- Home
- A-Z Publications
- Annual Review of Plant Biology
- Previous Issues
- Volume 58, 2007
Annual Review of Plant Biology - Volume 58, 2007
Volume 58, 2007
-
-
From Analysis of Mutants to Genetic Engineering
Vol. 58 (2007), pp. 1–19More LessAbstractThis chapter describes the research of developing transgenic barley for synthesis of recombinant proteins with practical significance and of metabolic engineering of proanthocyanidin-free barley. The results were obtained by graduate students, postdoctoral researchers, and visiting scientists at the Carlsberg Laboratory from 1972–1996 and during the past ten years at Washington State University. It is written in appreciation of their enthusiasm, skill, and perseverance.
-
-
-
Phototropin Blue-Light Receptors
Vol. 58 (2007), pp. 21–45More LessAbstractPhototropins are blue-light receptors controlling a range of responses that serve to optimize the photosynthetic efficiency of plants. These include phototropism, light-induced stomatal opening, and chloroplast movements in response to changes in light intensity. Since the isolation of the Arabidopsis PHOT1 gene in 1997, phototropins have been identified in ferns and mosses where their physiological functions appear to be conserved. Arabidopsis contains two phototropins, phot1 and phot2, that exhibit overlapping functions in addition to having unique physiological roles. Phototropins are light-activated serine/threonine protein kinases. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Photoexcitation of the LOV domain results in receptor autophosphorylation and an initiation of phototropin signaling. Here we summarize the photochemical and biochemical events underlying phototropin activation in addition to the current knowledge of the molecular mechanisms associated with photoreceptor signaling.
-
-
-
Nutrient Sensing and Signaling: NPKS
Vol. 58 (2007), pp. 47–69More LessAbstractPlants often grow in soils that contain very low concentrations of the macronutrients nitrogen, phosphorus, potassium, and sulfur. To adapt and grow in nutrient-deprived environments plants must sense changes in external and internal mineral nutrient concentrations and adjust growth to match resource availability. The sensing and signal transduction networks that control plant responses to nutrient deprivation are not well characterized for nitrogen, potassium, and sulfur deprivation. One branch of the signal transduction cascade related to phosphorus-deprivation response has been defined through the identification of a transcription factor that is regulated by sumoylation. Two different microRNAs play roles in regulating gene expression under phosphorus and sulfur deprivation. Reactive oxygen species increase rapidly after mineral nutrient deprivation and may be one upstream mediator of nutrient signaling. A number of molecular analyses suggest that both short-term and longer-term responses will be important in understanding the progression of signaling events when the external, then internal, supplies of nutrients become depleted.
-
-
-
Hydrogenases and Hydrogen Photoproduction in Oxygenic Photosynthetic Organisms*
Vol. 58 (2007), pp. 71–91More LessAbstractThe photobiological production of H2 gas, using water as the only electron donor, is a property of two types of photosynthetic microorganisms: green algae and cyanobacteria. In these organisms, photosynthetic water splitting is functionally linked to H2 production by the activity of hydrogenase enzymes. Interestingly, each of these organisms contains only one of two major types of hydrogenases, [FeFe] or [NiFe] enzymes, which are phylogenetically distinct but perform the same catalytic reaction, suggesting convergent evolution. This idea is supported by the observation that each of the two classes of hydrogenases has a different metallo-cluster, is encoded by entirely different sets of genes (apparently under the control of different promoter elements), and exhibits different maturation pathways. The genetics, biosynthesis, structure, function, and O2 sensitivity of these enzymes have been the focus of extensive research in recent years. Some of this effort is clearly driven by the potential for using these enzymes in future biological or biohybrid systems to produce renewable fuel or in fuel cell applications.
