond GR. 1996. Mano size, stable carbon isotope ratios, and macrobotanical remains as multiple lines of evidence of maize dependence in the American Southwest. J. Archaeol. Method Theory 3:253–318 [Google Scholar]
  45. Hardy BL. 2010. Climatic variability and plant food distribution in Pleistocene Europe: implications for Neanderthal diet and subsistence. Quat. Sci. Rev. 29:662–79 [Google Scholar]
  46. Hart JP, Thompson RG, Brumbach HJ. 2003. Phytolith evidence for early maize (Zea Mays) in the Northern Finger Lakes region of New York. Am. Antiq. 68:619–40 [Google Scholar]
  47. Hedges REM, Van Klinken GJ. 2000. “Consider a Spherical Cow…”—on Modeling and Diet. See Ambrose & Katzenberg 2000 211–31
  48. Hedman K, Hargrave EA, Ambrose SH. 2002. Late Mississippian diet in the American Bottom: stable isotope analyses of bone collagen and apatite. Midcont. J. Archaeol. 27:237–71 [Google Scholar]
  49. Henry AG, Brooks AS, Piperno DR. 2011. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc. Natl. Acad. Sci. USA 198:486–91 [Google Scholar]
  50. Henry AG, Ungar PS, Passey BH, Sponheimer M, Rossouw L. et al. 2012. The diet of Australopithecus sediba. Nature 487:90–93 [Google Scholar]
  51. Hladik CM, Charles-Dominique P. 1974. The behaviour and ecology of the sportive lemur (Lepilemur mustelinus) in relation to its dietary peculiarities. Prosimian Biology RD Martin, GA Doyle, AC Walker 23–37 Pittsburgh, PA: Univ. Pittsbg. Press [Google Scholar]
  52. Hublin J-J, Weston D, Gunz P, Richards MR, Roebroeks W. 2009. Out of the North Sea: the Zeeland ridges Neandertal. J. Hum. Evol. 57:777–85 [Google Scholar]
  53. Hutchinson DL. 2004. Bioarchaeology of the Florida Gulf Coast: Adaptation, Conflict, and Change Gainesville: Univ. Press Fla.
  54. Hutchinson DL, Larsen CS, Norr L, Schoeninger MJ. 2000. Agricultural melodies and alternative harmonies in Florida and Georgia. Bioarchaeological Studies of Life in the Age of Agriculture PM Lambert 96–115 Tuscaloosa: Univ. Ala. Press [Google Scholar]
  55. Jolly CJ. 1970. The seed-eaters: a new model of hominid differentiation based on a baboon analogy. Man 5:5–26 [Google Scholar]
  56. Katzenberg MA. 1989. Stable isotope analysis of archaeological faunal remains from southern Ontario. J. Archaeol. Sci. 16:319–29 [Google Scholar]
  57. Katzenberg MA. 2007. Stable isotope analysis: a tool for studying past diet, demography, and life history. Biological Anthropology of the Human Skeleton MA Katzenberg, SR Saunders 413–42 Hoboken, NJ: Wiley, 2nd ed.. [Google Scholar]
  58. Katzenberg MA, Saunders SR, Fitzgerald WR. 1993. Age differences in stable carbon and nitrogen isotope ratios in a population of prehistoric maize horticulturalists. Am. J. Phys. Anthropol. 90:267–81 [Google Scholar]
  59. Katzenberg MA, Schwarcz HP, Knyf M, Melbye FJ. 1995. Stable isotope evidence for maize horticulture and paleodiet in southern Ontario, Canada. Am. Antiq. 60:335–50 [Google Scholar]
  60. Kay RF. 1981. The nut-crackers: a new theory of the adaptations of the Ramapithecinae. Am. J. Phys. Anthropol. 55:141–51 [Google Scholar]
  61. Kellner CM, Schoeninger MJ. 2007. A simple carbon isotope model for reconstructing prehistoric human diet. Am. J. Phys. Anthropol. 133:1112–27 [Google Scholar]
  62. Kelly RL. 1995. The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways Washington, DC: Smithson. Inst. Press
  63. Kohn MJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. USA 107:19691–95 [Google Scholar]
  64. Kuhn TS. 1970. The Structure of Scientific Revolutions Chicago: Univ. Chicago Press
  65. Lambert JE. 1998. Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7:8–20 [Google Scholar]
