1932

Abstract

Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems.

Keyword(s): MCAmechanotransductionMscSMSLTPK1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-114700
2015-04-29
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-114700.html?itemId=/content/journals/10.1146/annurev-arplant-043014-114700&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandre J, Lassalles JP. 1.  1991. Hydrostatic and osmotic pressure activated channel in plant vacuole. Biophys. J. 60:1326–36 [Google Scholar]
  2. Anishkin A, Kung C. 2.  2013. Stiffened lipid platforms at molecular force foci. PNAS 110:4886–92 [Google Scholar]
  3. Appel HM, Cocroft RB. 3.  2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–66 [Google Scholar]
  4. Arnadottir J, Chalfie M. 4.  2010. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39:111–37 [Google Scholar]
  5. Badot P-M, Ding JP, Pickard BG. 5.  1992. Mechanically activated ion channels occur in vacuoles of onion bulb scale parenchyma. C. R. Acad. Sci. Paris 315:437–43 [Google Scholar]
  6. Balleza D, Gómez-Lagunas F. 6.  2009. Conserved motifs in mechanosensitive channels MscL and MscS. Eur. Biophys. J. 38:1013–27 [Google Scholar]
  7. Bass RB, Strop P, Barclay M, Rees DC. 7.  2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–87 [Google Scholar]
  8. Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A. 8.  et al. 2013. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J. Biol. Chem. 288:27307–14 [Google Scholar]
  9. Bezanilla F. 9.  2005. Voltage-gated ion channels. IEEE Trans. Nanobiosci. 4:34–48 [Google Scholar]
  10. Booth IR. 10.  2014. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18:16–22 [Google Scholar]
  11. Booth IR, Blount P. 11.  2012. The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J. Bacteriol. 194:4802–9 [Google Scholar]
  12. Boscari A, Clément M, Volkov V, Golldack D, Hybiak J. 12.  et al. 2009. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ. 32:1761–77 [Google Scholar]
  13. Bounoutas A, Chalfie M. 13.  2007. Touch sensitivity in Caenorhabditis elegans. Pflügers Arch. 454:691–702 [Google Scholar]
  14. Braam J, Davis RW. 14.  1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–64 [Google Scholar]
  15. Caldwell DB, Malcolm HR, Elmore DE, Maurer JA. 15.  2010. Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. Biochim. Biophys. Acta 1798:1750–56 [Google Scholar]
  16. Chehab EW, Eich E, Braam J. 16.  2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. J. Exp. Bot. 60:43–56 [Google Scholar]
  17. Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honoré E. 17.  2005. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J. 24:44–53 [Google Scholar]
  18. Christensen AP, Corey DP. 18.  2007. TRP channels in mechanosensation: direct or indirect activation?. Nat. Rev. Neurosci. 8:510–21 [Google Scholar]
  19. Clapham DE. 19.  2007. Calcium signaling. Cell 131:1047–58 [Google Scholar]
  20. Cosgrove D, Hedrich R. 20.  1991. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–53 [Google Scholar]
  21. Coutand C. 21.  2010. Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view. Plant Sci. 179:168–82 [Google Scholar]
  22. Cox CD, Nakayama Y, Nomura T, Martinac B. 22.  2015. The evolutionary “tinkering” of MscS-like channels: generation of structural and functional diversity. Pflügers Arch. 4673–13 [Google Scholar]
  23. Del Val C, Royuela-Flor J, Milenkovic S, Bondar A-N. 23.  2014. Channelrhodopsins: a bioinformatics perspective. Biochim. Biophys. Acta 1837:643–55 [Google Scholar]
  24. Denness L, McKenna J, Segonzac C. 24.  2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156:1364–74 [Google Scholar]
  25. Ding JP, Pickard BG. 25.  1993a. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 3:83–110 [Google Scholar]
  26. Ding JP, Pickard BG. 26.  1993b. Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J. 3:713–20 [Google Scholar]
  27. Dutta R, Robinson KR. 27.  2004. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 135:1398–1406 [Google Scholar]
