- Home
- A-Z Publications
- Annual Review of Plant Biology
- Previous Issues
- Volume 66, 2015
Annual Review of Plant Biology - Volume 66, 2015
Volume 66, 2015
-
-
From the Concept of Totipotency to Biofortified Cereals
Vol. 66 (2015), pp. 1–22More LessI was a college teacher when opportunity opened a path into academia. A fascination with totipotency channeled me into research on tissue culture. As I was more interested in contributions to food security than in scientific novelty, I turned my attention to the development of genetic modification technology for cereals. From my cell culture experience, I had reasons not to trust Agrobacterium for that purpose, and I developed direct gene transfer instead. In the early 1990s, I became aware of the problem of micronutrient deficiency, particularly vitamin A deficiency in rice-eating populations. Golden Rice, which contains increased amounts of provitamin A, was probably instrumental for the concept of biofortification to take off. I realized that this rice would remain an academic exercise if product development and product registration were not addressed, and this is what I focused on after my retirement. Although progress is slowly being made, had I known what this pursuit would entail, perhaps I would not have started. Hopefully Golden Rice will reach the needy during my lifetime.
-
-
-
The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis
Vol. 66 (2015), pp. 23–48More LessOxygenic photosynthesis forms the basis of aerobic life on earth by converting light energy into biologically useful chemical energy and by splitting water to generate molecular oxygen. The water-splitting and oxygen-evolving reaction is catalyzed by photosystem II (PSII), a huge, multisubunit membrane-protein complex located in the thylakoid membranes of organisms ranging from cyanobacteria to higher plants. The structure of PSII has been analyzed at 1.9-Å resolution by X-ray crystallography, revealing a clear picture of the Mn4CaO5 cluster, the catalytic center for water oxidation. This article provides an overview of the overall structure of PSII followed by detailed descriptions of the specific structure of the Mn4CaO5 cluster and its surrounding protein environment. Based on the geometric organization of the Mn4CaO5 cluster revealed by the crystallographic analysis, in combination with the results of a vast number of experimental studies involving spectroscopic and other techniques as well as various theoretical studies, the article also discusses possible mechanisms for water splitting that are currently under consideration.
-
-
-
The Plastid Terminal Oxidase: Its Elusive Function Points to Multiple Contributions to Plastid Physiology
Vol. 66 (2015), pp. 49–74More LessPlastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.
-
-
-
Protein Maturation and Proteolysis in Plant Plastids, Mitochondria, and Peroxisomes
Vol. 66 (2015), pp. 75–111More LessPlastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
-
-
-
United in Diversity: Mechanosensitive Ion Channels in Plants
Vol. 66 (2015), pp. 113–137More LessMechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems.
-
-
-
The Evolution of Plant Secretory Structures and Emergence of Terpenoid Chemical Diversity
Vol. 66 (2015), pp. 139–159More LessSecretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.
-
-
-
Strigolactones, a Novel Carotenoid-Derived Plant Hormone
Vol. 66 (2015), pp. 161–186More LessStrigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.
-
-
-
Moving Toward a Comprehensive Map of Central Plant Metabolism
Vol. 66 (2015), pp. 187–210More LessDecades of intensive study have led to the discovery of the main pathways involved in central metabolism but only some of the pathways and regulatory networks in which they are embedded. In this review, we discuss techniques used to assemble these pathways into a systems biology framework that can enable accurate modeling of the response of central metabolism to changes, including ways to perturb metabolic systems and assemble the resulting data into a meaningful network. Critically, these networks are of such size and complexity that it is possible to derive them only if data from different groups can be comprehensively and meaningfully combined. We conclude that it is essential to establish common standards for the description of experimental conditions and data collection and to store this information in databases to which the whole community can contribute.
-
-
-
Engineering Plastid Genomes: Methods, Tools, and Applications in Basic Research and Biotechnology
Vol. 66 (2015), pp. 211–241More LessThe small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.
