1932

Abstract

Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-115547
2015-04-29
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-115547.html?itemId=/content/journals/10.1146/annurev-arplant-043014-115547&mimeType=html&fmt=ahah

Literature Cited

  1. Adam Z. 1.  2013. . Emerging roles for diverse intramembrane proteases in plant biology.. Biochim. Biophys. Acta 1828:2933–36 [Google Scholar]
  2. Adrain C, Freeman M. 2.  2012. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat. Rev. Mol. Cell Biol. 13:489–98 [Google Scholar]
  3. Agard NJ, Wells JA. 3.  2009. Methods for the proteomic identification of protease substrates. Curr. Opin. Chem. Biol. 13:503–9 [Google Scholar]
  4. Albrecht-Borth V, Kauss D, Fan D, Hu Y, Collinge D. 4.  et al. 2013. A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. Plant Physiol. 163:732–45 [Google Scholar]
  5. Apel W, Schulze WX, Bock R. 5.  2010. Identification of protein stability determinants in chloroplasts. Plant J. 63:636–50 [Google Scholar]
  6. Avice JC, Etienne P. 6.  2014. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). J. Exp. Bot. 65:3813–24 [Google Scholar]
  7. Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. 7.  2014. Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 65:3799–811 [Google Scholar]
  8. Avin-Wittenberg T, Fernie AR. 8.  2014. At long last: evidence for pexophagy in plants. Mol. Plant 7:1257–60 [Google Scholar]
  9. Bachmair A, Finley D, Varshavsky A. 9.  1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–86 [Google Scholar]
  10. Baier A, Winkler W, Korte T, Lockau W, Karradt A. 10.  2014. Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by a Clp protease complex. J. Biol. Chem. 289:11755–66 [Google Scholar]
  11. Barajas-López JDD, Blanco NE, Strand A. 11.  2013. Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim. Biophys. Acta 1833:425–37 [Google Scholar]
  12. Barry CS, Aldridge GM, Herzog G, Ma Q, McQuinn RP. 12.  et al. 2012. Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato. Plant Physiol. 159:1086–98 [Google Scholar]
  13. Bartel B, Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE. 13.  2014. Mutation of the Arabidopsis LON2 peroxisomal protease enhances pexophagy. Autophagy 10:518–19 [Google Scholar]
  14. Basak I, Pal R, Patil KS, Dunne A, Ho HP. 14.  et al. 2014. Arabidopsis AtPARK13, which confers thermotolerance, targets misfolded proteins. J. Biol. Chem. 289:14458–69 [Google Scholar]
  15. Baudisch B, Klosgen RB. 15.  2012. Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture. Mol. Plant 5:494–503 [Google Scholar]
  16. Bauwe H, Hagemann M, Fernie AR. 16.  2010. Photorespiration: players, partners and origin. Trends Plant Sci. 15:330–36 [Google Scholar]
  17. Bolter B, Nada A, Fulgosi H, Soll J. 17.  2006. A chloroplastic inner envelope membrane protease is essential for plant development. FEBS Lett. 580:789–94 [Google Scholar]
  18. Bruch EM, Rosano GL, Ceccarelli EA. 18.  2012. Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein. BMC Plant Biol. 12:57 [Google Scholar]
  19. Burkhart SE, Lingard MJ, Bartel B. 19.  2013. Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana. Genetics 193:125–41 [Google Scholar]
  20. Campello S, Strappazzon F, Cecconi F. 20.  2014. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim. Biophys. Acta 1837:451–60 [Google Scholar]
  21. Carrie C, Murcha MW, Giraud E, Ng S, Zhang MF. 21.  et al. 2013. How do plants make mitochondria?. Planta 237:429–39 [Google Scholar]
  22. Carrie C, Small I. 22.  2013. A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochim. Biophys. Acta 1833:253–59 [Google Scholar]
  23. Carrion CA, Costa ML, Martinez DE, Mohr C, Humbeck K, Guiamet JJ. 23.  2013. In vivo inhibition of cysteine proteases provides evidence for the involvement of “senescence-associated vacuoles” in chloroplast protein degradation during dark-induced senescence of tobacco leaves. J. Exp. Bot. 64:4967–80 [Google Scholar]
