- Home
- A-Z Publications
- Annual Review of Plant Biology
- Previous Issues
- Volume 72, 2021
Annual Review of Plant Biology - Volume 72, 2021
Volume 72, 2021
-
-
A Central Role for Genetics in Plant Biology
Vol. 72 (2021), pp. 1–16More LessThis article describes my involvement in the development of genetics as an essential tool in the integrated study of plant biology. My research comes from a strong background in plant genetics based on my education as a plant breeder at Wageningen University and collaborations with plant physiologists and molecular geneticists in Wageningen and the wider scientific community. It initially involved the isolation and physiological characterization of mutants defective in biosynthesis or mode of action of plant hormones, photoreceptors and traits such as flowering time in both Arabidopsis and tomato. I also generated a genetic map of Arabidopsis. Subsequently, the exploitation of natural variation became a main area of interest, including the molecular identification of underlying genetic differences. The integration of various disciplines and the adoption of Arabidopsis as a main model species contributed strongly to the impressive progress in our knowledge of plant biology over the past 40 years.
-
-
-
Biological Phase Separation and Biomolecular Condensates in Plants
Vol. 72 (2021), pp. 17–46More LessA surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems.
-
-
-
Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms
Vol. 72 (2021), pp. 47–76More LessLight is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.
-
-
-
Engineering of Crassulacean Acid Metabolism
Vol. 72 (2021), pp. 77–103More LessCrassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
-
-
-
Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks
Vol. 72 (2021), pp. 105–131More LessAll aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets—at both the local and genome-wide levels—and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
-
-
-
On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet
Vol. 72 (2021), pp. 133–153More LessCharles Darwin recognized that carnivorous plants thrive in nutrient-poor soil by capturing animals. Although the concept of botanical carnivory has been known for nearly 150 years, its molecular mechanisms and evolutionary origins have not been well understood until recently. In the last decade, technical advances have fueled the genome and transcriptome sequencings of active and passive hunters, leading to a better understanding of the traits associated with the carnivorous syndrome, from trap leaf development and prey digestion to nutrient absorption, exemplified, for example, by the Venus flytrap (Dionaea muscipula), pitcher plant (Cephalotus follicularis), and bladderwort (Utricularia gibba). The repurposing of defense-related genes is an important trend in the evolution of plant carnivory. In this review, using the Venus flytrap as a representative of the carnivorous plants, we summarize the molecular mechanisms underlying their ability to attract, trap, and digest prey and discuss the origins of plant carnivory in relation to their genomic evolution.
-
-
-
A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond
Vol. 72 (2021), pp. 155–184More LessNucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
-
-
-
Evolutionary History of Plant Metabolism
Vol. 72 (2021), pp. 185–216More LessTremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
-
-
-
Phytochrome Signaling Networks
Vol. 72 (2021), pp. 217–244More LessThe perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
-
-
-
Long Noncoding RNAs in Plants
Vol. 72 (2021), pp. 245–271More LessPlants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
-
-
-
Regulation of the Plant Cell Cycle in Response to Hormones and the Environment
Vol. 72 (2021), pp. 273–296More LessDevelopmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
-
-
-
Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions
Vol. 72 (2021), pp. 297–323More LessThe two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
-
-
-
Leaf Shape Diversity: From Genetic Modules to Computational Models
Vol. 72 (2021), pp. 325–356More LessPlant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.
-
-
-
Natural Variation in Crops: Realized Understanding, Continuing Promise
Vol. 72 (2021), pp. 357–385More LessCrops feed the world's population and shape human civilization. The improvement of crop productivity has been ongoing for almost 10,000 years and has evolved from an experience-based to a knowledge-driven practice over the past three decades. Natural alleles and their reshuffling are long-standing genetic changes that affect how crops respond to various environmental conditions and agricultural practices. Decoding the genetic basis of natural variation is central to understanding crop evolution and, in turn, improving crop breeding. Here, we review current advances in the approaches used to map the causal alleles of natural variation, provide refined insights into the genetics and evolution of natural variation, and outline how this knowledge promises to drive the development of sustainable agriculture under the dome of emerging technologies.
-
-
-
Patterns and Processes of Diploidization in Land Plants
Vol. 72 (2021), pp. 387–410More LessMost land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
-
-
-
Plant Pan-Genomics Comes of Age
Vol. 72 (2021), pp. 411–435More LessA pan-genome is the nonredundant collection of genes and/or DNA sequences in a species. Numerous studies have shown that plant pan-genomes are typically much larger than the genome of any individual and that a sizable fraction of the genes in any individual are present in only some genomes. The construction and interpretation of plant pan-genomes are challenging due to the large size and repetitive content of plant genomes. Most pan-genomes are largely focused on nontransposable element protein coding genes because they are more easily analyzed and defined than noncoding and repetitive sequences. Nevertheless, noncoding and repetitive DNA play important roles in determining the phenotype and genome evolution. Fortunately, it is now feasible to make multiple high-quality genomes that can be used to construct high-resolution pan-genomes that capture all the variation. However, assembling, displaying, and interacting with such high-resolution pan-genomes will require the development of new tools.
-
-
-
Recent Advances and Future Perspectives in Cotton Research
Vol. 72 (2021), pp. 437–462More LessCotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A0-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of GoPGF in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.
-
-
-
Recent Advances in the Physiology of Ion Channels in Plants
Vol. 72 (2021), pp. 463–495More LessOur knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein–protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
-
-
-
Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles
Vol. 72 (2021), pp. 497–524More LessCommunication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer–enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes.
-
-
-
Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells
Vol. 72 (2021), pp. 525–550More LessThe plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)