Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acharya BR, Assmann SM. 1.  2009. Hormone interactions in stomatal function. Plant Mol. Biol. 69:451–62 [Google Scholar]
  2. Acharya BR, Jeon BW, Zhang W, Assmann SM. 2.  2013. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 200:1049–63 [Google Scholar]
  3. Akter N, Okuma E, Sobahan MA, Uraji M, Munemasa S. 3.  et al. 2012. Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis. J. Plant Growth Regul. 32:208–15 [Google Scholar]
  4. Akter N, Sobahan MA, Hossain MA, Uraji M, Nakamura Y. 4.  et al. 2010. Involvement of intracellular glutathione in methyl jasmonate signaling in Arabidopsis guard cells. Biosci. Biotechnol. Biochem. 74:2504–6 [Google Scholar]
  5. Akter N, Sobahan MA, Uraji M, Ye W, Mori IC. 5.  et al. 2012. Effects of depletion of glutathione on abscisic acid- and methyl jasmonate-induced stomatal closure in Arabidopsis. Biosci. Biotechnol. Biochem. 76:1568–70 [Google Scholar]
  6. Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L, Farmer EE. 6.  2003. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J. 34:205–16 [Google Scholar]
  7. Alvarez C, Bermudez MA, Romero LC, Gotor C, Garcia I. 7.  2012. Cysteine homeostasis plays an essential role in plant immunity. New Phytol. 193:165–77 [Google Scholar]
  8. An Z, Jing W, Liu YL, Zhang WH. 8.  2008. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J. Exp. Bot. 59:815–25 [Google Scholar]
  9. Arthur JR. 9.  2000. The glutathione peroxidases. Cell. Mol. Life Sci. 57:1825–35 [Google Scholar]
  10. Blatt MR, Armstrong F. 10.  1993. K+ channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–41 [Google Scholar]
  11. Block A, Schmelz E, O'Donnell PJ, Jones JB, Klee HJ. 11.  2005. Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol. 138:1481–90 [Google Scholar]
  12. Boller T, Felix G. 12.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  13. Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR. 13.  et al. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53:1367–76 [Google Scholar]
  14. Bones A, Rossiter JT. 14.  1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol. Plant. 97:194–208 [Google Scholar]
  15. Boudsocq M, Droillard MJ, Regad L, Laurière C. 15.  2012. Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium?. Biochem. J. 447:291–99 [Google Scholar]
  16. Boudsocq M, Sheen J. 16.  2013. CDPKs in immune and stress signaling. Trends Plant Sci. 18:30–40 [Google Scholar]
  17. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L. 17.  et al. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–22 [Google Scholar]
  18. Brandt B, Brodsky DE, Xue S, Negi J, Iba K. 18.  et al. 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. PNAS 109:10593–98 [Google Scholar]
  19. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. 19.  2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45:113–22 [Google Scholar]
  20. Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B. 20.  2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem. 275:39385–93 [Google Scholar]
  21. Catala R, Ouyang J, Abreu IA, Hu Y, Seo H. 21.  et al. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–66 [Google Scholar]
  22. Chen L, Dodd IC, Davies WJ, Wilkinson S. 22.  2013. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ. 36:1850–59 [Google Scholar]
  23. Chen YH, Hu L, Punta M, Bruni R, Hillerich B. 23.  et al. 2010. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467:1074–80 [Google Scholar]
  24. Chen Z, Gallie DR. 24.  2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–62 [Google Scholar]
  25. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 25.  2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–76 [Google Scholar]
  26. Choi HI, Park HJ, Park JH, Kim S, Im MY. 26.  et al. 2005. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 139:1750–61 [Google Scholar]
  27. Coca M, San Segundo B. 27.  2010. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J. 63:526–40 [Google Scholar]
  28. Corpas FJ, Barroso JB, del Río LA. 28.  2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6:145–50 [Google Scholar]
  29. Daszkowska-Golec A, Szarejko I. 29.  2013. Open or close the gate—stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4:138 [Google Scholar]
  30. Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM. 30.  2004. Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42:273–82 [Google Scholar]
  31. Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S. 31.  et al. 2012. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–87 [Google Scholar]
  32. del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. 32.  2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141:330–35 [Google Scholar]
  33. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. 33.  2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–81 [Google Scholar]
  34. Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJ, Chen WY. 34.  et al. 2012. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLOS Pathog. 8:e1002513 [Google Scholar]