  24. Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P. 24.  2006. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res. 15:481–88 [Google Scholar]
  25. Che Y, Fu A, Hou X, McDonald K, Buchanan BB. 25.  et al. 2013. C-terminal processing of reaction center protein D1 is essential for the function and assembly of photosystem II in Arabidopsis. PNAS 110:16247–52 [Google Scholar]
  26. Chen G, Bi YR, Li N. 26.  2005. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J. 41:364–75 [Google Scholar]
  27. Chen G, Law K, Ho P, Zhang X, Li N. 27.  2012. EGY2, a chloroplast membrane metalloprotease, plays a role in hypocotyl elongation in Arabidopsis. Mol. Biol. Rep. 39:2147–55 [Google Scholar]
  28. Chen J, Burke JJ, Velten J, Xin Z. 28.  2006. FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J. 48:73–84 [Google Scholar]
  29. Chi W, Sun X, Zhang L. 29.  2012. The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. Biochim. Biophys. Acta 1817:239–46 [Google Scholar]
  30. Chu CC, Li HM. 30.  2012. The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. Plant Physiol. 158:1656–65 [Google Scholar]
  31. Chung T, Suttangkakul A, Vierstra RD. 31.  2009. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol. 149:220–34 [Google Scholar]
  32. Clarke AK. 32.  2012. The chloroplast ATP-dependent Clp protease in vascular plants—new dimensions and future challenges. Physiol. Plant. 145:235–44 [Google Scholar]
  33. Claydon AJ, Beynon R. 33.  2012. Proteome dynamics: revisiting turnover with a global perspective. Mol. Cell. Proteomics 11:1551–65 [Google Scholar]
  34. Daras G, Rigas S, Tsitsekian D, Zur H, Tuller T, Hatzopoulos P. 34.  2014. Alternative transcription initiation and the AUG context configuration control dual-organellar targeting and functional competence of Arabidopsis Lon1 protease. Mol. Plant 7:989–1005 [Google Scholar]
  35. Dolze E, Chigri F, Howing T, Hierl G, Isono E. 35.  et al. 2013. Calmodulin-like protein AtCML3 mediates dimerization of peroxisomal processing protease AtDEG15 and contributes to normal peroxisome metabolism. Plant Mol. Biol. 83:607–24 [Google Scholar]
  36. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY. 36.  et al. 2013. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol. 162:1867–80 [Google Scholar]
  37. Dougan DA, Micevski D, Truscott KN. 37.  2012. The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+ proteases. Biochim. Biophys. Acta 1823:83–91 [Google Scholar]
  38. Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM. 38.  2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3:17–27 [Google Scholar]
  39. Erbse A, Schmidt R, Bornemann T, Schneider-Mergener J, Mogk A. 39.  et al. 2006. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439:753–56 [Google Scholar]
  40. Estavillo GM, Chan KX, Phua SY, Pogson BJ. 40.  2012. Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front. Plant Sci 3:300 [Google Scholar]
  41. Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. 41.  2013. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 25:4085–100 [Google Scholar]
  42. Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D. 42.  et al. 2013. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J. Proteome Res. 12:547–58 [Google Scholar]
  43. Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. 43.  2010. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152:1219–50 [Google Scholar]
  44. Gao M, Li Y, Xue X, Wang X, Long J. 44.  2012. Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J. Biomed. Biotechnol. 2012:158232 [Google Scholar]
  45. Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. 45.  2014. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24:603–11 [Google Scholar]
  46. Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A. 46.  et al. 2014. Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion 18:76–81 [Google Scholar]
  47. Giglione C, Fieulaine S, Meinnel T. 47.  2009. Cotranslational processing mechanisms: towards a dynamic 3D model. Trends Biochem. Sci. 34:417–26 [Google Scholar]
  48. Gomes LC, Scorrano L. 48.  2013. Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta 1833:205–12 [Google Scholar]
