Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrawal AA. 1.  2005. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol. Ecol. Res. 7:651–67 [Google Scholar]
  2. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. 2.  2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol. 194:28–45 [Google Scholar]
  3. Anterola A, Shanle E, Mansouri K, Schuette S, Renzaglia K. 3.  2009. Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens. Planta 229:1003–7 [Google Scholar]
  4. Asakawa Y, Ludwiczuk A, Nagashima F. 4.  2013. Chemical constituents of Anthocerotophyta. Chemical Constituents of Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosystematics607–17 Prog. Chem. Org. Nat. Prod 95 Vienna: Springer [Google Scholar]
  5. Asakawa Y, Ludwiczuk A, Nagashima F. 5.  2013. Chemical constituents of Bryophyta. Chemical Constituents of Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosystematics563–605 Prog. Chem. Org. Nat. Prod 95 Vienna: Springer [Google Scholar]
  6. Asakawa Y, Ludwiczuk A, Nagashima F. 6.  2013. Chemical constituents of Marchantiophyta. Chemical Constituents of Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosystematics25–561 Prog. Chem. Org. Nat. Prod 95 Vienna: Springer [Google Scholar]
  7. Behnke HD, Herrmann S. 7.  1978. Fine structure and development of laticifers in Gnetum gnemonL.. Protoplasma 94:371–84 [Google Scholar]
  8. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A. 8.  et al. 2010. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40:699–712 [Google Scholar]
  9. Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B. 9.  et al. 2014. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 166:396–410 [Google Scholar]
  10. Boughton AJ, Hoover K, Felton GW. 10.  2005. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J. Chem. Ecol. 31:2211–16 [Google Scholar]
  11. Bowman JL. 11.  2013. Walkabout on the long branches of plant evolution. Curr. Opin. Plant Biol. 16:70–77 [Google Scholar]
  12. Bray PS, Anderson KB. 12.  2009. Identification of Carboniferous (320 million years old) class Ic amber. Science 326:132–34 [Google Scholar]
  13. Call V, Dilcher D. 13.  1997. The fossil record of Eucommia (Eucommiaceae) in North America. Am. J. Bot. 84:798 [Google Scholar]
  14. Calvin M. 14.  1980. Hydrocarbons from plants: analytical methods and observations. Naturwissenschaften 67:525–33 [Google Scholar]
  15. Cardé JP. 15.  1984. Leucoplasts: a distinct kind of organelles lacking typical 70S ribosomes and free thylakoids. Eur. J. Cell Biol. 34:18–26 [Google Scholar]
  16. Carpenter KJ. 16.  2006. Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution, and homology. Am. J. Bot. 93:665–81 [Google Scholar]
  17. Charon J, Launay J, Cardé JP. 17.  1985. Spatial organization and volume density of leucoplasts in pine secretory cells. Protoplasma 138:45–53 [Google Scholar]
  18. Chen F, Tholl D, Bohlmann J, Pichersky E. 18.  2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66:212–29 [Google Scholar]
  19. Cheng A, Wang L, Sun Y, Lou H. 19.  2012. Identification and expression analysis of key enzymes of the terpenoids biosynthesis pathway of a liverwort Plagiochasma appendiculatum by EST analysis. Acta Physiol. Plant. 35:107–18 [Google Scholar]
  20. Cheniclet C, Cardé JP. 20.  1985. Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Israel J. Bot. 34:219–38 [Google Scholar]
  21. Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C. 21.  et al. 2012. Origin of strigolactones in the green lineage. New Phytol. 195:857–71 [Google Scholar]
  22. Delwiche CF, Graham LE, Thomson N. 22.  1989. Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245:399–401 [Google Scholar]
  23. Dussourd DE, Hoyle AM. 23.  2000. Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars. Chemoecology 10:11–16 [Google Scholar]
  24. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B. 24.  et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459–62 [Google Scholar]
  25. Everaerts C, Grégoire JC, Merlin J. 25.  1988. The toxicity of Norway spruce monoterpenes to two bark beetle species and their associates. Mechanisms of Woody Plant Defenses Against Insects WJ Mattson, J Levieux, C Bernard-Dagan 335–44 New York: Springer [Google Scholar]