  35. Desikan R, Hancock JT, Bright J, Harrison J, Weir I. 35.  et al. 2005. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 137:831–34 [Google Scholar]
  36. Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K. 36.  et al. 2006. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 47:907–16 [Google Scholar]
  37. Dubiella U, Seybold H, Durian G, Komander E, Lassig R. 37.  et al. 2013. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. PNAS 110:8744–49 [Google Scholar]
  38. Eisinger WR, Ehrhardt DW, Briggs WR. 38.  2012. Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Mol. Plant 5:601–10 [Google Scholar]
  39. Eisinger WR, Kirik V, Lewis C, Ehrhardt DW, Briggs WR. 39.  2012. Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. Mol. Plant 5:716–25 [Google Scholar]
  40. Evans NH. 40.  2003. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131:8–11 [Google Scholar]
  41. Farmer EE, Davoine C. 41.  2007. Reactive electrophile species. Curr. Opin. Plant Biol. 10:380–86 [Google Scholar]
  42. Felix G, Duran JD, Volko S, Boller T. 42.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265–76 [Google Scholar]
  43. Feng F, Yang F, Rong W, Wu X, Zhang J. 43.  et al. 2012. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485:114–18 [Google Scholar]
  44. Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeis T. 44.  2011. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol. Plant 4:83–96 [Google Scholar]
  45. Gao J, Wang N, Wang GX. 45.  2013. Saccharomyces cerevisiae-induced stomatal closure mainly mediated by salicylhydroxamic acid-sensitive peroxidases in Vicia faba. Plant Physiol. Biochem. 65:27–31 [Google Scholar]
  46. Gao X, Chen X, Lin W, Chen S, Lu D. 46.  et al. 2013. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLOS Pathog. 9:e1003127 [Google Scholar]
  47. Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. 47.  2003. Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. PNAS 100:11116–21 [Google Scholar]
  48. Gehring CA, Irving HR, McConchie R, Parish RW. 48.  1997. Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann. Bot. 80:485–89 [Google Scholar]
  49. Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P. 49.  et al. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4:ra32 [Google Scholar]
  50. Geiger D, Scherzer S, Mumm P, Marten I, Ache P. 50.  et al. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. PNAS 107:8023–28 [Google Scholar]
  51. Gómez-Gómez L, Boller T. 51.  2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003–11 [Google Scholar]
  52. Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS. 52.  2008. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ. 31:1717–24 [Google Scholar]
  53. Grabov A, Blatt MR. 53.  1997. Parallel control of the inward-rectifier K+ channel by cytosolic-free Ca2+ and pH in Vicia guard cells. Planta 201:84–95 [Google Scholar]
  54. Grill E, Loffler S, Winnacker EL, Zenk M. 54.  1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). PNAS 86:6838–42 [Google Scholar]
  55. Gudesblat GE, Iusem ND, Morris PC. 55.  2007. Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol. 173:713–21 [Google Scholar]
  56. Han S, Tang R, Anderson LK, Woerner TE, Pei ZM. 56.  2003. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196–200 [Google Scholar]
  57. Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T. 57.  et al. 2012. Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci. Biotechnol. Biochem. 76:617–19 [Google Scholar]
  58. Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y. 58.  2012. Methylglyoxal-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. J. Plant Physiol. 169:979–86 [Google Scholar]
  59. Hossain MS, Hossain MA, Ye W, Uraji M, Okuma E. 59.  et al. 2013. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77:977–83 [Google Scholar]
  60. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH. 60.  et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132:666–80 [Google Scholar]
  61. Hua D, Wang C, He J, Liao H, Duan Y. 61.  et al. 2012. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–61 [Google Scholar]
  62. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. 62.  2010. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 24:1695–708 [Google Scholar]
  63. Hubbard KE, Siegel RS, Valerio G, Brandt B, Schroeder JI. 63.  2012. Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Ann. Bot. 109:5–17 [Google Scholar]
  64. Hwang I, Harper JF, Liang F, Sze H. 64.  2000. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain. Plant Physiol. 122:157–68 [Google Scholar]
  65. Iizasa E, Mitsutomi M, Nagano Y. 65.  2010. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 285:2996–3004 [Google Scholar]
  66. Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S. 66.  2006. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J. 273:5589–97 [Google Scholar]