  49. Goto-Yamada S, Mano S, Nakamori C, Kondo M, Yamawaki R. 49.  et al. 2014. Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant Cell Physiol. 55:482–96 [Google Scholar]
  50. Graciet E, Walter F, Maoileidigh DO, Pollmann S, Meyerowitz EM. 50.  et al. 2009. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. PNAS 106:13618–23 [Google Scholar]
  51. Greiner S, Bock R. 51.  2013. Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 35:354–65 [Google Scholar]
  52. Gur E. 52.  2013. The Lon AAA+ protease. Subcell. Biochem. 66:35–51 [Google Scholar]
  53. Hansen G, Hilgenfeld R. 53.  2013. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell. Mol. Life Sci. 70:761–75 [Google Scholar]
  54. Hayashi M, Toriyama K, Kondo M, Kato A, Mano S. 54.  et al. 2000. Functional transformation of plant peroxisomes. Cell Biochem. Biophys. 32:295–304 [Google Scholar]
  55. Helm M, Luck C, Prestele J, Hierl G, Huesgen PF. 55.  et al. 2007. Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants. PNAS 104:11501–6 [Google Scholar]
  56. Hoshiyasu S, Kohzuma K, Yoshida K, Fujiwara M, Fukao Y. 56.  et al. 2013. Potential involvement of N-terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress. Biosci. Biotechnol. Biochem. 77:998–1007 [Google Scholar]
  57. Hsu SC, Endow JK, Ruppel NJ, Roston RL, Baldwin AJ, Inoue K. 57.  2011. Functional diversification of thylakoidal processing peptidases in Arabidopsis thaliana. PLOS ONE 6:e27258 [Google Scholar]
  58. Hu J, Baker A, Bartel B, Linka N, Mullen RT. 58.  et al. 2012. Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–303 [Google Scholar]
  59. Huang S, Taylor NL, Whelan J, Millar AH. 59.  2009. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol 150:1272–85 [Google Scholar]
  60. Hughes C, Krijgsveld J. 60.  2012. Developments in quantitative mass spectrometry for the analysis of proteome dynamics. Trends Biotechnol 30:668–76 [Google Scholar]
  61. Humbard MA, Surkov S, De Donatis GM, Jenkins LM, Maurizi MR. 61.  2013. The N-degradome of Escherichia coli: Limited proteolysis in vivo generates a large pool of proteins bearing N-degrons. J. Biol. Chem 288:28913–24 [Google Scholar]
  62. Ishida H, Izumi M, Wada S, Makino A. 62.  2014. Roles of autophagy in chloroplast recycling. Biochim. Biophys. Acta 1837:512–21 [Google Scholar]
  63. Ishida H, Yoshimoto K. 63.  2008. Chloroplasts are partially mobilized to the vacuole by autophagy. Autophagy 4:961–62 [Google Scholar]
  64. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y. 64.  et al. 2008. Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–55 [Google Scholar]
  65. Jain R, Chan MK. 65.  2007. Support for a potential role of E. coli oligopeptidase A in protein degradation. Biochem. Biophys. Res. Commun 359:486–90 [Google Scholar]
  66. Janska H, Kwasniak M, Szczepanowska J. 66.  2012. Protein quality control in organelles—AAA/FtsH story. Biochim. Biophys. Acta 1833:381–87 [Google Scholar]
  67. Janska H, Piechota J, Kwasniak M. 67.  2012. ATP-dependent proteases in biogenesis and maintenance of plant mitochondria. Biochim. Biophys. Acta 1797:1071–75 [Google Scholar]
  68. Jarvis P, Lopez-Juez E. 68.  2013. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol 14:787–802 [Google Scholar]
  69. Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L. 69.  2013. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. Biochim. Biophys. Acta 1833:371–80 [Google Scholar]
  70. Johansson E, Olsson O, Nystrom T. 70.  2004. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J. Biol. Chem 279:22204–8 [Google Scholar]
  71. Kadirjan-Kalbach DK, Yoder DW, Ruckle ME, Larkin RM, Osteryoung KW. 71.  2012. FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division. Plant J 72:856–67 [Google Scholar]
  72. Kapri-Pardes E, Naveh L, Adam Z. 72.  2007. The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19:1039–47 [Google Scholar]
  73. Kato Y, Sakamoto W. 73.  2010. New insights into the types and function of proteases in plastids. Int. Rev. Cell Mol. Biol 280:185–218 [Google Scholar]