  28. Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR. 28.  et al. 2012. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 6:272–81 [Google Scholar]
  29. Eijkelkamp N, Quick K, Wood JN. 29.  2013. Transient receptor potential channels and mechanosensation. Annu. Rev. Neurosci. 36:519–46 [Google Scholar]
  30. Enyedi P, Czirják G. 30.  2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90:559–605 [Google Scholar]
  31. Ermakov YA, Kamaraju K, Sengupta K, Sukharev S. 31.  2010. Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids. Biophys. J. 98:1018–27 [Google Scholar]
  32. Eyckmans J, Boudou T, Yu X, Chen CS. 32.  2011. A hitchhiker's guide to mechanobiology. Dev. Cell 21:35–47 [Google Scholar]
  33. Falke LC, Edwards KL, Pickard BG, Misler S. 33.  1988. A stretch-activated anion channel in tobacco protoplasts. FEBS Lett. 237:141–44 [Google Scholar]
  34. Fasano JM, Massa GD, Gilroy S. 34.  2002. Ionic signaling in plant responses to gravity and touch. J. Plant Growth Regul. 21:71–88 [Google Scholar]
  35. Felsenstein J. 35.  1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–91 [Google Scholar]
  36. Furuichi T, Iida H, Sokabe M, Tatsumi H. 36.  2012. Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signal. Behav. 7:1022–26 [Google Scholar]
  37. Furuichi T, Tatsumi H, Sokabe M. 37.  2008. Mechano-sensitive channels regulate the stomatal aperture in Vicia faba. Biochem. Biophys. Res. Commun. 366:758–62 [Google Scholar]
  38. Garrill A, Tyerman SD, Findlay GP. 38.  1994. Ion channels in the plasma membrane of protoplasts from the halophytic angiosperm Zostera muelleri. J. Membr. Biol. 142:381–93 [Google Scholar]
  39. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM. 39.  2007. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. PNAS 104:10726–31 [Google Scholar]
  40. Guharay F, Sachs F. 40.  1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701 [Google Scholar]
  41. Hamann T. 41.  2012. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front. Plant Sci. 3:77 [Google Scholar]
  42. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 42.  1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85–100 [Google Scholar]
  43. Haswell ES. 43.  2007. MscS-like proteins in plants. Curr. Top. Membr. 58:329–59 [Google Scholar]
  44. Haswell ES, Meyerowitz EM. 44.  2006. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16:1–11 [Google Scholar]
  45. Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse J-M. 45.  2008. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18:730–34 [Google Scholar]
  46. Haswell ES, Phillips R, Rees DC. 46.  2011. Mechanosensitive channels: What can they do and how do they do it?. Structure 19:1356–69 [Google Scholar]
  47. Hedrich R. 47.  2012. Ion channels in plants. Physiol. Rev. 92:1777–1811 [Google Scholar]
  48. Hille B. 48.  2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer, 3rd ed.. [Google Scholar]
  49. Honoré E. 49.  2007. The neuronal background K2P channels: focus on TREK1. Nat. Rev. Neurosci. 8:251–61 [Google Scholar]
  50. Hou C, Tian W, Kleist T, He K, Garcia V. 50.  et al. 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24:632–35 [Google Scholar]
  51. Isayenkov S1, Isner JC, Maathuis FJ. 51.  2011. Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23:756–68 [Google Scholar]
  52. Isayenkov S1, Maathuis FJ. 52.  2013. Arabidopsis thaliana vacuolar TPK channels form functional K+ uptake pathways in Escherichia coli. Plant Signal. Behav. 8:e24665 [Google Scholar]
  53. Jaffe MJ, Leopold AC, Staples RC. 53.  2002. Thigmo responses in plants and fungi. Am. J. Bot. 89:375–82 [Google Scholar]
  54. Jayaraman D, Gilroy S, Ané J-M. 54.  2014. Staying in touch: mechanical signals in plant-microbe interactions. Curr. Opin. Plant Biol. 20:104–9 [Google Scholar]
  55. Jensen GS, Haswell ES. 55.  2012. Functional analysis of conserved motifs in the mechanosensitive channel homolog MscS-Like2 from Arabidopsis thaliana. PLOS ONE 7:e40336 [Google Scholar]