  67. Irving HR, Gehring CA, Parish RW. 67.  1992. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. PNAS 89:1790–94 [Google Scholar]
  68. Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y. 68.  et al. 2010. Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant Cell Physiol. 51:1721–30 [Google Scholar]
  69. Islam MM, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan MS. 69.  et al. 2009. Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol. 50:1171–75 [Google Scholar]
  70. Islam MM, Ye W, Matsushima D, Khokon MA, Munemasa S. 70.  et al. 2014. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 21:1–4 [Google Scholar]
  71. Issak M, Okuma E, Munemasa S, Nakamura Y, Mori IC, Murata Y. 71.  2013. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77:1111–13 [Google Scholar]
  72. Jackson MB. 72.  2002. Long-distance signalling from roots to shoots assessed: the flooding story. J. Exp. Bot. 53:175–81 [Google Scholar]
  73. Jahan MS, Ogawa K, Nakamura Y, Shimoishi Y, Mori IC, Murata Y. 73.  2008. The deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening. Biosci. Biotechnol. Biochem. 72:2795–98 [Google Scholar]
  74. Jammes F, Song C, Shin D, Munemasa S, Takeda K. 74.  et al. 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. PNAS 106:20520–25 [Google Scholar]
  75. Jannat R, Uraji M, Hossain MA, Islam MM, Nakamura Y. 75.  et al. 2012. Catalases negatively regulate methyl jasmonate signaling in guard cells. J. Plant Physiol. 169:1012–16 [Google Scholar]
  76. Jannat R, Uraji M, Morofuji M, Hossain MM, Islam MM. 76.  et al. 2011. Roles of CATALASE2 in abscisic acid signaling in Arabidopsis guard cells. Biosci. Biotechnol. Biochem. 75:2034–36 [Google Scholar]
  77. Jannat R, Uraji M, Morofuji M, Islam MM, Bloom RE. 77.  et al. 2011. Roles of hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J. Plant Physiol. 168:1919–26 [Google Scholar]
  78. Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB. 78.  2014. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3:e01741 [Google Scholar]
  79. Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T. 79.  et al. 2013. Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25:558–71 [Google Scholar]
  80. Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S. 80.  et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43–55 [Google Scholar]
  81. Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M. 81.  2003. Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol. 44:1275–89 [Google Scholar]
  82. Kelly WK, Esser JE, Schroeder JI. 82.  1995. Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J. 8:479–89 [Google Scholar]
  83. Khokon MAR, Hossain MA, Munemasa S, Uraji M, Nakamura Y. 83.  et al. 2010. Yeast elicitor-induced stomatal closure along with peroxidase-mediated ROS production in Arabidopsis. Plant Cell Physiol. 51:1915–21 [Google Scholar]
  84. Khokon MAR, Jahan MS, Rahman T, Hossain MA, Muroyama D. 84.  et al. 2011. Allylisothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ. 34:1900–6 [Google Scholar]
  85. Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M. 85.  et al. 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 34:434–43 [Google Scholar]
  86. Khokon MAR, Uraji M, Munemasa S, Okuma E, Nakamura Y. 86.  et al. 2010. Chitosan-induced stomatal closure accompanied with peroxidase-mediated ROS production in Arabidopsis. Biosci. Biotechnol. Biochem. 74:2313–15 [Google Scholar]
  87. Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. 87.  2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61:561–91 [Google Scholar]
  88. Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC. 88.  et al. 2002. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol. 130:2152–63 [Google Scholar]
  89. Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M. 89.  et al. 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–80 [Google Scholar]
  90. Koers S, Guzel-Deger A, Marten I, Roelfsema MR. 90.  2011. Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J. 68:670–80 [Google Scholar]
  91. Köhler B, Blatt MR. 91.  2002. Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J. 32:185–94 [Google Scholar]
  92. Kudla J, Batistic O, Hashimoto K. 92.  2010. Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–63 [Google Scholar]
  93. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA. 93.  et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22:2623–33 [Google Scholar]
  94. Le Deunff E, Davoine C, Le Dantec C, Billard JP, Huault C. 94.  2004. Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. Plant J. 38:421–31 [Google Scholar]
  95. Lee S, Choi H, Suh S, Doo IS, Oh KY. 95.  et al. 1999. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 121:147–52 [Google Scholar]
  96. Li L, Li M, Yu L, Zhou Z, Liang X. 96.  et al. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–38 [Google Scholar]
  97. Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. 97.  2009. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLOS Biol. 7:e1000139 [Google Scholar]