  74. Kato Y, Sakamoto W. 74.  2014. Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. Plant J 79:312–21 [Google Scholar]
  75. Keeling PJ. 75.  2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol 64:583–607 [Google Scholar]
  76. Kim J, Lee H, Lee HN, Kim SH, Shin KD, Chung T. 76.  2013. Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 25:4956–66 [Google Scholar]
  77. Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A. 77.  et al. 2013. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol 162:157–79 [Google Scholar]
  78. Kim J, Rudella A, Ramirez Rodriguez V, Zybailov B, Olinares PD, van Wijk KJ. 78.  2009. Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell 21:1669–92 [Google Scholar]
  79. Kirchner M, Selbach M. 79.  2012. In vivo quantitative proteome profiling: planning and evaluation of SILAC experiments. Methods Mol. Biol 893:175–99 [Google Scholar]
  80. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M. 80.  et al. 2011. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc 6:1578–611 [Google Scholar]
  81. Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R. 81.  et al. 2011. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat. Struct. Mol. Biol 18:728–31 [Google Scholar]
  82. Klingler D, Hardt M. 82.  2012. Profiling protease activities by dynamic proteomics workflows. Proteomics 12:587–96 [Google Scholar]
  83. Kmiec B, Glaser E. 83.  2012. A novel mitochondrial and chloroplast peptidasome, PreP. Physiol. Plant 145:180–86 [Google Scholar]
  84. Kmiec B, Teixeira PF, Berntsson RP, Murcha MW, Branca RM. 84.  et al. 2013. Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts. PNAS 110:E3761–69 [Google Scholar]
  85. Kmiec B, Teixeira PF, Glaser E. 85.  2014. Phenotypical consequences of expressing the dually targeted Presequence Protease, AtPreP, exclusively in mitochondria. Biochimie 100:167–70 [Google Scholar]
  86. Knopf RR, Adam Z. 86.  2012. Rhomboid proteases in plants—still in square one?. Physiol. Plant 145:41–51 [Google Scholar]
  87. Knopf RR, Feder A, Mayer K, Lin A, Rozenberg M. 87.  et al. 2012. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. Plant J 72:559–71 [Google Scholar]
  88. König AC, Hartl M, Boersema PJ, Mann M, Finkemeier I. 88.  2014. The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252–60 [Google Scholar]
  89. König AC, Hartl M, Pham PA, Laxa M, Boersema PJ. 89.  et al. 2014. The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 164:1401–14 [Google Scholar]
  90. Kwasniak M, Pogorzelec L, Migdal I, Smakowska E, Janska H. 90.  2012. Proteolytic system of plant mitochondria. Physiol. Plant 145:187–95 [Google Scholar]
  91. Lange PF, Overall CM. 91.  2013. Protein TAILS: when termini tell tales of proteolysis and function. Curr. Opin. Chem. Biol 17:73–82 [Google Scholar]
  92. Lee DW, Jung C, Hwang I. 92.  2013. Cytosolic events involved in chloroplast protein targeting. Biochim. Biophys. Acta 1833:245–52 [Google Scholar]
  93. Lee HN, Kim J, Chung T. 93.  2014. Degradation of plant peroxisomes by autophagy. Front. Plant Sci 5:139 [Google Scholar]
  94. Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD. 94.  et al. 2009. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001 [Google Scholar]
  95. Lensch M, Herrmann RG, Sokolenko A. 95.  2001. Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J. Biol. Chem 276:33645–51 [Google Scholar]
  96. Li B, Li Q, Xiong L, Kronzucker HJ, Kramer U, Shi W. 96.  2012. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol 160:2040–51 [Google Scholar]
  97. Li F, Chung T, Vierstra RD. 97.  2014. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell 26:788–807 [Google Scholar]
  98. Li F, Vierstra RD. 98.  2012. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–37 [Google Scholar]
  99. Li W, Wu C, Hu G, Xing L, Qian W. 99.  et al. 2013. Characterization and fine mapping of a novel rice narrow leaf mutant nal9. J. Integr. Plant Biol 55:1016–25 [Google Scholar]
