Populations residing for millennia on the high-altitude plateaus of the world started natural experiments that we can evaluate to address questions about the processes of evolution and adaptation. A 2001 assessment in this journal summarized abundant evidence that Tibetan and Andean high-altitude natives had different phenotypes, and the article made a case for the hypothesis that different genetic bases underlie traits in the two populations. Since then, knowledge of the prehistory of high-altitude populations has grown, information about East African highlanders has become available, genomic science has grown exponentially, and the genetic and molecular bases of oxygen homeostasis have been clarified. Those scientific advances have transformed the study of high-altitude populations. The present review aims to summarize recent advances in understanding with an emphasis on the genetic bases of adaptive phenotypes, particularly hemoglobin concentration among Tibetan highlanders. and encode two crucial proteins contributing to oxygen homeostasis, the oxygen sensor PHD2 and the transcription factor subunit HIF-2α, respectively; they show signals of natural selection such as marked allele frequency differentiation between Tibetans and lowland populations. genotypes associated in several studies with the dampened hemoglobin phenotype that is characteristic of Tibetans at high altitude but did not associate with the dampened response among Amhara from Ethiopia or the vigorous elevation of hemoglobin concentration among Andean highlanders. Future work will likely develop understanding of the integrative biology leading from genotype to phenotype to population in all highland areas.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Pasha MA. et al. 2010. EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc. Natl. Acad. Sci. USA 107:4418961–66 [Google Scholar]
  2. Aldenderfer MS. 1999. The Pleistocene/Holocene transition in Peru and its effects upon human use of the landscape. Q. Int. 53/54:11–19 [Google Scholar]
  3. Aldenderfer MS. 2006. Modelling plateau peoples: the early human use of the world's high plateaux. World Archaeol. 38:3357–70 [Google Scholar]
  4. Aldenderfer MS. 2003. Moving up in the world: archaeologists seek to understand how and when people came to occupy the Andean and Tibetan plateaus. Am. Sci. 91:542–49 [Google Scholar]
  5. Aldenderfer MS. 2007. Modeling the Neolithic on the Tibetan plateau. Dev. Q. Sci. 9:151–65 [Google Scholar]
  6. Aldenderfer MS. 2008. High elevation foraging societies. Handbook of South American Archaeology HG Silverman, WH Isbell 131–43 New York: Springer [Google Scholar]
  7. Aldenderfer MS. 2011. Peopling the Tibetan Plateau: insights from archaeology. High Alt. Med. Biol. 12:2141–47 [Google Scholar]
  8. Aldenderfer MS. 2012. Peopling the Tibetan Plateau: migrants, genes, and genetic adaptations. Causes and Consequences of Human Migration MH Crawford, BC Campbell Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  9. Aldenderfer MS. 2014. Altitude environments in archaeology. Encyclopedia of Global Archaeology C Smith 163–68 New York: Springer [Google Scholar]
  10. Aldenderfer MS, Zhang Y. 2004. The prehistory of the Tibetan Plateau to the seventh century AD: perspectives and research from China and the West since 1950. J. World Prehist. 18:1–55 [Google Scholar]
  11. Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. 2012. The genetic architecture of adaptations to high altitude in Ethiopia. PLOS Genet. 8:12e1003110 [Google Scholar]