  98. Lozano-Durán R, Bourdais G, He SY, Robatzek S. 98.  2014. The bacterial effector HopM1 suppresses stomatal immunity to promote virulence. New Phytol. 202:259–69 [Google Scholar]
  99. Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. 99.  2002. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. PNAS 99:15812–17 [Google Scholar]
  100. Lynch T, Erickson BJ, Finkelstein RR. 100.  2012. Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol. Biol. 80:647–58 [Google Scholar]
  101. Ma SY, Wu WH. 101.  2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 65:511–18 [Google Scholar]
  102. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y. 102.  et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–68 [Google Scholar]
  103. Macho AP, Boutrot F, Rathjen JP, Zipfel C. 103.  2012. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiol. 159:1845–56 [Google Scholar]
  104. Macho AP, Zipfel C. 104.  2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263–72 [Google Scholar]
  105. MacRobbie EA. 105.  1998. Signal transduction and ion channels in guard cells. Philos. Trans. R. Soc. Lond. B 353:1475–88 [Google Scholar]
  106. Mannervik B, Danielson UH. 106.  1988. Glutathione transferases–structure and catalytic activity. CRC Crit. Rev. Biochem. 123:283–337 [Google Scholar]
  107. Mano J. 107.  2012. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol. Biochem. 59:90–97 [Google Scholar]
  108. May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D. 108.  1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49:649–67 [Google Scholar]
  109. Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E. 109.  et al. 2010. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J. 63:484–98 [Google Scholar]
  110. Meinhard M, Grill E. 110.  2001. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett. 508:443–46 [Google Scholar]
  111. Meinhard M, Rodriguez PL, Grill E. 111.  2002. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775–82 [Google Scholar]
  112. Melotto M, Underwood W, He SY. 112.  2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101–22 [Google Scholar]
  113. Melotto M, Underwood W, Koczan J, Nomura K, He SY. 113.  2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–80 [Google Scholar]
  114. Mersmann S, Bourdais G, Rietz S, Robatzek S. 114.  2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 154:391–400 [Google Scholar]
  115. Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M. 115.  et al. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–6 [Google Scholar]
  116. Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X. 116.  et al. 2008. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J. Biol. Chem. 283:22136–46 [Google Scholar]
  117. Miao Y, Lv D, Wang P, Wang XC, Chen J. 117.  et al. 2006. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–66 [Google Scholar]
  118. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. 118.  2009. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. PNAS 106:5418–23 [Google Scholar]
  119. Miura K, Okamoto H, Okuma E, Hasegawa PM, Murata Y. 119.  2013. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 73:91–104 [Google Scholar]
  120. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS. 120.  et al. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS 102:7760–65 [Google Scholar]
  121. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 121.  et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104:19613–18 [Google Scholar]
  122. Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D. 122.  et al. 2013. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLOS Biol. 11:e1001513 [Google Scholar]
  123. Morgan PW, He CJ, De Greef JA, De Proft MP. 123.  1990. Does water deficit stress promote ethylene synthesis by intact plants?. Plant Physiol. 94:1616–24 [Google Scholar]
  124. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF. 124.  et al. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLOS Biol. 4:e327 [Google Scholar]
  125. Mori IC, Pinontoan R, Kawano T, Muto S. 125.  2001. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42:1383–88 [Google Scholar]
  126. Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH. 126.  et al. 2010. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. Plant Physiol. 152:1901–13 [Google Scholar]
  127. Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y. 127.  2011. The Arabidopsis calcium dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol. 155:553–61 [Google Scholar]
  128. Munemasa S, Mori IC, Murata Y. 128.  2011. Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav. 6:939–41 [Google Scholar]
  129. Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Murata Y. 129.  2013. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front. Plant Physiol. 4:472 [Google Scholar]
  130. Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. 130.  2007. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143:1398–407 [Google Scholar]