  100. Ling Q, Huang W, Baldwin A, Jarvis P. 100.  2012. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338:655–59 [Google Scholar]
  101. Lingard MJ, Bartel B. 101.  2009. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol 151:1354–65 [Google Scholar]
  102. Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K. 102.  et al. 2011. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–72 [Google Scholar]
  103. Lionaki E, Tavernarakis N. 103.  2013. Oxidative stress and mitochondrial protein quality control in aging. J. Proteomics 92:181–94 [Google Scholar]
  104. Liu X, Yu F, Rodermel S. 104.  2010. Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review. J. Integr. Plant Biol 52:750–61 [Google Scholar]
  105. Liu Y, Bassham DC. 105.  2012. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol 63:215–37 [Google Scholar]
  106. Lundquist P, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ. 106.  2012. The functional network of the Arabidopsis thaliana plastoglobule proteome based on quantitative proteomics and genome-wide co-expression analysis. Plant Physiol 58:1172–92 [Google Scholar]
  107. Majeran M, Friso G, Ponnala L, Connolly B, Huang M. 107.  et al. 2010. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics. Plant Cell 22:3509–42 [Google Scholar]
  108. Maliga P, Bock R. 108.  2011. Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–10 [Google Scholar]
  109. Martinez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ. 109.  2008. “Senescence-associated vacuoles” are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206 [Google Scholar]
  110. Maruyama J, Yamaoka S, Matsuo I, Tsutsumi N, Kitamoto K. 110.  2012. A newly discovered function of peroxisomes: involvement in biotin biosynthesis. Plant Signal. Behav 7:1589–93 [Google Scholar]
  111. Meinnel T, Serero A, Giglione C. 111.  2006. Impact of the N-terminal amino acid on targeted protein degradation. Biol. Chem 387:839–51 [Google Scholar]
  112. Mohanty A, McBride HM. 112.  2013. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes. Front. Physiol 4:268 [Google Scholar]
  113. Mossmann D, Meisinger C, Vogtle FN. 113.  2012. Processing of mitochondrial presequences. Biochim. Biophys. Acta 1819:1098–106 [Google Scholar]
  114. Nakamura M, Toyota M, Tasaka M, Morita MT. 114.  2011. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell 23:1830–48 [Google Scholar]
  115. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 115.  2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–90 [Google Scholar]
  116. Nath K, Jajoo A, Poudyal RS, Timilsina R, Park YS. 116.  et al. 2013. Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 587:3372–81 [Google Scholar]
  117. Nelson CJ, Alexova R, Jacoby RP, Millar AH. 117.  2014. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labelling. Plant Physiol 166:91–108 [Google Scholar]
  118. Nelson CJ, Li L, Jacoby RP, Millar AH. 118.  2013. Degradation rate of mitochondrial proteins in Arabidopsis thaliana cells. J. Proteome Res 12:3449–59 [Google Scholar]
  119. Nelson CJ, Li L, Millar AH. 119.  2013. Quantitative analysis of protein turnover in plants. Proteomics 14:579–92 [Google Scholar]
  120. Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A. 120.  et al. 2014. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol. Plant 7:1075–93 [Google Scholar]
  121. Nishimura K, Asakura Y, Friso G, Kim J, Oh SH. 121.  et al. 2013. ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 25:2276–301 [Google Scholar]
  122. Nishimura K, van Wijk KJ. 122.  2014. Organization, function and substrates of the essential Clp protease system in plastids. Biochim. Biophys. Acta In press. doi: 10.1016/j.bbabio.2014.11.012
  123. Nystrom T. 123.  2005. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24:1311–17 [Google Scholar]
  124. Okuno T, Ogura T. 124.  2013. FtsH protease-mediated regulation of various cellular functions. Subcell. Biochem. 66:53–69 [Google Scholar]
  125. Olinares PD, Kim J, Davis JI, van Wijk KJ. 125.  2011. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Plant Cell 23:2348–61 [Google Scholar]