-
-
-
Hidden Branches: Developments in Root System Architecture
Vol. 58 (2007), pp. 93–113More LessAbstractThe root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
-
-
-
Leaf Senescence
Vol. 58 (2007), pp. 115–136More LessAbstractLeaf senescence constitutes the final stage of leaf development and is critical for plants’ fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
-
-
-
The Biology of Arabinogalactan Proteins
Vol. 58 (2007), pp. 137–161More LessAbstractArabinogalactan proteins is an umbrella term applied to a highly diverse class of cell surface glycoproteins, many of which contain glycosylphosphatidylinositol lipid anchors. The structures of protein and glycan moieties of arabinogalactan proteins are overwhelmingly diverse while the “hydroxproline contiguity hypothesis” predicts arabinogalactan modification of members of many families of extracellular proteins. Descriptive studies using monoclonal antibodies reacting with carbohydrate epitopes on arabinogalactan proteins and experimental work using β-Yariv reagent implicate arabinogalactan proteins in many biological processes of cell proliferation and survival, pattern formation and growth, and in plant microbe interaction. Advanced structural understanding of arabinogalactan proteins and an emerging molecular genetic definition of biological roles of individual arabinogalactan protein species, in conjunction with potentially analogous extracellular matrix components of animals, stimulate hypotheses about their mode of action. Arabinogalactan proteins might be soluble signals, or might act as modulators and coreceptors of apoplastic morphogens; their amphiphilic molecular nature makes them prime candidates of mediators between the cell wall, the plasma membrane, and the cytoplasm.
-
-
-
Stomatal Development
Vol. 58 (2007), pp. 163–181More LessAbstractStomata are cellular epidermal valves in plants central to gas exchange and biosphere productivity. The pathways controlling their formation are best understood for Arabidopsis thaliana where stomata are produced through a series of divisions in a dispersed stem cell compartment. The stomatal pathway is an accessible system for analyzing core developmental processes including position-dependent patterning via intercellular signaling and the regulation of the balance between proliferation and cell specification. This review synthesizes what is known about the mechanisms and genes underlying stomatal development. We contrast the functions of genes that act earlier in the pathway, including receptors, kinases, and proteases, with those that act later in the cell lineage. In addition, we discuss the relationships between environmental signals, stomatal development genes, and the capacity for controlling shoot gas exchange.
-
-
-
Gibberellin Receptor and Its Role in Gibberellin Signaling in Plants
Vol. 58 (2007), pp. 183–198More LessGibberellins (GAs) are a large family of tetracyclic, diterpenoid plant hormones that induce a wide range of plant growth responses. It has been postulated that plants have two types of GA receptors, including soluble and membrane-bound forms. Recently, it was determined that the rice GIBBERELLIN INSENSITIVE DWARF1 (GID1) gene encodes an unknown protein with similarity to the hormone-sensitive lipases that has high affinity only for biologically active GAs. Moreover, GID1 binds to SLR1, a repressor of GA signaling, in a GA-dependent manner in yeast cells. Based on these observations, it has been concluded that GID1 is a soluble receptor mediating GA signaling in rice. More recently, Arabidopsis thaliana was found to have three GID1 homologs, AtGID1a, b, and c, all of which bind GA and interact with the five Arabidopsis DELLA proteins.
-
-
-
Cyclic Electron Transport Around Photosystem I: Genetic Approaches
Vol. 58 (2007), pp. 199–217More LessAbstractThe light reactions in photosynthesis convert light energy into chemical energy in the form of ATP and drive the production of NADPH from NADP+. The reactions involve two types of electron flow in the chloroplast. While linear electron transport generates both ATP and NADPH, photosystem I cyclic electron transport is exclusively involved in ATP synthesis. The physiological significance of photosystem I cyclic electron transport has been underestimated, and our knowledge of the machineries involved remains very limited. However, recent genetic approaches using Arabidopsis thaliana have clarified the essential functions of this electron flow in both photoprotection and photosynthesis. Based on several lines of evidence presented here, it is necessary to reconsider the fundamental mechanisms of chloroplast energetics.
-
-
-
Light Regulation of Stomatal Movement
Vol. 58 (2007), pp. 219–247More LessAbstractStomatal pores, each surrounded by a pair of guard cells, regulate CO2 uptake and water loss from leaves. Stomatal opening is driven by the accumulation of K+ salts and sugars in guard cells, which is mediated by electrogenic proton pumps in the plasma membrane and/or metabolic activity. Opening responses are achieved by coordination of light signaling, light-energy conversion, membrane ion transport, and metabolic activity in guard cells. In this review, we focus on recent progress in blue- and red-light-dependent stomatal opening. Because the blue-light response of stomata appears to be strongly affected by red light, we discuss underlying mechanisms in the interaction between blue-light signaling and guard cell chloroplasts.