  131. Murata Y, Pei ZM, Mori IC, Schroeder JI. 131.  2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–23 [Google Scholar]
  132. Narayana I, Lalonde S, Saini HS. 132.  1991. Water-stress-induced ethylene production in wheat: a fact or artifact?. Plant Physiol. 96:406–10 [Google Scholar]
  133. Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H. 133.  et al. 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–86 [Google Scholar]
  134. Noctor G, Foyer CH. 134.  1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249–79 [Google Scholar]
  135. Noctor G, Mhamdi A, Foyer CH. 135.  2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164:1636–48 [Google Scholar]
  136. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T. 136.  2008. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J. 53:988–98 [Google Scholar]
  137. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K. 137.  et al. 2012. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3:926 [Google Scholar]
  138. O'Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP. 138.  et al. 2012. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158:2013–27 [Google Scholar]
  139. Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S. 139.  et al. 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283:8885–92 [Google Scholar]
  140. Okuma E, Jahan MS, Munemasa S, Hossain MA, Muroyama D. 140.  et al. 2011. Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J. Plant Physiol. 168:2048–55 [Google Scholar]
  141. Okuma E, Nozawa R, Murata Y, Miura K. 141.  2014. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. Plant Signal. Behav. 9:e28085 [Google Scholar]
  142. Park BS, Song JT, Seo HS. 142.  2011. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun 2:400 [Google Scholar]
  143. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H. 143.  et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–71 [Google Scholar]
  144. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B. 144.  et al. 2000. Hydrogen peroxide-activated Ca2+ channels mediate guard cell abscisic acid signalling. Nature 406:731–34 [Google Scholar]
  145. Pnueli L, Liang H, Rozenberg M, Mittler R. 145.  2003. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J. 34:187–203 [Google Scholar]
  146. Pospíšilová J. 146.  2003. Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41:49–56 [Google Scholar]
  147. Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. 147.  2013. Missing links in understanding redox signaling via thiol/disulfide modulation: How is glutathione oxidized in plants?. Front. Plant Sci. 4:477 [Google Scholar]
  148. Raschke K. 148.  1975. Stomatal action. Annu. Rev. Plant Physiol. 26:309–40 [Google Scholar]
  149. Robatzek S, Chinchilla D, Boller T. 149.  2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20:537–42 [Google Scholar]
  150. Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Briere C. 150.  et al. 2014. CPK13, a non-canonical CPK, specifically inhibits KAT2 and KAT1 Shaker channels and reduces stomatal opening. Plant Physiol. 166:314–26 [Google Scholar]
  151. Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori IC, Murata Y. 151.  2008. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol. 49:1396–401 [Google Scholar]
  152. Salam MA, Jammes F, Hossain MA, Ye W, Nakamura Y. 152.  et al. 2012. MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. Biosci. Biotechnol. Biochem. 76:1785–87 [Google Scholar]
  153. Salam MA, Jammes F, Hossain MA, Ye W, Nakamura Y. 153.  et al. 2012. Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signaling in Arabidopsis guard cells. Plant Biol. 15:436–42 [Google Scholar]
  154. Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D. 154.  2006. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18:3706–20 [Google Scholar]
  155. Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR. 155.  et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164:1151–60 [Google Scholar]
  156. Schroeder JI, Hagiwara S. 156.  1989. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–30 [Google Scholar]
  157. Schulz P, Herde M, Romeis T. 157.  2013. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 163:523–30 [Google Scholar]
  158. Schumacher HM, Gundlach H, Fiedler F, Zenk MH. 158.  1987. Elicitation of benzophenanthridine alkaloid synthesis in Eschscholtzia cell cultures. Plant Cell Rep. 6:410–13 [Google Scholar]
  159. Shangari N, O'Brien PJ. 159.  2000. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol. 68:1433–42 [Google Scholar]
  160. Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N. 160.  et al. 2009. Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant J. 59:207–20 [Google Scholar]
  161. Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G. 161.  et al. 2005. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280:33660–68 [Google Scholar]
  162. Sirichandra C, Gu D, Hu HC, Davanture M, Lee S. 162.  et al. 2009. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 583:2982–86 [Google Scholar]