  126. Olinares PD, Kim J, van Wijk KJ. 126.  2011. The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta 1807:999–1011 [Google Scholar]
  127. Ono Y, Wada S, Izumi M, Makino A, Ishida H. 127.  2013. Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant Cell Environ. 36:1147–59 [Google Scholar]
  128. Ostersetzer O, Kato Y, Adam Z, Sakamoto W. 128.  2007. Multiple intracellular locations of Lon protease in Arabidopsis: evidence for the localization of AtLon4 to chloroplasts. Plant Cell Physiol. 48:881–85 [Google Scholar]
  129. Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA. 129.  et al. 2005. Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 41:831–44 [Google Scholar]
  130. Pan R, Kaur N, Hu J. 130.  2014. The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. Plant J. 78:1047–59 [Google Scholar]
  131. Paparelli E, Gonzali S, Parlanti S, Novi G, Giorgi FM. 131.  et al. 2012. Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis. Plant Physiol. 160:1237–50 [Google Scholar]
  132. Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y. 132.  et al. 2004. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J. Biol. Chem. 279:4768–81 [Google Scholar]
  133. Peters J, Stoger E. 133.  2011. Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies. Hum. Vaccines 7:367–74 [Google Scholar]
  134. Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H. 134.  2010. Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J. Biol. Chem. 285:12512–21 [Google Scholar]
  135. Plasman K, Van Damme P, Gevaert K. 135.  2013. Contemporary positional proteomics strategies to study protein processing. Curr. Opin. Chem. Biol. 17:66–72 [Google Scholar]
  136. Ponnala L, Wang Y, Sun Q, van Wijk KJ. 136.  2014. Correlation of mRNA and protein abundance in the developing maize leaf. Plant J. 78:424–40 [Google Scholar]
  137. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ. 137.  2006. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 1:1029–43 [Google Scholar]
  138. Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S. 138.  2013. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. Photosynth. Res. 116:437–53 [Google Scholar]
  139. Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R. 139.  et al. 2013. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. Plant Physiol. 163:1518–38 [Google Scholar]
  140. Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D. 140.  2008. Proteome-wide characterization of seed aging in Arabidopsis. A comparison between artificial and natural aging protocols. Plant Physiol. 148:620–41 [Google Scholar]
  141. Rawlings ND, Waller M, Barrett AJ, Bateman A. 141.  2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42:D503–9 [Google Scholar]
  142. Ren C, Liu J, Gong Q. 142.  2014. Functions of autophagy in plant carbon and nitrogen metabolism. Front. Plant Sci. 5:301 [Google Scholar]
  143. Rigas S, Daras G, Laxa M, Marathias N, Fasseas C. 143.  et al. 2009. Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana. New Phytol. 181:588–600 [Google Scholar]
  144. Rigas S, Daras G, Tsitsekian D, Alatzas A, Hatzopoulos P. 144.  2014. Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism. Front. Plant Sci 5:145 [Google Scholar]
  145. Rigas S, Daras G, Tsitsekian D, Hatzopoulos P. 145.  2012. The multifaceted role of Lon proteolysis in seedling establishment and maintenance of plant organelle function: living from protein destruction. Physiol. Plant 145:215–23 [Google Scholar]
  146. Roman-Hernandez G, Hou JY, Grant RA, Sauer RT, Baker TA. 146.  2011. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol. Cell 43:217–28 [Google Scholar]
  147. Sakamoto W, Miura E, Kaji Y, Okuno T, Nishizono M, Ogura T. 147.  2004. Allelic characterization of the leaf-variegated mutation var2 identifies the conserved amino acid residues of FtsH that are important for ATP hydrolysis and proteolysis. Plant Mol. Biol 56:705–16 [Google Scholar]