  12. Appenzeller O, Claydon VE, Gulli G, Qualls C, Slessarev M. et al. 2006. Cerebral vasodilatation to exogenous NO is a measure of fitness for life at altitude. Stroke 37:71754–58 [Google Scholar]
  13. Assefa Z. 2006. Faunal remains from Porc-Epic: paleoecological and zooarchaeological investigations from a Middle Stone Age site in southeastern Ethiopia. J. Hum. Evol. 51:50–75 [Google Scholar]
  14. Baker PT. 1969. Human adaptation to high altitude. Science 163:1149–56 [Google Scholar]
  15. Beall C. 2000a. Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum. Biol. 72:201–28 [Google Scholar]
  16. Beall CM. 2000b. Tibetan and Andean contrasts in adaptation to high-altitude hypoxia. Oxygen Sensing: Molecule to Man S Lahiri, NR Prabhakar, RE Forster II 63–74 New York: Kluwer Acad. [Google Scholar]
  17. Beall CM. 2001. Adaptations to altitude: a current assessment. Annu. Rev. Anthropol. 30:423–46 [Google Scholar]
  18. Beall CM. 2003. High-altitude adaptations. Lancet 362:1S14–15 [Google Scholar]
  19. Beall CM. 2007. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. USA 104:Suppl. 18655–60 [Google Scholar]
  20. Beall CM. 2013. Human adaptability studies at high altitude: research designs and major concepts during fifty years of discovery. Am. J. Hum. Biol. 25:2141–47 [Google Scholar]
  21. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y. et al. 2010. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl. Acad. Sci. USA 107:2511459–64 [Google Scholar]
  22. Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc. Natl. Acad. Sci. USA 99:2617215–18 [Google Scholar]
  23. Beall CM, Song K, Elston RC, Goldstein MC. 2004. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc. Natl. Acad. Sci. USA 101:3914300–04 [Google Scholar]
  24. Bennett A, Sain SR, Vargas E, Moore LG. 2008. Evidence that parent-of-origin affects birth-weight reductions at high altitude. Am. J. Hum. Biol. 20:5592–97 [Google Scholar]
  25. Bigham A, Bauchet M, Pinto D, Mao X, Akey JM. et al. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLOS Genet. 6:9e1001116 [Google Scholar]
  26. Bigham AW, Kiyamu M, Leon-Velarde F, Parra EJ, Rivera-Ch M. et al. 2008. Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt. Med. Biol. 9:2167–78 [Google Scholar]
  27. Bigham AW, Wilson MJ, Julian CG, Kiyamu M, Vargas E. et al. 2013. Andean and Tibetan patterns of adaptation to high altitude. Am. J. Hum. Biol. 25:2190–97 [Google Scholar]
  28. Black ML, Wise CA, Wang W, Bittles AH. 2006. Combining genetics and population history in the study of ethnic diversity in the People's Republic of China. Hum. Biol. 78:3277–93 [Google Scholar]
  29. Borkar M, Ahmad F, Khan F, Agrawal S. 2011. Paleolithic spread of Y-chromosomal lineage of tribes in eastern and northeastern India. Ann. Hum. Biol. 38:6736–46 [Google Scholar]
  30. Brutsaert T, Parra E, Shriver M, Gamboa A, Rivera-Chira M, Leon-Velarde F. 2005. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R225–34 [Google Scholar]
  31. Brutsaert TD. 2001. Limits on inferring genetic adaptation to high altitude in Himalayan and Andean populations. High Alt. Med. Biol. 2:2211–25 [Google Scholar]
  32. Brutsaert TD, Parra E, Shriver M, Gamboa A, Palacios JA. et al. 2004. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. Am. J. Phys. Anthropol. 123:4390–98 [Google Scholar]
  33. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Palacios JA. et al. 2003. Spanish genetic admixture is associated with larger VO2max decrement from sea level to 4338 m in Peruvian Quechua. J. Appl. Physiol. 95:2519–28 [Google Scholar]