  26. Fahn A. 26.  1988. Secretory tissues in vascular plants. New Phytol. 108:229–57 [Google Scholar]
  27. Farrell BD, Dussourd DE, Mitter C. 27.  1991. Escalation of plant defense: Do latex and resin canals spur plant diversification. Am. Nat. 138:881–900 [Google Scholar]
  28. Foster AS, Gifford EM. 28.  1974. Comparative Morphology of Vascular Plants San Francisco: Freeman [Google Scholar]
  29. Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. 29.  2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 13:17077–103 [Google Scholar]
  30. Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D. 30.  et al. 2014. Detection of flavonoids in microalgae from different evolutionary lineages. J. Phycol. 50:483–92 [Google Scholar]
  31. Graham LE, Gray J. 31.  2001. The origin, morphology, and ecophysiology of early embryophytes: neontological and paleontological perspectives. Plants Invade the Land: Evolutionary and Environmental Perspectives PG Gensel, D Edwards 140–58 New York: Columbia Univ. Press [Google Scholar]
  32. Graham LE, Lewis LA, Taylor W, Wellman C, Cook M. 32.  2014. Early terrestrialization: transition from algal to bryophyte grade. Photosynthesis in Bryophytes and Early Land Plants DT Hanson, SK Rice 9–28 Adv. Photosynth. Respir 37 Amsterdam: Springer [Google Scholar]
  33. Hagel JM, Yeung EC, Facchini PJ. 33.  2008. Got milk? The secret life of laticifers. Trends Plant Sci. 13:631–39 [Google Scholar]
  34. Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S. 34.  et al. 2010. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol. 153:1085–97 [Google Scholar]
  35. Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H. 35.  2006. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett. 580:6175–81 [Google Scholar]
  36. He X, Sun Y, Zhu RL. 36.  2013. The oil bodies of liverworts: unique and important organelles in land plants. Crit. Rev. Plant Sci. 32:293–302 [Google Scholar]
  37. Hemmerlin A, Harwood JL, Bach TJ. 37.  2012. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?. Prog. Lipid Res. 51:95–148 [Google Scholar]
  38. Henery ML, Wallis IR, Stone C, Foley WJ. 38.  2008. Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defense on larvae of a specialist herbivore. Oecologia 156:847–59 [Google Scholar]
  39. Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H. 39.  et al. 2007. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 19:3058–79 [Google Scholar]
  40. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N. 40.  et al. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:3978 [Google Scholar]
  41. Hudgins JW, Christiansen E, Franceschi VR. 41.  2003. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol. 23:361–71 [Google Scholar]
  42. Hudgins JW, Christiansen E, Franceschi VR. 42.  2004. Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol. 24:251–64 [Google Scholar]
  43. Ishida T, Kurata T, Okada K, Wada T. 43.  2008. A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 59:365–86 [Google Scholar]
  44. Keeling CI, Bohlmann J. 44.  2006. Diterpene resin acids in conifers. Phytochemistry 67:2415–23 [Google Scholar]
  45. Keene CK, Wagner GJ. 45.  1985. Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79:1026–32 [Google Scholar]
  46. Konno K. 46.  2011. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–30 [Google Scholar]
  47. Krings M. 47.  2000. Remains of secretory cavities in pinnules of Stephanian pteridosperms from Blanzy-Montceau (Central France): a comparative study. Bot. J. Linn. Soc. 132:369–83 [Google Scholar]
  48. Krings M, Kellogg DW, Kerp H, Taylor TN. 48.  2003. Trichomes of the seed fern Blanzyopteris praedentata: implications for plant–insect interactions in the Late Carboniferous. Bot. J. Linn. Soc. 141:133–49 [Google Scholar]
  49. Krings M, Kerp H. 49.  1998. Epidermal anatomy of Barthelopteris germarii from the Upper Carboniferous and Lower Permian of France and Germany. Am. J. Bot. 85:553–62 [Google Scholar]