  148. Sako K, Yanagawa Y, Kanai T, Sato T, Seki M. 148.  et al. 2014. Proteomic analysis of the 26S proteasome reveals its direct interaction with transit peptides of plastid protein precursors for their degradation. J. Proteome Res 13:3223–30 [Google Scholar]
  149. Sauer RT, Baker TA. 149.  2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem 80:587–612 [Google Scholar]
  150. Schuhmann H, Adamska I. 150.  2012. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol. Plant 145:224–34 [Google Scholar]
  151. Schuhmann H, Huesgen PF, Adamska I. 151.  2012. The family of Deg/HtrA proteases in plants. BMC Plant Biol 12:52 [Google Scholar]
  152. Schuhmann H, Huesgen PF, Gietl C, Adamska I. 152.  2008. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant Physiol 148:1847–56 [Google Scholar]
  153. Schwanhausser B, Gossen M, Dittmar G, Selbach M. 153.  2009. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–9 [Google Scholar]
  154. Shen G, Adam Z, Zhang H. 154.  2007. The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts. Plant J 52:309–21 [Google Scholar]
  155. Shen G, Yan J, Pasapula V, Luo J, He C. 155.  et al. 2007. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function. Plant J 49:228–37 [Google Scholar]
  156. Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S. 156.  et al. 2013. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25:4967–83 [Google Scholar]
  157. Sjogren LL, Clarke AK. 157.  2011. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Plant Cell 23:322–32 [Google Scholar]
  158. Smakowska E, Czarna M, Janska H. 158.  2014. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 19:245–51 [Google Scholar]
  159. Smith-Hammond CL, Hoyos E, Miernyk JA. 159.  2014. The pea seedling mitochondrial Nε-lysine acetylome. Mitochondrion 19:154–65 [Google Scholar]
  160. Solheim C, Li L, Hatzopoulos P, Millar AH. 160.  2012. Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage. Plant Physiol 160:1187–203 [Google Scholar]
  161. Staes A, Impens F, Van Damme P, Ruttens B, Goethals M. 161.  et al. 2011. Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protoc 6:1130–41 [Google Scholar]
  162. Sun R, Fan H, Gao F, Lin Y, Zhang L. 162.  et al. 2012. Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. J. Biol. Chem 287:37564–69 [Google Scholar]
  163. Sun W, Gao F, Fan H, Shan X, Sun R. 163.  et al. 2013. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases. Acta Crystallogr D 69:830–37 [Google Scholar]
  164. Sun X, Ouyang M, Guo J, Ma J, Lu C. 164.  et al. 2010. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana. Plant J 62:240–49 [Google Scholar]
  165. Tasaki T, Sriram SM, Park KS, Kwon YT. 165.  2012. The N-end rule pathway. Annu. Rev. Biochem 81:261–89 [Google Scholar]
  166. Teixeira PF, Glaser E. 166.  2013. Processing peptidases in mitochondria and chloroplasts. Biochim. Biophys. Acta 1833:360–70 [Google Scholar]
  167. Thompson EP, Smith SG, Glover BJ. 167.  2012. An Arabidopsis rhomboid protease has roles in the chloroplast and in flower development. J. Exp. Bot 63:3559–70 [Google Scholar]
  168. Tobias JW, Shrader TE, Rocap G, Varshavsky A. 168.  1991. The N-end rule in bacteria. Science 254:1374–77 [Google Scholar]
  169. Urantowka A, Knorpp C, Olczak T, Kolodziejczak M, Janska H. 169.  2005. Plant mitochondria contain at least two i-AAA-like complexes. Plant Mol. Biol 59:239–52 [Google Scholar]
  170. Urban S. 170.  2013. Intramembrane proteases. Biochim Biophys. Acta 182812, Spec. Issue Amsterdam: Elsevier [Google Scholar]
  171. Urban S. 171.  2013. Mechanisms and cellular functions of intramembrane proteases. Biochim. Biophys. Acta 1828:2797–800 [Google Scholar]
  172. Van Aken O, Whelan J, Van Breusegem F. 172.  2010. Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci. 15:275–82 [Google Scholar]
  173. van der Hoorn RA. 173.  2008. Plant proteases: from phenotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59:191–223 [Google Scholar]
  174. van Wijk KJ, Friso G, Walther D, Schulze WX. 174.  2014. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–89 [Google Scholar]