  34. Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ. et al. 2012a. AKT3, ANGPTL4, eNOS3, and VEGFA associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Int. J. Hematol. 96:2200–13 [Google Scholar]
  35. Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ. et al. 2012b. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Blood Cells Mol. Dis. 49:267–73 [Google Scholar]
  36. Carnese FR, Mendisco F, Keyser C, Dejean CB, Dugoujon J-M. et al. 2010. Paleogenetical study of pre-Columbian samples from Pampa Grande (Salta, Argentina). Am. J. Phys. Anthropol. 141:3452–62 [Google Scholar]
  37. Childs GC, Craig SR, Beall CM, Basnyat B. 2014. Depopulating the Himalayan Highlands: education and outmigration from ethnically Tibetan communities of Nepal. Mt. Res. Dev. 34:285–94 [Google Scholar]
  38. Clark JD, Kurashina H. 1979. Hominid occupation of the East-Central Highlands of Ethiopia in the Plio-Pleistocene. Nature 282:33–39 [Google Scholar]
  39. Curran L, Zhuang J, Sun SF, Moore LG. 1997. Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3,658 m. J. Appl. Physiol. 83:62098–104 [Google Scholar]
  40. Davila RD, Julian CG, Wilson MJ, Browne VA, Rodriguez C. et al. 2010. Do anti-angiogenic or angiogenic factors contribute to the protection of birth weight at high altitude afforded by Andean ancestry?. Reprod. Sci. 17:9861–70 [Google Scholar]
  41. de la Torre I. 2011. The Early Stone Age lithic assemblages of Gadeb (Ethiopia) and the developed Oldowan/early Acheulean in East Africa. J. Hum. Evol. 60:6768–812 [Google Scholar]
  42. Dennell RW, Rendell HM, Hailwood E. 1988. Late Pliocene artefacts from northern Pakistan. Curr. Anthropol. 29:3495–98 [Google Scholar]
  43. Fehren-Schmitz L, Haak W, Machtle B, Masch F, Llamas B. et al. 2014. Climate change underlies global demographic, genetic, and cultural transitions in pre-Columbian southern Peru. Proc. Natl. Acad. Sci. USA 111:9443–48 [Google Scholar]
  44. Fehren-Schmitz L, Warnberg O, Reindel M, Seidenberg V, Tomasto-Cagigao E. et al. 2011. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru. Ann. Hum. Genet. 75:2266–83 [Google Scholar]
  45. Firschein IL. 1961. Population dynamics of the sickle-cell trait in the Black Caribs of British Honduras, Central America. Am. J. Hum. Genet. 13:233–54 [Google Scholar]
  46. Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL. et al. 2010. Regulation of human metabolism by hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA 107:2812722–27 [Google Scholar]
  47. Gayà-vidal M, Dugoujon J-M, Esteban E, Athanasiadis G, Rodríguez A. et al. 2010. Autosomal and X chromosome Alu insertions in Bolivian Aymaras and Quechuas: two languages and one genetic pool. Am. J. Hum. Biol. 22:2154–62 [Google Scholar]
  48. Gayden T, Cadenas AM, Regueiro M, Singh NB, Zhivotovsky LA. et al. 2007. The Himalayas as a directional barrier to gene flow. Am. J. Hum. Genet. 80:5884–94 [Google Scholar]
  49. Gayden T, Perez A, Persad PJ, Bukhari A, Chennakrishnaiah S. et al. 2013. The Himalayas: barrier and conduit for gene flow. Am. J. Phys. Anthropol. 151:2169–82 [Google Scholar]
  50. Gluckman PD, Hanson MA, Bateson P, Beedle AS, Law CM. et al. 2009. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373:96751654–57 [Google Scholar]
  51. Gomez F, Hirbo J, Tishkoff SA. 2014. Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb. Perspect. Biol. 6:a008524 [Google Scholar]
  52. Gonzales GF, Steenland K, Tapia V. 2009. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:5R1477–85 [Google Scholar]
  53. Gonzales GF, Tapia V, Fort AL. 2012a. Maternal and perinatal outcomes in second hemoglobin measurement in nonanemic women at first booking: effect of altitude of residence in Peru. ISRN Obstet. Gynecol. 2012:368571 [Google Scholar]