-
-
-
RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants
Vol. 66 (2015), pp. 243–267More LessRNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)–related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
-
-
-
The Polycomb Group Protein Regulatory Network
Iva Mozgova, and Lars HennigVol. 66 (2015), pp. 269–296More LessCorrect expression of specific sets of genes in time and space ensures the establishment and maintenance of cell identity, which is required for proper development of multicellular organisms. Polycomb and Trithorax group proteins form multisubunit complexes that antagonistically act in epigenetic gene repression and activation, respectively. The traditional view of Polycomb repressive complexes (PRCs) as executors of long-lasting and stable gene repression is being extended by evidence of flexible repression in response to developmental and environmental cues, increasing the complexity of mechanisms that ensure selective and properly timed PRC targeting and release of Polycomb repression. Here, we review advances in understanding of the composition, mechanisms of targeting, and function of plant PRCs and discuss the parallels and differences between plant and animal models.
-
-
-
The Molecular Biology of Meiosis in Plants
Vol. 66 (2015), pp. 297–327More LessMeiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
-
-
-
Genome Evolution in Maize: From Genomes Back to Genes
Vol. 66 (2015), pp. 329–343More LessMaize occupies dual roles as both (a) one of the big-three grain species (along with rice and wheat) responsible for providing more than half of the calories consumed around the world, and (b) a model system for plant genetics and cytogenetics dating back to the origin of the field of genetics in the early twentieth century. The long history of genetic investigation in this species combined with modern genomic and quantitative genetic data has provided particular insight into the characteristics of genes linked to phenotypes and how these genes differ from many other sequences in plant genomes that are not easily distinguishable based on molecular data alone. These recent results suggest that the number of genes in plants that make significant contributions to phenotype may be lower than the number of genes defined by current molecular criteria, and also indicate that syntenic conservation has been underemphasized as a marker for gene function.
-
-
-
Oxygen Sensing and Signaling
Vol. 66 (2015), pp. 345–367More LessOxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
-
-
-
Diverse Stomatal Signaling and the Signal Integration Mechanism
Vol. 66 (2015), pp. 369–392More LessGuard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.
-
-
-
The Mechanism and Key Molecules Involved in Pollen Tube Guidance
Vol. 66 (2015), pp. 393–413More LessDuring sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
-
-
-
Signaling to Actin Stochastic Dynamics
Vol. 66 (2015), pp. 415–440More LessAdvances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
-
-
-
Photoperiodic Flowering: Time Measurement Mechanisms in Leaves
Vol. 66 (2015), pp. 441–464More LessMany plants use information about changing day length (photoperiod) to align their flowering time with seasonal changes to increase reproductive success. A mechanism for photoperiodic time measurement is present in leaves, and the day-length-specific induction of the FLOWERING LOCUS T (FT) gene, which encodes florigen, is a major final output of the pathway. Here, we summarize the current understanding of the molecular mechanisms by which photoperiodic information is perceived in order to trigger FT expression in Arabidopsis as well as in the primary cereals wheat, barley, and rice. In these plants, the differences in photoperiod are measured by interactions between circadian-clock-regulated components, such as CONSTANS (CO), and light signaling. The interactions happen under certain day-length conditions, as previously predicted by the external coincidence model. In these plants, the coincidence mechanisms are governed by multilayered regulation with numerous conserved as well as unique regulatory components, highlighting the breadth of photoperiodic regulation across plant species.
-
-
-
Brachypodium distachyon and Setaria viridis: Model Genetic Systems for the Grasses
Vol. 66 (2015), pp. 465–485More LessThe family of grasses encompasses the world's most important food, feed, and bioenergy crops, yet we are only now beginning to develop the genetic resources to explore the diversity of form and function that underlies economically important traits. Two emerging model systems, Brachypodium distachyon and Setaria viridis, promise to greatly accelerate the process of gene discovery in the grasses and to serve as bridges in the exploration of panicoid and pooid grasses, arguably two of the most important clades of plants from a food security perspective. We provide both a historical view of the development of plant model systems and highlight several recent reports that are providing these developing communities with the tools for gene discovery and pathway engineering.
-
-
-
Effector-Triggered Immunity: From Pathogen Perception to Robust Defense
Vol. 66 (2015), pp. 487–511More LessIn plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)