  56. Jones DT, Taylor WR, Thornton JM. 56.  1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–82 [Google Scholar]
  57. Jones P, Binns D, Chang H-Y, Fraser M, Li W. 57.  et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–40 [Google Scholar]
  58. Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K. 58.  et al. 1999. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–86 [Google Scholar]
  59. Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. 59.  2004. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86:161–204 [Google Scholar]
  60. Kloda A, Martinac B. 60.  2001. Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20:1888–96 [Google Scholar]
  61. Kloda A, Martinac B. 61.  2002. Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1:35–44 [Google Scholar]
  62. Koprowski P, Kubalski A. 62.  2003. C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278:11237–45 [Google Scholar]
  63. Kung C, Martinac B, Sukharev S. 63.  2010. Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64:313–29 [Google Scholar]
  64. Kurusu T, Kuchitsu K, Nakano M. 64.  2013. Plant mechanosensing and Ca2+ transport. Trends Plant Sci. 18:227–33 [Google Scholar]
  65. Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M. 65.  et al. 2012. Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol. 12:11 [Google Scholar]
  66. Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y. 66.  et al. 2012. Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. J. Plant Res. 125:555–68 [Google Scholar]
  67. Lai JY, Poon YS, Kaiser JT, Rees DC. 67.  2013. Open and shut: crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and Helicobacter pylori at 4.4 Å and 4.1 Å resolutions. Protein Sci. 22:502–9 [Google Scholar]
  68. Lazzaro MD, Donohue JM, Soodavar FM. 68.  2003. Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–7 [Google Scholar]
  69. Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S. 69.  1997. Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol. 114:789–800 [Google Scholar]
  70. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR. 70.  1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18:1730–37 [Google Scholar]
  71. Lewis B, Spalding E. 71.  1998. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. J. Membr. Biol. 162:81–90 [Google Scholar]
  72. Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P. 72.  2002. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21:5323–30 [Google Scholar]
  73. Liu K, Luan S. 73.  1998. Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10:1957–70 [Google Scholar]
  74. Lucas M, Kenobi K, von Wangenheim D, Voß U, Swarup K. 74.  et al. 2013. Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. PNAS 110:5229–34 [Google Scholar]
  75. Maathuis FJM. 75.  2011. Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol. 191:84–91 [Google Scholar]
  76. Maksaev G, Haswell ES. 76.  2011. Expression and characterization of the bacterial mechanosensitive channel MscS in Xenopus laevis oocytes. J. Gen. Physiol. 138:641–49 [Google Scholar]
  77. Maksaev G, Haswell ES. 77.  2012. MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. PNAS 109:19015–20 [Google Scholar]
  78. Malcolm HR, Maurer JA. 78.  2012. The mechanosensitive channel of small conductance (MscS) superfamily: not just mechanosensitive channels anymore. ChemBioChem 13:2037–43 [Google Scholar]
  79. Markin VS, Sachs F. 79.  2007. Thermodynamics of mechanosensitivity. Curr. Top. Membr. 58:87–119 [Google Scholar]
  80. Martinac B. 80.  2012. Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels 6:211–13 [Google Scholar]
  81. Martinac B, Adler J, Kung C. 81.  1990. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–63 [Google Scholar]
  82. Martinac B, Buechner M, Delcour A, Adler J, Kung C. 82.  1987. Pressure-sensitive ion channel in Escherichia coli. PNAS 84:2297–301 [Google Scholar]
  83. Martinac B, Hamill OP. 83.  2002. Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. PNAS 99:4308–12 [Google Scholar]