  54. Gonzales GF, Tapia V, Gasco M, Carrillo CE. 2012b. Maternal hemoglobin concentration and adverse pregnancy outcomes at low and moderate altitudes in Peru. J. Matern.-Fetal Neonat. Med. 25:71105–10 [Google Scholar]
  55. Hanaoka M, Droma Y, Basnyat B, Ito M, Kobayashi N. et al. 2012. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLOS ONE 7:12e50566 [Google Scholar]
  56. Hancock AM, Di Rienzo A. 2008. Detecting the genetic signature of natural selection in human populations: models, methods, and data. Annu. Rev. Anthropol. 37:197–217 [Google Scholar]
  57. Harrison GA. 1976. Genetic and anthropological studies in the human adaptability section of the International Biological Programme. Philos. Trans. R. Soc. Lond. B 274:437–45 [Google Scholar]
  58. Harrison GA, Kuchemann CF, Moore MAS, Boyce AJ, Baju T. et al. 1969. The effects of altitudinal variation in Ethiopian populations. Philos. Trans. R. Soc. Lond. B 256:805147–82 [Google Scholar]
  59. Hassen M. 1990. The Oromo of Ethiopia: A History, 1570–1860 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  60. Hoit BD, Dalton ND, Erzurum SC, Laskowski D, Strohl KP, Beall CM. 2006. Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders. J. Appl. Physiol. 99:1796–801 [Google Scholar]
  61. Hoit BD, Dalton ND, Gebremedhin A, Janocha A, Zimmerman PA. et al. 2011. Elevated pulmonary artery pressure among Amhara highlanders in Ethiopia. Am. J. Hum. Biol. 23:2168–76 [Google Scholar]
  62. Huang SY, Sun S, Droma T, Zhuang J, Tao JX. et al. 1992. Internal carotid arterial flow velocity during exercise in Tibetan and Han residents of Lhasa (3,658 m). J. Appl. Physiol. 73:62638–42 [Google Scholar]
  63. Huerta-Sánchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R. et al. 2013. Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. Mol. Biol. Evol. 30:81877–88 [Google Scholar]
  64. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM. et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512194–97 [Google Scholar]
  65. Hurtado A. 1964. Animals in high altitudes: resident man. Handbook of Physiology Section 4: Adaptation to the Environment DB Dill 843–59 Washington, DC: Am. Physiol. Soc. [Google Scholar]
  66. Jayet PY, Rimoldi SF, Stuber T, Salmòn CS, Hutter D. et al. 2010. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 122:5488–94 [Google Scholar]
  67. Jefferson JA, Escudero E, Hurtado ME, Pando J, Tapia R. et al. 2002. Excessive erythrocytosis, Chronic Mountain Sickness, and serum cobalt levels. Lancet 359:9304407–8 [Google Scholar]
  68. Jeong C, Alkorta-Aranburu G, Basnyat B, Neupane M, Witonsky DB. et al. 2014. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5:3281 [Google Scholar]
  69. Ji F, Sharpley MS, Derbeneva O, Alves LS, Qian P. et al. 2012. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl. Acad. Sci. USA 109:7391–96 [Google Scholar]
  70. Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC. et al. 2012. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Mol. Biol. Evol. 29:113359–70 [Google Scholar]
  71. Julian CG, Galan HL, Wilson MJ, Desilva W, Cioffi-Ragan D. et al. 2008. Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. Am. J. Physiol. Regul. Integ. Comp. Physiol. 295:3R906–15 [Google Scholar]
  72. Julian CG, Wilson MJ, Moore LG. 2009. Evolutionary adaptation to high altitude: a view from in utero. Am. J. Hum. Biol. 21:5614–22 [Google Scholar]
  73. Kaelin WG. 2005. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 74:115–28 [Google Scholar]
  74. Kaelin WG Jr, Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393–402 [Google Scholar]