  66. Larsen CS, Hutchinson DL, Stojanowski CM, Williamson MA, Griffin MC. et al. 2007. Health and lifestyle in Georgia and Florida: agricultural origins and intensification in regional perspective. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification MN Cohen, GMM Crane-Kramer 20–34 Gainesville: Univ. Fla. Press [Google Scholar]
  67. Lee-Thorp JA. 2000. Preservation of biogenic carbon isotopic signals in Plio-Pleistocene bone and tooth mineral. See Ambrose & Katzenberg 2000 89–116
  68. Lee-Thorp JA, Likius A, Mackaye HT, Vignaud P, Sponheimer M, Brunet M. 2012. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl. Acad. Sci. USA 109:20369–72 [Google Scholar]
  69. Lee-Thorp JA, Sealy JC, van der Merwe NJ. 1989a. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16:585–99 [Google Scholar]
  70. Lee-Thorp JA, van der Merwe N, Brain CK. 1989b. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. J. Hum. Evol. 18:183–89 [Google Scholar]
  71. Levin NE, Simpson SW, Quade J, Cerling TE, Frost SR. 2008. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. The Geology of Early Humans in the Horn of Africa J Quade, JG Wynn 215–34 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  72. Little EA, Schoeninger MJ. 1995. The Late Woodland diet on Nantucket Island and the problem of maize in coastal New England. Am. Antiq. 60:351–68 [Google Scholar]
  73. Lloyd H. 1981. The Red Fox London: Batsford
  74. Loudon JE, Sponheimer M, Sauther ML, Cuozzo FP. 2007. Intraspecific variation in hair delta C-13 and delta N-15 values of ring-tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology. Am. J. Phys. Anthropol. 133:978–85 [Google Scholar]
  75. Lucas PW, Constantino PJ, Chalk J, Ziscovici C, Wright BW. et al. 2009. Indentation as a technique to assess the mechanical properties of fallback foods. Am. J. Phys. Anthropol. 140:643–52 [Google Scholar]
  76. Lucas PW, Constantino PJ, Wood B, Lawn BR. 2008. Dental enamel as a dietary indicator in mammals. Bioessays 30:374–85 [Google Scholar]
  77. Lucas PW, Copes L, Constantino PJ, Vogel ER, Chalk J. et al. 2012. Measuring the toughness of primate foods and its ecological value. Int. J. Primatol. 33:598–610 [Google Scholar]
  78. Madella M, Jones MK, Goldberg P, Goren Y, Hovers E. 2002. The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. J. Archaeol. Sci. 29:703–19 [Google Scholar]
  79. Martin SL. 1999. Virgin Anasazi diet as demonstrated through the analysis of stable carbon and nitrogen isotopes. Kiva 64:495–514 [Google Scholar]
  80. Milton K. 1987. Primate diets and gut morphology: implications for hominid evolution. Food and Evolution: Toward a Theory of Human Food Habits M Harris, EB Ross 93–116 Philadelphia, PA: Temple Univ. Press [Google Scholar]
  81. Moore J. 1992. “Savanna” chimpanzees. Topics in Primatology I Human Origins T Nishida, WC McGrew, P Marler, M Pickford, FBM De Waal 99–118 Tokyo: Univ. Tokyo Press [Google Scholar]
  82. Moore J. 1996. Savanna chimpanzees, referential models and the last common ancestor. Great Ape Societies WC Mcgrew, L Marchant, T Nishida 275–92 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  83. Nier AO, Gulbransen EA. 1939. Variations in the relative abundance of the carbon isotopes. J. Am. Chem. Soc. 61:697–98 [Google Scholar]
  84. O'Regan H, Chenery C, Lamb AL, Stevens RE, Rook L, Elton S. 2008. Modern macaque dietary heterogeneity assessed using stable isotope analysis of hair and bone. J. Hum. Evol. 55:617–26 [Google Scholar]
  85. Oelze VM, Fuller BT, Richards MP, Furth B, Surbeck M. et al. 2011. Exploring the contribution and significance of animal protein in the diet of bonobos by stable isotope ratio analysis of hair. Proc. Natl. Acad. Sci. USA 108:9792–97 [Google Scholar]
  86. Park R, Epstein S. 1960. Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta 21:110–26 [Google Scholar]