-
-
-
The Plant Heterotrimeric G-Protein Complex
Vol. 58 (2007), pp. 249–266More LessAbstractHeterotrimeric G-protein complexes couple extracellular signals via cell surface receptors to downstream enzymes called effectors. Heterotrimeric G-protein complexes, together with their cognate receptors and effectors, operate at the apex of signal transduction. In plants, the number of G-protein complex components is dramatically less than in other multicellular eukaryotes. An understanding of how multiple signals propagate transduction through the G-protein node can be found in the unique structural and kinetic properties of the plant heterotrimeric G-protein complex. This review addresses these unique features and speculates on why the repertoire of G-protein signaling elements is dramatically simpler than that in all other multicellular eukaryotes.
-
-
-
Alternative Splicing of Pre-Messenger RNAs in Plants in the Genomic Era
Vol. 58 (2007), pp. 267–294More LessAbstractPrimary transcripts (precursor-mRNAs) with introns can undergo alternative splicing to produce multiple transcripts from a single gene by differential use of splice sites, thereby increasing the transcriptome and proteome complexity within and between cells and tissues. Alternative splicing in plants is largely an unexplored area of gene expression, as this phenomenon used to be considered rare. However, recent genome-wide computational analyses have revealed that alternative splicing in flowering plants is far more prevalent than previously thought. Interestingly, pre-mRNAs of many spliceosomal proteins, especially serine/arginine-rich (SR) proteins, are extensively alternatively spliced. Furthermore, stresses have a dramatic effect on alternative splicing of pre-mRNAs including those that encode many spliceosomal proteins. Although the mechanisms that regulate alternative splicing in plants are largely unknown, several reports strongly suggest a key role for SR proteins in spliceosome assembly and regulated splicing. Recent studies suggest that alternative splicing in plants is an important posttranscriptional regulatory mechanism in modulating gene expression and eventually plant form and function.
-
-
-
The Production of Unusual Fatty Acids in Transgenic Plants
Vol. 58 (2007), pp. 295–319More LessAbstractThe ability to genetically engineer plants has facilitated the generation of oilseeds synthesizing non-native fatty acids. Two particular classes of fatty acids are considered in this review. First, so-called industrial fatty acids, which usually contain functional groups such as hydroxyl, epoxy, or acetylenic bonds, and second, very long chain polyunsaturated fatty acids normally found in fish oils and marine microorgansims. For industrial fatty acids, there has been limited progress toward obtaining high-level accumulation of these products in transgenic plants. For very long chain polyunsaturated fatty acids, although they have a much more complex biosynthesis, accumulation of some target fatty acids has been remarkably successful. In this review, we consider the probable factors responsible for these different outcomes, as well as the potential for further optimization of the transgenic production of unusual fatty acids in transgenic plants.
-
-
-
Tetrapyrrole Biosynthesis in Higher Plants
Vol. 58 (2007), pp. 321–346More LessAbstractTetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Higher plants contain four classes of tetrapyrroles, namely, chlorophyll, heme, siroheme, and phytochromobilin. All of the tetrapyrroles are derived from a common biosynthetic pathway. Here we review recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view. The progress consists of biochemical, structural, and genetic analyses, which contribute to our understanding of how the flow and the synthesis of tetrapyrrole molecules are regulated and how the potentially toxic intermediates of tetrapyrrole synthesis are maintained at low levels. We also describe interactions of tetrapyrrole biosynthesis and other cellular processes including the stay-green events, the cell-death program, and the plastid-to-nucleus signal transduction. Finally, we present several reports on attempts for agricultural and horticultural applications in which the tetrapyrrole biosynthesis pathway was genetically modified.