  75. Karafet T, Xu L, Du R, Wang W, Feng S. et al. 2001. Paternal population history of East Asia: sources, patterns, and microevolutionary processes. Am. J. Hum. Genet. 69:3615–28 [Google Scholar]
  76. Kiyamu M, Bigham A, Parra E, León-Velarde F, Rivera-Chira M, Brutsaert TD. 2012. Developmental and genetic components explain enhanced pulmonary volumes of female Peruvian Quechua. Am. J. Phys. Anthropol. 148:4534–42 [Google Scholar]
  77. Lee FS, Percy MJ. 2011. The HIF pathway and erythrocytosis. Annu. Rev. Pathol. Mech. Dis. 6:165–92 [Google Scholar]
  78. Leon-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I. et al. 2005. Consensus statement on chronic and subacute high altitude diseases. High Alt. Med. Biol. 6:2147–57 [Google Scholar]
  79. Lewis HS. 1966. The origins of the Galla and Somali. J. Afr. Hist. 7:27–46 [Google Scholar]
  80. Lorenzo FR, Simonson TS, Yang Y, Re R, Prchal JT. 2010. A novel PHD2 mutation associated with Tibetan genetic adaptation to high altitude hypoxia Presented at Annu. ASH Meet. Expos. 53rd, Washington, DC [Google Scholar]
  81. Lundgrin EL, Janocha AJ, Koch CD, Gebremedhin A, Di Rienzo A. et al. 2013. Plasma hepcidin of Ethiopian highlanders with steady-state hypoxia. Blood 122:111989–91 [Google Scholar]
  82. Mastrogiannaki M, Matak P, Peyssonnaux C. 2013. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood 122:885–92 [Google Scholar]
  83. Mazess RB. 1979. Adaptation: a conceptual framework. Physiology and Morphological Adaptation and Evolution WA Stini 9–15 The Hauge: Mouton [Google Scholar]
  84. Mellars P, Gori KC, Carr M, Soares PA, Richards MB. 2013. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proc. Natl. Acad. Sci. USA 110:2610699–704 [Google Scholar]
  85. Mishra A, Mohammad G, Thinlas T, Pasha MA. 2013. EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation. Clin. Sci.(Lond.) 124:479–89 [Google Scholar]
  86. Moore LG, Charles SM, Julian CG. 2011. Humans at high altitude: hypoxia and fetal growth. Respir. Physiol. Neurobiol. 178:181–90 [Google Scholar]
  87. Moore LG, Curran-Everett L, Droma TS, Groves BM, McCullough RE. et al. 1992. Are Tibetans better adapted?. Int. J. Sports Med. 13:Suppl. 1S86–88 [Google Scholar]
  88. Moore LG, Niermeyer S, Vargas E. 2007. Does Chronic Mountain Sickness (CMS) have perinatal origins?. Respir. Physiol. Neurobiol. 158:2–3180–89 [Google Scholar]
  89. Moore LG, Niermeyer S, Zamudio S. 1998. Human adaptation to high altitude: regional and life-cycle perspectives. Yearb. Phys. Anthropol. 41:25–64 [Google Scholar]
  90. Moore LG, Shriver M, Bemis L, Hickler B, Wilson M. et al. 2004. Maternal adaptation to high-altitude pregnancy: an experiment of nature—a review. Placenta 25:Suppl. AS60–71 [Google Scholar]
  91. Murra JV. 1972. El “control vertical” de un máximo de pisos ecológicos en la economía de las sociedades Andinas. Visita de la Provincia de León de Huánuco en 1562 JV Murra 427–76 Huánuco, Peru: Univ. Hermilio Valdizán Press [Google Scholar]
  92. Murra J. 1980. The Economic Organization of the Inca State Greenwich, CT: JAI [Google Scholar]
  93. Myres JE, Malan M, Shumway JB, Rowe MJ, Amon E, Woodward SR. 2000. Haplogroup-associated differences in neonatal death and incidence of low birth weight at elevation: a preliminary assessment. Am. J. Obstet. Gynecol. 182:1599–605 [Google Scholar]
  94. Niermeyer S, Zamudio S, Moore LG. 2001. The people. High Altitude: An Exploration of Human Adaptation TF Hornbein, RB Schoene 43–100 New York: Marcel Dekker [Google Scholar]