  87. Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M. et al. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32:1459–70 [Google Scholar]
  88. Pearson JA. 2007. Hunters, fishers and scavengers: a review of the isotope evidence for Neanderthal diet. Before Farm. 2:1–16 [Google Scholar]
  89. Peters CR, Vogel JC. 2005. Africa's wild C4 plant foods and possible early hominid diets. J. Hum. Evol. 48:219–36 [Google Scholar]
  90. Phillips DL, Koch PL. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–25 [Google Scholar]
  91. Pushkina D, Bocherens H, Chaimanee Y, Jaeger J-J. 2010. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in northeastern Thailand. Naturwissenschaften 97:299–309 [Google Scholar]
  92. Rakotondranary SJ, Struck U, Knoblauch C, Ganzhorn JU. 2011. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs. Naturwissenschaften 98:909–17 [Google Scholar]
  93. Richards MP, Pettitt PB, Trinkaus E, Smith FH, Paunović M, Karavanić I. 2000. Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. Proc. Natl. Acad. Sci. USA 97:7663–66 [Google Scholar]
  94. Richards MP, Schmitz RW. 2008. Isotope evidence for the diet of the Neanderthal type specimen. Antiquity 82:553–59 [Google Scholar]
  95. Richards MP, Taylor G, Steele T, McPherron SP, Soressi M. et al. 2008. Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. J. Hum. Evol. 55:179–85 [Google Scholar]
  96. Richards MP, Trinkaus E. 2009. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl. Acad. Sci. USA 106:16034–39 [Google Scholar]
  97. Rietsma LJ. 2012. Introducing fecal stable isotope analysis in primate weaning studies. Am. J. Primatol. 74:926–39 [Google Scholar]
  98. Robinson JT. 1954. Prehominid dentition and hominid evolution. Evolution 8:324–34 [Google Scholar]
  99. Salazar-García DC, Power RC, Serra AS, Villaverde V, Walker MJ, Henry AG. 2013. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. 318:3–18 [Google Scholar]
  100. Sandberg PA, Loudon JE, Sponheimer M. 2012. Stable isotope analysis in primatology: a critical review. Am. J. Primatol. 47:969–89 [Google Scholar]
  101. Sandberg PA, Mertz E, Sponheimer M. 2011. The canopy effect: new carbon isotope data from an eastern lowland rainforest in Madagascar and implications for assessing primate niche partitioning. Am. J. Phys. Anthropol. 144:Suppl. 52261–62 [Google Scholar]
  102. Sandberg PA, Mertz E, Sponheimer M, Van Gerven D. 2009. Carbon and nitrogen isotope variation among five sympatric lemur species from Betampona Natural Reserve, Madagascar. Am. J. Phys. Anthropol. 138:Suppl. 48227–28 [Google Scholar]
  103. Schillaci MA, Castellini JM, Stricker CA, Jones-Engel L, Lee B-H, O'Hara TM. 2013. Variation in hair δ13C and δ15N in long-tailed macaques (Macaca fascicularis) from Singapore. Primates 55:25–34 [Google Scholar]
  104. Schoeninger MJ. 1985. Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. J. Hum. Evol. 14:515–25 [Google Scholar]
  105. Schoeninger MJ. 1995a. Dietary reconstruction in the prehistoric Carson Desert: stable carbon and nitrogen isotopic analysis. Bioarchaeology of the Stillwater Marsh: Prehistoric Human Adaptation in the Western Great Basin CS Larsen, RL Kelly 96–106 Anthropol. Pap. 77 New York: Am. Mus. Nat. Hist. [Google Scholar]
  106. Schoeninger MJ. 1995b. Stable isotope studies in human evolution. Evol. Anthropol. 4:83–98 [Google Scholar]
  107. Schoeninger MJ. 2009. Stable isotope evidence for the adoption of maize agriculture. Curr. Anthropol. 50:5633–40 [Google Scholar]
  108. Schoeninger MJ, DeNiro MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48:625–39 [Google Scholar]
  109. Schoeninger MJ, Iwaniec UT, Glander KE. 1997. Stable isotope ratios monitor diet and habitat use in New World Monkeys. Am. J. Phys. Anthropol. 103:69–83 [Google Scholar]