  50. Krings M, Kerp H. 50.  1999. Morphology, growth habit, and ecology of Blanzyopteris praedentata (Gothan) nov. comb., a climbing neuropteroid seed fern from the Stephanian of central France. Int. J. Plant Sci. 160:603–19 [Google Scholar]
  51. Krings M, Kerp H, Taylor TN, Taylor EN. 51.  2003. How Paleozoic vines and lianas got off the ground: on scrambling and climbing Carboniferous-Early Permian pteridosperms. Bot. Rev. 69:204–24 [Google Scholar]
  52. Krings M, Taylor TN, Kellogg DW. 52.  2002. Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evol. Ecol. Res. 4:779–86 [Google Scholar]
  53. Kroken SB, Graham LE, Cook ME. 53.  1996. Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am. J. Bot. 83:1241–54 [Google Scholar]
  54. Labandeira CC, Tremblay SL, Bartowski KE, VanAller Hernick L. 54.  2014. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytol. 202:247–58 [Google Scholar]
  55. Lange BM, Ahkami A. 55.  2013. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—current status and future opportunities. Plant Biotechnol. J. 11:169–96 [Google Scholar]
  56. Lange BM, Turner GW. 56.  2013. Terpenoid biosynthesis in trichomes—current status and future opportunities. Plant Biotechnol. J. 11:2–22 [Google Scholar]
  57. Langenheim JH. 57.  2003. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany Portland, OR: Timber [Google Scholar]
  58. Lewinsohn E, Gijzen M, Savage TJ, Croteau R. 58.  1991. Defense mechanisms of conifers: relationship of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content. Plant Physiol. 96:38–43 [Google Scholar]
  59. Li G, Köllner TG, Yin Y, Jiang Y, Chen H. 59.  et al. 2012. Nonseed plant Selaginella moellendorffi has both seed plant and microbial types of terpene synthases. PNAS 109:14711–15 [Google Scholar]
  60. Li L, McCraig BC, Wingerd BA, Wang J, Whalon ME. 60.  et al. 2003. The tomato homolog of CORONATINE-INSENSITIVE 1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–43 [Google Scholar]
  61. Lohr M, Schwender J, Polle JE. 61.  2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci.185–869–22 [Google Scholar]
  62. Ma X, Gang DR. 62.  2004. The Lycopodium alkaloids. Nat. Prod. Rep. 21:752–72 [Google Scholar]
  63. Mahlberg PG, Field DW, Frye JS. 63.  1984. Fossil laticifers from Eocene brown coal deposits of the Geiseltal. Am. J. Bot. 71:1192–200 [Google Scholar]
  64. Malcolm SB, Brower LP. 64.  1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284–95 [Google Scholar]
  65. Martin D, Tholl D, Gershenzon J, Bohlmann J. 65.  2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 129:1003–18 [Google Scholar]
  66. Meslet-Cladière L, Delage L, Leroux CJ, Goulitquer S, Leblanc C. 66.  et al. 2013. Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell 25:3089–103 [Google Scholar]
  67. Miyazaki S, Katsumata T, Natsume M, Kawaide H. 67.  2011. The CYP701B1 of Physcomitrella patens is an ent-kaurene oxidase that resists inhibition by uniconazole-P. FEBS Lett. 585:1879–83 [Google Scholar]
  68. Mizutani M, Ohta D. 68.  2010. Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61:291–315 [Google Scholar]
  69. Napp-Zinn K. 69.  1966. Anatomie des Blattes, Teil 1: Blattanatomie der Gymnospermen Handb. Pflanzenanat 8 Berlin: Gebrüder Borntraeger [Google Scholar]
  70. Niklas KJ, Kutschera U. 70.  2010. The evolution of the land plant life cycle. New Phytol. 185:27–41 [Google Scholar]
  71. Otto A, Wilde V. 71.  2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—a review. Bot. Rev. 67:141–238 [Google Scholar]
  72. Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J. 72.  et al. 2012. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol. 159:12–26 [Google Scholar]
  73. Patten AM, Vassão DG, Wolcott MP, Davin LB, Lewis NG. 73.  2010. Trees: a remarkable biochemical bounty. Comprehensive Natural Products II: Chemistry and Biology, Vol. 3: Development and Modification of Bioactivity L Mander, Liu HWB 1173–296 Oxford, UK: Elsevier [Google Scholar]
  74. Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. 74.  2013. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–61 [Google Scholar]