  95. Pagani L, Kivisild T, Tarekegn A, Ekong R, Plaster C. et al. 2012. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am. J. Hum. Genet. 91:83–96 [Google Scholar]
  96. Peng Y, Yang Z, Zhang H, Cui C, Qi X. et al. 2011. Genetic variations in Tibetan populations and high altitude adaptation at the Himalayas. Mol. Biol. Evol. 28:21075–81 [Google Scholar]
  97. Petousi N, Croft QP, Cavalleri GL, Cheng HY, Formenti F. et al. 2013. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor (HIF) system and blunted physiological responses to hypoxia. J. Appl. Physiol. 116:893–904 [Google Scholar]
  98. Pickrell JK, Patterson N, Loh PR, Lipson M, Berger B. et al. 2014. Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl. Acad. Sci. USA 111:72632–37 [Google Scholar]
  99. Piperno M, Bulgarelli-Piperno GM. 1975. First approach to the ecological and cultural significance of the Early Paleolithic occupation site of Garba IV at Melka Kunture (Ethiopia). Quarternia 18:347–85 [Google Scholar]
  100. Pleurdeau D. 2005. Human technical behavior in the African Middle Stone Age: The lithic assemblage of Porc-Epic Cave (Dire Dawa, Ethiopia). Afr. Archaeol. Rev. 22:4177–97 [Google Scholar]
  101. Prabhakar NR, Semenza GL. 2012. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92:3967–1003 [Google Scholar]
  102. Qin Z, Yang Y, Kang L, Yan S, Cho K. et al. 2010. A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the Last Glacial Maximum. Am. J. Phys. Anth. 143:4555–69 [Google Scholar]
  103. Rey S, Semenza GL. 2010. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 86:236–42 [Google Scholar]
  104. Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D. et al. 2012. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 13:1R1 [Google Scholar]
  105. Schwab M, Jayet PY, Stuber T, Salinas CE, Bloch J. et al. 2008. Pulmonary-artery pressure and exhaled nitric oxide in Bolivian and Caucasian high altitude dwellers. High Alt. Med. Biol. 9:4295–99 [Google Scholar]
  106. Scliar MO, Soares-Souza GB, Chevitarese J, Lemos L, Magalhães WCS. et al. 2012. The population genetics of quechuas, the largest native south american group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity. Am. J. Phys. Anthropol. 147:3443–51 [Google Scholar]
  107. Semenza GL. 2007a. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE 2007:407cm8 [Google Scholar]
  108. Semenza GL. 2007b. Regulation of tissue perfusion in mammals by hypoxia inducible factor 1. Exp. Physiol. 92:988–91 [Google Scholar]
  109. Semenza GL. 2009. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114:102015 [Google Scholar]
  110. Semenza GL. 2010. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 1813:1263–68 [Google Scholar]
  111. Semenza GL. 2011a. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365:537–47 [Google Scholar]
  112. Semenza GL. 2011b. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. 76:347–53 [Google Scholar]
  113. Semenza GL. 2013. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 76:39–56 [Google Scholar]
  114. Semenza GL, Prabhakar NR. 2012. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv. Exp. Med. Biol. 758:1–5 [Google Scholar]
  115. Shi H, Zhong H, Peng Y, Dong YL, Qi XB. et al. 2008. Y chromosome evidence of earliest modern human settlement in East Asia and multiple origins of Tibetan and Japanese populations. BMC Biol. 6:45 [Google Scholar]
  116. Shimoda LA, Semenza GL. 2011. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am. J. Respir. Crit. Care Med. 183:2152–56 [Google Scholar]
  117. Simonson TS, Yang Y, Huff CD, Yun H, Qin G. et al. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75 [Google Scholar]