  110. Schoeninger MJ, Iwaniec UT, Nash LT. 1998. Ecological attributes recorded in stable isotope ratios of arboreal prosimian hair. Oecologia 113:222–30 [Google Scholar]
  111. Schoeninger MJ, Moore J, Sept JM. 1999. Subsistence strategies of two “savanna” chimpanzee populations: the stable isotope evidence. Am. J. Primatol. 49:297–314 [Google Scholar]
  112. Schoeninger MJ, Schurr MR. 1998. Human subsistence at Moundville: the stable isotope data. Archaeology of the Moundville Chiefdom VJ Knight, VP Steponaitis 120–32 Washington, DC: Smithson. Inst. Press [Google Scholar]
  113. Schoeninger MJ, van der Merwe NJ, Moore KM, Lee-Thorp J, Larsen CS. 1990. Decrease in diet quality between the prehistoric and the contact period. The Archaeology of Mission Santa Catalina De Guale: 2. Biocultural Interpretations of a Population in Transition CS Larsen 78–93 New York: Am. Mus. Nat. Hist. [Google Scholar]
  114. Schurr M. 1992. Isotopic and mortuary variability in a Middle Mississippian population. Am. Antiq. 57:300–20 [Google Scholar]
  115. Schurr MR, Fuentes A, Luecke E, Cortes J, Sharw E. 2012. Intergroup variation in stable isotope ratios reflects anthropogenic impact on the Barbary macaques (Macaca sylvanus) of Gibraltar. Primates 53:31–40 [Google Scholar]
  116. Schurr MR, Redmond BG. 1991. Stable isotope analysis of incipient maize horticulturists from the Gard Island 2 site. Midcont. J. Archaeol. 16:69–84 [Google Scholar]
  117. Schurr MR, Schoeninger MJ. 1995. Associations between agricultural intensification and social complexity: an example from the prehistoric Ohio Valley. J. Anthropol. Archaeol. 14:315–39 [Google Scholar]
  118. Schwarcz HP, Schoeninger MJ. 1991. Stable isotope analyses in human nutritional ecology. Yearb. Phys. Anthropol. 34:283–321 [Google Scholar]
  119. Shearer G, Kohl DH. 1986. N2-fixation in field settings: estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13:699–756 [Google Scholar]
  120. Shipman P. 2008. Separating “us” from “them”: Neanderthal and modern human behavior. Proc. Natl. Acad. Sci. USA 105:14241–42 [Google Scholar]
  121. Smith C, Morgan M, Pilbeam D. 2010. Isotopic ecology and dietary profiles of Liberian chimpanzees. J. Hum. Evol. 58:43–55 [Google Scholar]
  122. Snaith TV, Chapman CA. 2007. Primate group size and interpreting socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16:94–106 [Google Scholar]
  123. Speth JD. 2006. Housekeeping, Neandertal-style: hearth placement and midden formation in Kebara Cave (Israel). Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age E Hovers, SL Kuhn 171–88 New York: Springer [Google Scholar]
  124. Speth JD, Spielmann KA. 1983. Energy source, protein metabolism, and hunter-gatherer subsistence strategies. J. Anthropol. Archaeol. 2:1–31 [Google Scholar]
  125. Spielmann KA, Schoeninger MJ, Moore K. 1990. Plains-Pueblo interdependence and human diet at Pecos Pueblo, New Mexico. Am. Antiq. 55:745–65 [Google Scholar]
  126. Sponheimer M, Lee-Thorp JA. 2001. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126:153–57 [Google Scholar]
  127. Sponheimer M, Lee-Thorp J, De Ruiter D, Codron D, Codron J. et al. 2005. Hominins, sedges, and termites: new carbon isotope data from Sterkfontein valley and Kruger National Park. J. Hum. Evol. 48:301–12 [Google Scholar]
  128. Sponheimer M, Loudon JE, Codron D, Howells ME, Pruetz JD. et al. 2006. Do “savanna” chimpanzees consume C4 resources?. J. Hum. Evol. 51:128–33 [Google Scholar]
  129. Strait DS, Weber GW, Neubauer S, Chalk J, Richmond BG. et al. 2009. The feeding biomechanics and dietary ecology of Australopithecus africanus. Proc. Natl. Acad. Sci. USA 106:2124–29 [Google Scholar]