  75. Pickard WF. 75.  2008. Laticifers and secretory ducts: two other tube systems in plants. New Phytol. 177:877–88 [Google Scholar]
  76. Pollastri S, Tattini M. 76.  2011. Flavonols: old compounds for old roles. Ann. Bot. 108:1225–33 [Google Scholar]
  77. Raffa KF. 77.  2014. Terpenes tell different tales at different scales: glimpses into the chemical ecology of conifer–bark beetle–microbial interactions. J. Chem. Ecol. 40:1–20 [Google Scholar]
  78. Raffa KF, Hobson KR, LaFontaine S, Aukema BH. 78.  2007. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia 153:1009–19 [Google Scholar]
  79. Sabovljević M, Vujičić M, Sabovljević A. 79.  2014. Plant growth regulators in bryophytes. Bot. Serb. 38:99–107 [Google Scholar]
  80. Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P. 80.  et al. 2009. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–17 [Google Scholar]
  81. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 81.  2004. Ferns diversified in the shadow of angiosperms. Nature 428:553–57 [Google Scholar]
  82. Smith EC, Griffiths H. 82.  1996. A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200:203–12 [Google Scholar]
  83. Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F. 83.  et al. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J. 68:201–11 [Google Scholar]
  84. Stidd BM, Phillips TL. 84.  1973. The vegetative anatomy of Schopfiastrum decussatum from the Middle Pennsylvanian of the Illinois Basin. Am. J. Bot. 60:463–74 [Google Scholar]
  85. Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M. 85.  et al. 2013. Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol. Biochem. 70:348–53 [Google Scholar]
  86. Suire C, Bouvier F, Backhaus RA, Bégu D, Bonneu M, Camara B. 86.  2000. Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol. 124:971–78 [Google Scholar]
  87. Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. 87.  2014. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 65:225–57 [Google Scholar]
  88. Tissier A. 88.  2012. Glandular trichomes: What comes after expressed sequence tags?. Plant J. 70:51–68 [Google Scholar]
  89. Tittiger C. 89.  2010. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40:699–712 [Google Scholar]
  90. Van Schie CCN, Haring MA, Schuurink RC. 90.  2007. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol. 64:251–63 [Google Scholar]
  91. Vassão DG, Kim KH, Davin LB, Lewis NG. 91.  2010. Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations. Comprehensive Natural Products II: Chemistry and Biology, Vol. 1: Natural Products Structural Diversity—I: Secondary Metabolites: Organization and Biosynthesis L Mander, HWB Liu 815–928 Oxford, UK: Elsevier [Google Scholar]
  92. Voo SS, Grimes HD, Lange BM. 92.  2012. Assessing the biosynthetic capabilities of secretory glands in Citrus peel. Plant Physiol. 159:81–94 [Google Scholar]
  93. Walter MH, Strack D. 93.  2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat. Prod. Rep. 28:663–92 [Google Scholar]
  94. Warner KA, Rudall PJ, Fröhlich MW. 94.  2009. Environmental control of sepalness and petalness in perianth organs of waterlillies: a new mosaic theory for the evolutionary origin of a differentiated perianth. J. Exp. Bot. 60:3559–74 [Google Scholar]
  95. Wasternack C, Hause B. 95.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  96. Wellman CH, Osterloff PL, Mohiuddin U. 96.  2003. Fragments of the earliest land plants. Nature 425:282–85 [Google Scholar]
  97. Weng JK, Noel JP. 97.  2013. Chemodiversity in Selaginella: a reference system for parallel and convergent metabolic evolution in terrestrial plants. Front. Plant Sci. 4:119 [Google Scholar]
  98. Wollenweber E, Schneider H. 98.  2000. Lipophilic exudates of Pteridaceae—chemistry and chemotaxonomy. Biochem. Syst. Ecol. 28:751–77 [Google Scholar]
  99. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP. 99.  2010. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17:1225–30 [Google Scholar]
  100. Zulak KG, Bohlmann J. 100.  2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 52:86–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error