  84. Martinac B, Nomura T, Chi G, Petrov E, Rohde PR. 84.  et al. 2014. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid. Redox Signal. 20:952–69 [Google Scholar]
  85. Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T. 85.  2010. Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol. 152:918–26 [Google Scholar]
  86. Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S. 86.  2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–56 [Google Scholar]
  87. Monshausen GB, Haswell ES. 87.  2013. A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64:4663–80 [Google Scholar]
  88. Moran N, Yueh Y, Crain R. 88.  1996. Signal transduction and cell volume regulation in plant leaflet movements. Physiology 11:108–14 [Google Scholar]
  89. Morgan CP, Barr-Gillespie PG. 89.  2013. Mechanotransduction: the elusive hair cell transduction channel revealed?. Curr. Biol. 23:R887–90 [Google Scholar]
  90. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H. 90.  et al. 2007. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. PNAS 104:3639–44 [Google Scholar]
  91. Nakano M, Iida K, Nyunoya H, Iida H. 91.  2011. Determination of structural regions important for Ca2+ uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol. 52:1915–30 [Google Scholar]
  92. Nakayama Y, Fujiu K, Sokabe M, Yoshimura K. 92.  2007. Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. PNAS 104:5883–88 [Google Scholar]
  93. Nakayama Y, Yoshimura K, Iida H. 93.  2012. Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response. Nat. Commun. 3:1020 [Google Scholar]
  94. Nakayama Y, Yoshimura K, Iida H. 94.  2013. Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys. J. 105:1366–75 [Google Scholar]
  95. Nilius B, Honoré E. 95.  2012. Sensing pressure with ion channels. Trends Neurosci. 35:477–86 [Google Scholar]
  96. Ohme-Takagi M, Shinshi H. 96.  1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–82 [Google Scholar]
  97. Perozo E, Kloda A, Cortes DM, Martinac B. 97.  2002. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:696–703 [Google Scholar]
  98. Peyronnet R, Haswell ES, Barbier-Brygoo H, Frachisse J-M. 98.  2008. AtMSL9 and AtMSL10 sensors of plasma membrane tension in Arabidopsis roots. Plant Signal. Behav. 3:726–29 [Google Scholar]
  99. Phillips R, Ursell T, Wiggins P, Sens P. 99.  2009. Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–85 [Google Scholar]
  100. Pivetti CD, Yen M, Miller S, Busch W, Tseng Y. 100.  et al. 2003. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67:66–85 [Google Scholar]
  101. Porter BW, Zhu YJ, Webb DT, Christopher DA. 101.  2009. Novel thigmomorphogenetic responses in Carica papaya: Touch decreases anthocyanin levels and stimulates petiole cork outgrowths. Ann. Bot. 103:847–58 [Google Scholar]
  102. Prole DL, Taylor CW. 102.  2013. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLOS ONE 8:e66068 [Google Scholar]
  103. Purves D, Augustine G, Fitzpatrick D, Hall WC, LaMantia A-S, White LE. 103.  2001. Neuroscience Sunderland, MA: Sinauer, 2nd ed.. [Google Scholar]
  104. Qi Z, Kishigami A, Nakagawa Y, Iida H, Sokabe M. 104.  2004. A mechanosensitive anion channel in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol. 45:1704–8 [Google Scholar]
  105. Saitou N, Nei M. 105.  1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–25 [Google Scholar]
  106. Sakmann B, Neher E. 106.  1984. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46:455–72 [Google Scholar]
  107. Schroeder JI, Hedrich R. 107.  1989. Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem. Sci. 14:187–92 [Google Scholar]
  108. Schumann U, Edwards MD, Rasmussen T, Bartlett W, van West P, Booth IR. 108.  2010. YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. PNAS 108:12664–69 [Google Scholar]
  109. Shabala SN, Lew RR. 109.  2002. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of cell turgor measurements. Plant Physiol. 129:290–99 [Google Scholar]