  118. Smith TG, Robbins PA, Ratcliffe PJ. 2008. The human side of hypoxia-inducible factor. Br. J. Haematol. 141:325–34 [Google Scholar]
  119. Smith TG, Talbot NP, Privat C, Rivera-Ch M, Nickol AH. et al. 2009. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA 302:131444–50 [Google Scholar]
  120. Storz JF, Wheat CW. 2010. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evol. Int. J. Org. Evol. 64:92489–509 [Google Scholar]
  121. Stuber T, Sartori C, Salmon CS, Hutter D, Thalmann S. et al. 2008. Respiratory nitric oxide and pulmonary artery pressure in children of aymara and European ancestry at high altitude. Chest 134:5996–1000 [Google Scholar]
  122. Su B, Xiao C, Deka R, Seielstad MT, Kangwanpong D. et al. 2000. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum. Genet. 107:6582–90 [Google Scholar]
  123. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC. et al. 2007. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39:31–40 [Google Scholar]
  124. Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J. et al. 1994. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am. J. Phys. Anthropol. 93:2189–99 [Google Scholar]
  125. Vitzthum VJ. 2013. Fifty fertile years: anthropologists' studies of reproduction in high altitude natives. Am. J. Hum. Biol. 25:2179–89 [Google Scholar]
  126. Wang B, Zhang YB, Zhang F, Lin H, Wang X. et al. 2011. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLOS ONE 6:2e17002 [Google Scholar]
  127. West JB. 2012. High-altitude medicine. Am. J. Respir. Crit. Care Med. 186:121229–37 [Google Scholar]
  128. West JB, Schoene RB, Luks AM, Milledge JS. 2013. High Altitude Medicine and Physiology Boca Raton, FL: CRC Press, 5th ed.. [Google Scholar]
  129. West JB, Schoene RB, Milledge JS. 2007. High Altitude Medicine and Physiology London: Hodder Arnold [Google Scholar]
  130. White TD. 2006. Human evolution: the evidence. Intelligent Thought Science versus the Intelligent Design Movement Brockman J 65–90 New York: Vintage [Google Scholar]
  131. Wuren T, Simonson TS, Qin G, Xing J, Huff CD. et al. 2014. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations. PLOS One 9:3e88252 [Google Scholar]
  132. Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X. et al. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol. Biol. Evol. 30:81889–98 [Google Scholar]
  133. Xu S, Li S, Yang Y, Tan J, Lou H. et al. 2011. A genome-wide search for signals of high altitude adaptation in Tibetans. Mol. Biol. Evol. 28:21003–11 [Google Scholar]
  134. Yi X, Liang Y, Huerta-Sánchez E, Jin X, Cuo ZX. et al. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78 [Google Scholar]
  135. Zhao M, Kong QP, Wang HW, Peng MS, Xie XD. et al. 2009. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 106:5021230–35 [Google Scholar]
  136. Zhao YB, Li HJ, Li SN, Yu CC, Gao SZ. et al. 2011. Ancient DNA evidence supports the contribution of Di-Qiang people to the Han Chinese gene pool. Am. J. Phys. Anthropol. 144:2258–68 [Google Scholar]
  137. Zhu BF, Shen CM, Wang HD, Yang G, Yan JW. et al. 2011. Genetic diversities of 21 non-CODIS autosomal STRs of a Chinese Tibetan ethnic minority group in Lhasa. Int. J. Legal Med. 125:4581–85 [Google Scholar]
  138. Zhu RX, Potts R, Pan YX, Yao HT, LQ. et al. 2008. Early evidence of the genus Homo in East Asia. J. Hum. Evol. 55:61075–85 [Google Scholar]
  139. Zhu RX, Potts R, Xie F, Hoffman KA, Deng CL. et al. 2004. New evidence on the earliest human presence at high northern latitudes in northeast Asia. Nature 431:7008559–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error