  175. Varshavsky A. 175.  2011. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20:1298–345 [Google Scholar]
  176. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. 176.  2012. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim. Biophys. Acta 1823:56–66 [Google Scholar]
  177. Venne AS, Vogtle FN, Meisinger C, Sickmann A, Zahedi RP. 177.  2013. Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. J. Proteome Res. 12:3823–30 [Google Scholar]
  178. Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H. 178.  2010. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol. J. 8:332–50 [Google Scholar]
  179. Vogtle FN, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C. 179.  2011. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 22:2135–43 [Google Scholar]
  180. Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C. 180.  et al. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–39 [Google Scholar]
  181. Wada S, Ishida H. 181.  2009. Chloroplasts autophagy during senescence of individually darkened leaves. Plant Signal. Behav. 4:565–67 [Google Scholar]
  182. Wagner R, Aigner H, Funk C. 182.  2012. FtsH proteases located in the plant chloroplast. Physiol. Plant. 145:203–14 [Google Scholar]
  183. Wagner R, Aigner H, Pruzinska A, Jankanpaa HJ, Jansson S, Funk C. 183.  2011. Fitness analyses of Arabidopsis thaliana mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling. New Phytol. 191:449–58 [Google Scholar]
  184. Wang KH, Sauer RT, Baker TA. 184.  2007. ClpS modulates but is not essential for bacterial N-end rule degradation. Genes Dev. 21:403–8 [Google Scholar]
  185. Wang Y, Yu B, Zhao J, Guo J, Li Y. 185.  et al. 2013. Autophagy contributes to leaf starch degradation. Plant Cell 25:1383–99 [Google Scholar]
  186. Welchen E, Garcia L, Mansilla N, Gonzalez DH. 186.  2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4:551 [Google Scholar]
  187. Westphal K, Langklotz S, Thomanek N, Narberhaus F. 187.  2012. A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J. Biol. Chem. 287:42962–71 [Google Scholar]
  188. Wetzel CM, Harmacek LD, Yuan LH, Wopereis JL, Chubb R, Turini P. 188.  2009. Loss of chloroplast protease SPPA function alters high light acclimation processes in Arabidopsis thaliana L. (Heynh.). J. Exp. Bot. 60:1715–27 [Google Scholar]
  189. Wiita AP, Seaman JE, Wells JA. 189.  2014. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini. Methods Enzymol. 544:327–58 [Google Scholar]
  190. Wu W, Zhu Y, Ma Z, Sun Y, Quan Q. 190.  et al. 2013. Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis. Plant J. 76:943–56 [Google Scholar]
  191. Xing A, Williams ME, Bourett TM, Hu W, Hou Z. 191.  et al. 2014. A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. Plant J. 79:192–205 [Google Scholar]
  192. Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M. 192.  et al. 2014. Organ-specific quality control of plant peroxisomes is mediated by autophagy. J. Cell Sci. 127:1161–68 [Google Scholar]
  193. Yoshioka-Nishimura M, Nanba D, Takaki T, Ohba C, Tsumura N. 193.  et al. 2014. Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress. Plant Cell Physiol. 55:1255–65 [Google Scholar]
  194. Yoshioka-Nishimura M, Yamamoto Y. 194.  2014. Quality control of photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. J. Photochem. Photobiol. B 137:100–6 [Google Scholar]
  195. Yu LX, Gray BN, Rutzke CJ, Walker LP, Wilson DB, Hanson MR. 195.  2007. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J. Biotechnol. 131:362–69 [Google Scholar]
  196. Zybailov B, Friso G, Kim J, Rudella A, Rodriguez VR. 196.  et al. 2009. Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol. Cell. Proteomics 8:1789–810 [Google Scholar]
  197. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O. 197.  et al. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLOS ONE 3:e1994 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-115547
Loading
/content/journals/10.1146/annurev-arplant-043014-115547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error