  110. Shigematsu H, Iida K, Nakano M, Chaudhuri P, Iida H, Nagayama K. 110.  2014. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana. PLOS ONE 9:e87724 [Google Scholar]
  111. Spalding EP, Goldsmith M. 111.  1993. Activation of K+ channels in the plasma membrane of Arabidopsis by ATP produced photosynthetically. Plant Cell 5:477–84 [Google Scholar]
  112. Steinbacher S, Bass R, Strop P, Rees DC. 112.  2007. Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr. Top. Membr. 58:1–24 [Google Scholar]
  113. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 113.  2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725–29 [Google Scholar]
  114. Thompson JD, Higgins DG, Gibson TJ. 114.  1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–80 [Google Scholar]
  115. Toyota M, Gilroy S. 115.  2013. Gravitropism and mechanical signaling in plants. Am. J. Bot. 100:111–25 [Google Scholar]
  116. Turner M, Sens P. 116.  2004. Gating-by-tilt of mechanically sensitive membrane channels. Phys. Rev. Lett. 93:118103 [Google Scholar]
  117. Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES. 117.  2014. Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. Plant Cell 26:3115–31 [Google Scholar]
  118. Veley KM, Marshburn S, Clure CE, Haswell ES. 118.  2012. Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr. Biol. 22:408–13 [Google Scholar]
  119. Voelker C, Gomez-Porras JL, Becker D, Hamamoto S, Uozumi N. 119.  et al. 2010. Roles of tandem-pore K+ channels in plants—a puzzle still to be solved. Plant Biol. 12:56–63 [Google Scholar]
  120. Volkers L, Mechioukhi Y, Coste B. 120.  2015. Piezo channels: from structure to function. Pflügers Arch. 46795–99 [Google Scholar]
  121. Wang P, Xue L, Batelli G, Lee S, Hou Y-J. 121.  et al. 2013. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. PNAS 110:11205–10 [Google Scholar]
  122. Ward JM, Mäser P, Schroeder JI. 122.  2009. Plant ion channels: gene families, physiology, and functional genomics analyses. Annu. Rev. Physiol. 71:59–82 [Google Scholar]
  123. Wayne R. 123.  1994. The excitability of plant cells: with a special emphasis on Characean internodal cells. Bot. Rev. 60:265–367 [Google Scholar]
  124. Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES. 124.  2014. Plastid osmotic stress activates cellular stress responses in Arabidopsis. Plant Physiol. 165:119–28 [Google Scholar]
  125. Wilson ME, Haswell ES. 125.  2012. A role for mechanosensitive channels in chloroplast and bacterial fission. Plant Signal. Behav. 7:157–60 [Google Scholar]
  126. Wilson ME, Jensen GS, Haswell ES. 126.  2011. Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–49 [Google Scholar]
  127. Wilson ME, Maksaev G, Haswell ES. 127.  2013. MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52:5708–22 [Google Scholar]
  128. Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A. 128.  et al. 2012. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol. 159:105–17 [Google Scholar]
  129. Xiao R, Xu XZS. 129.  2010. Mechanosensitive channels: in touch with Piezo. Curr. Biol. 20:R936–38 [Google Scholar]
  130. Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T. 130.  et al. 2010. MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol. 152:1284–96 [Google Scholar]
  131. Yuan F, Yang H, Xue Y, Kong D, Ye R. 131.  et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–71 [Google Scholar]
  132. Zhang W, Fan L-M, Wu W-H. 132.  2007. Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol. 143:1140–51 [Google Scholar]
  133. Zhang X, Wang J, Feng Y, Ge J, Li W. 133.  et al. 2012. Structure and molecular mechanism of an anion-selective mechanosensitive channel of small conductance. PNAS 109:18180–85 [Google Scholar]
  134. Zhu J-K. 134.  2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441–45 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-114700
Loading
/content/journals/10.1146/annurev-arplant-043014-114700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error