  163. Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS. 163.  2009. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–65 [Google Scholar]
  164. Stael S, Rocha AG, Wimberger T, Anrather D, Vothknecht UC, Teige M. 164.  2012. Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. J. Exp. Bot. 63:1725–33 [Google Scholar]
  165. Suhita D, Raghavendra AS, Kwak JM, Vavasseur A. 165.  2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134:1536–45 [Google Scholar]
  166. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. 166.  2011. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol. Cell 41:649–60 [Google Scholar]
  167. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. 167.  2006. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57:2259–66 [Google Scholar]
  168. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. 168.  2006. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138:2337–43 [Google Scholar]
  169. Tang RH, Han S, Zheng H, Cook CW, Choi CS. 169.  et al. 2007. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423–26 [Google Scholar]
  170. Thiel G, MacRobbie EA, Blatt MR. 170.  1992. Membrane transport in stomatal guard cells: the importance of voltage control. J. Membr. Biol. 126:1–18 [Google Scholar]
  171. Uno Y, Rodriguez Milla MA, Maher E, Cushman JC. 171.  2009. Identification of proteins that interact with catalytically active calcium-dependent protein kinases from Arabidopsis. Mol. Genet. Genomics 281:375–90 [Google Scholar]
  172. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY. 172.  et al. 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–91 [Google Scholar]
  173. Vlot AC, Dempsey DA, Klessig DF. 173.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  174. Voisin AS, Reidy B, Parent B, Rolland G, Redondo E. 174.  et al. 2006. Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize. Plant Cell Environ. 29:1829–40 [Google Scholar]
  175. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR. 175.  et al. 2014. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739 [Google Scholar]
  176. Wang WH, Chen J, Liu TW, Chen J, Han AD. 176.  et al. 2014. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. J. Exp. Bot. 65:223–34 [Google Scholar]
  177. Wang WH, Yi XQ, Han AD, Liu TW, Chen J. 177.  et al. 2012. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J. Exp. Bot. 63:177–90 [Google Scholar]
  178. Watkins JM, Hechler PJ, Muday GK. 178.  2014. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiol. 164:1707–17 [Google Scholar]
  179. Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S. 179.  et al. 2008. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol. 179:675–86 [Google Scholar]
  180. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C. 180.  et al. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16:4806–16 [Google Scholar]
  181. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T. 181.  et al. 2007. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–34 [Google Scholar]
  182. Wu Y, Zhou JM. 182.  2013. Receptor-like kinases in plant innate immunity. J. Integr. Plant Biol. 55:1271–86 [Google Scholar]
  183. Ye W, Muroyama D, Munemasa S, Nakamura Y, Mori IC, Murata Y. 183.  2013. Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Plant Physiol. 163:591–99 [Google Scholar]
  184. Zagorchev L, Seal CF, Kranner I, Odjakova M. 184.  2013. A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci. 14:7405–32 [Google Scholar]
  185. Zeng W, Brutus A, Kremer JM, Withers JC, Gao X. 185.  et al. 2011. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLOS Pathog. 7:e1002291 [Google Scholar]
  186. Zhang X, Dong FC, Gao JF, Song CP. 186.  2001. Hydrogen peroxide induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res. 11:37–43 [Google Scholar]
  187. Zhang Y, Zhu H, Zhang Q, Li M, Yan M. 187.  et al. 2009. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–77 [Google Scholar]
  188. Zhao R, Sun HL, Mei C, Wang XJ, Yan L. 188.  et al. 2011. The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol. 192:61–73 [Google Scholar]
  189. Zhao Z, Zhang W, Stanley BA, Assmann SM. 189.  2008. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–26 [Google Scholar]
  190. Zhong HH, McClung CR. 190.  1996. The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. Gen. Genet. 251:196–203 [Google Scholar]
  191. Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y. 191.  et al. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–36 [Google Scholar]
  192. Zipfel C. 192.  2014. Plant pattern-recognition receptors. Trends Immunol. 35:345–51 [Google Scholar]
  193. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD. 193.  et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60 [Google Scholar]
  194. Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D. 194.  et al. 2010. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol. 154:1232–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error