-
-
-
Plant ATP-Binding Cassette Transporters
Vol. 58 (2007), pp. 347–375More LessAbstractThe ATP-binding cassette (ABC) protein superfamily is one of the largest known, with over 120 members in both Arabidopsis thaliana and rice (Oryza sativa). Most, but not all, ABC proteins are modularly organized membrane proteins (“ABC transporters”) that mediate MgATP-energized transmembrane transport and/or regulate other transporters. The range of processes in which members of the various subclasses of plant ABC transporters have been implicated encompasses polar auxin transport, lipid catabolism, xenobiotic detoxification, disease resistance, and stomatal function. Although it is often possible to predict the likely function of a plant ABC transporter on the basis of its subfamily membership, there are many whose capabilities deviate from what would be predicted from the properties of even their most sequence-related counterparts. When taking account of this and the disparate processes in which the few that have been characterized participate, it is likely that elucidation of the mechanistic basis of any given plant process will necessitate consideration of at least one ABC transporter.
-
-
-
Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids
Vol. 58 (2007), pp. 377–406More LessAbstractPolyploidy, or whole-genome duplication (WGD), is an important genomic feature for all eukaryotes, especially many plants and some animals. The common occurrence of polyploidy suggests an evolutionary advantage of having multiple sets of genetic material for adaptive evolution. However, increased gene and genome dosages in autopolyploids (duplications of a single genome) and allopolyploids (combinations of two or more divergent genomes) often cause genome instabilities, chromosome imbalances, regulatory incompatibilities, and reproductive failures. Therefore, new allopolyploids must establish a compatible relationship between alien cytoplasm and nuclei and between two divergent genomes, leading to rapid changes in genome structure, gene expression, and developmental traits such as fertility, inbreeding, apomixis, flowering time, and hybrid vigor. Although the underlying mechanisms for these changes are poorly understood, some themes are emerging. There is compelling evidence that changes in DNA sequence, cis- and trans-acting effects, chromatin modifications, RNA-mediated pathways, and regulatory networks modulate differential expression of homoeologous genes and phenotypic variation that may facilitate adaptive evolution in polyploid plants and domestication in crops.
-
-
-
Tracheary Element Differentiation
Vol. 58 (2007), pp. 407–433More LessAbstractTracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous network. Expression studies on model systems as diverse as trees and cell cultures have contributed to providing a flood of candidate genes with potential roles in TE differentiation. Analysis of some of these genes has yielded important information on processes such as patterned secondary cell wall deposition. The current challenge is to continue this functional analysis and to use these data and build an integrated model of TE development.
-
-
-
Populus: A Model System for Plant Biology
Vol. 58 (2007), pp. 435–458More LessAbstractWith the completion of the Populus trichocarpa genome sequence and the development of various genetic, genomic, and biochemical tools, Populus now offers many possibilities to study questions that cannot be as easily addressed in Arabidopsis and rice, the two prime model systems of plant biology and genomics. Tree-specific traits such as wood formation, long-term perennial growth, and seasonality are obvious areas of research, but research in other areas such as control of flowering, biotic interactions, and evolution of adaptive traits is enriched by adding a tree to the suite of model systems. Furthermore, the reproductive biology of Populus (a dioeceous wind-pollinated long-lived tree) offers both new possibilities and challenges in the study and analysis of natural genetic and phenotypic variation. The relatively close phylogenetic relationship of Populus to Arabidopsis in the Eurosid clade of Eudicotyledonous plants aids in comparative functional studies and comparative genomics, and has the potential to greatly facilitate studies on genome and gene family evolution in eudicots.
-
-
-
Oxidative Modifications to Cellular Components in Plants
Vol. 58 (2007), pp. 459–481More LessAbstractReactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in many places in living cells and at an increased rate during biotic or abiotic stress. ROS and RNS participate in signal transduction, but also modify cellular components and cause damage. We first look at the most common ROS and their properties. We then consider the ways in which the cell can regulate their production and removal. We critically assess current knowledge about modifications of polyunsaturated fatty acids (PUFAs), DNA, carbohydrates, and proteins and illustrate this knowledge with case stories wherever possible. Some oxidative breakdown products, e.g., from PUFA, can cause secondary damage. Other oxidation products are secondary signaling molecules. We consider the fate of the modified components, the energetic costs to the cell of replacing such components, as well as strategies to minimize transfer of oxidatively damaged components to the next generation.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)