  130. Stringer CB, Finlayson J, Barton R, Fernández-Jalvo Y, Cáceres I. et al. 2008. Neanderthal exploitation of marine mammals at Gibraltar. Proc. Natl. Acad. Sci. USA 105:14319–24 [Google Scholar]
  131. Suzuki A. 1969. An ecological study of chimpanzees in a savanna woodland. Primates 10:103–48 [Google Scholar]
  132. Szathmary EJE, Ritenbaugh C, Goodby C-SM. 1987. Dietary change and plasma glucose levels in an Amerindian population undergoing cultural transition. Soc. Sci. Med. 24:791–804 [Google Scholar]
  133. Teaford MF, Ungar PS. 2000. Diet and the evolution of the earliest human ancestors. Proc. Natl. Acad. Sci. USA 97:13506–11 [Google Scholar]
  134. Thackeray JF, Henzi SP, Brain CK. 1996. Stable carbon and nitrogen isotope analysis of bone collagen in Papio cynocephalus ursinus: comparison with ungulates and Homo sapiens from Southern and East African environments. S. Afr. J. Sci. 92:213–16 [Google Scholar]
  135. Ting IP, Gibbs M. 1982. Crassulacean Acid Metabolism Baltimore, MD: Waverly
  136. Tucker BD. 2002. Culinary confusion: using osteological and stable isotopic evidence to reconstruct paleodiet for the Ocmulgee/Blackshear cordmarked people of South Central Georgia MA Thesis, Georgia State Univ., Atlanta
  137. Tutin CEG, Fernandez M. 1992. Insect-eating by sympatric lowland gorillas (Gorilla g. gorilla) and chimpanzees (Pan t. troglodytes) in the Lopé Reserve, Gabon. Am. J. Primatol. 28:29–40 [Google Scholar]
  138. Tutin CEG, Fernandez M, Rogers ME, Williamson EA, McGrew WC. 1991. Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon. Philos. Trans. R. Soc. B 334:179–86 [Google Scholar]
  139. Ungar P, Grine FE, Teaford MF, El Zaatari S. 2006. Dental microwear and diets of African early Homo. J. Hum. Evol. 50:78–95 [Google Scholar]
  140. van der Merwe NJ, Medina E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18:249–59 [Google Scholar]
  141. van der Merwe NJ, Vogel JC. 1978. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276:815–16 [Google Scholar]
  142. van der Merwe NJ, Williamson RF, Pfeiffer S, Thomas SC, Allegretto KO. 2003. The Moatfield ossuary: isotopic dietary analysis of an Iroquoian community, using dental tissue. J. Anthropol. Archaeol. 22:245–61 [Google Scholar]
  143. Van Valkenburgh B. 2001. The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. Meat-Eating And Human Evolution CB Stanford, HT Bunn 101–21 New York: Oxford Univ. Press [Google Scholar]
  144. Virginia RA, Delwiche CC. 1982. Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:317–25 [Google Scholar]
  145. Vogel ER, Crowley BE, Knott CD, Blakely MD, Larsen MD, Dominy NJ. 2012. A noninvasive method for estimating nitrogen balance in free-ranging primates. Int. J. Primatol. 33:567–87 [Google Scholar]
  146. Vogel JC, van der Merwe NJ. 1977. Isotopic evidence for early maize cultivation in New York State. Am. Antiq. 42:238–42 [Google Scholar]
  147. White TD, Ambrose SH, Suwa G, Su DF, DeGusta D. et al. 2009. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326:87–93 [Google Scholar]
  148. Wood B, Leakey M. 2011. The Omo-Turkana Basin fossil hominins and their contribution to our understanding of human evolution in Africa. Evol. Anthropol. 20:264–92 [Google Scholar]
  149. Yerkes RW. 2005. Bone chemistry, body parts, and growth marks: evaluating Ohio Hopewell and Cahokia Mississippian seasonality, subsistence, ritual, and feasting. Am. Antiq. 70:241–65 [Google Scholar]
  150. Zhang J, Zhang Y-P, Rosenberg HF. 2002. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30:411–15 [Google Scholar]
/content/journals/10.1146/annurev-anthro-102313-025935
Loading
/content/journals/10.1146/annurev-anthro-102313-025935
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error