1932

Abstract

All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets—at both the local and genome-wide levels—and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-081320-090914
2021-06-17
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-081320-090914.html?itemId=/content/journals/10.1146/annurev-arplant-081320-090914&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akmakjian GZ, Bailey-Serres J 2020. Nitrogen-responsive transcription factor kinetics meter plant growth. PNAS 117:13196–98
    [Google Scholar]
  2. 2. 
    Albert R. 2005. Scale-free networks in cell biology. J. Cell Sci. 118:4947–57
    [Google Scholar]
  3. 3. 
    Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–61
    [Google Scholar]
  4. 4. 
    Alvarez JM, Moyano TC, Zhang T, Gras DE, Herrera FJ et al. 2019. Local changes in chromatin accessibility and transcriptional networks underlying the nitrate response in Arabidopsis roots. Mol. Plant 12:1545–60
    [Google Scholar]
  5. 5. 
    Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras-López O et al. 2014. Systems approach identifies TGA 1 and TGA 4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. Plant J 80:1–13
    [Google Scholar]
  6. 6. 
    Alvarez JM, Schinke A-L, Brooks MD, Pasquino A, Leonelli L et al. 2020. Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat. Commun 11:1157Demonstrates that NLP7 triggers a transcriptional cascade in response to nitrogen through transient TF–target interactions.
    [Google Scholar]
  7. 7. 
    Aughey GN, Southall TD. 2016. Dam it's good! DamID profiling of protein-DNA interactions. Wiley Interdiscip. Rev. Dev. Biol. 5:25–37
    [Google Scholar]
  8. 8. 
    Azpeitia E, Wagner A. 2020. Short residence times of DNA-bound transcription factors can reduce gene expression noise and increase the transmission of information in a gene regulation system. Front. Mol. Biosci. 7:67
    [Google Scholar]
  9. 9. 
    Banf M, Rhee SY. 2017. Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochim. Biophys. Acta Gene Regul. Mech. 1860:41–52
    [Google Scholar]
  10. 10. 
    Bar-Joseph Z, Gitter A, Simon I. 2012. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13:552–64
    [Google Scholar]
  11. 11. 
    Bargmann BO, Marshall-Colón A, Efroni I, Ruffel S, Birnbaum KD et al. 2013. TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol. Plant 6:978–80
    [Google Scholar]
  12. 12. 
    Becker M, Baumann C, John S, Walker DA, Vigneron M et al. 2002. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep 3:1188–94
    [Google Scholar]
  13. 13. 
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956–60
    [Google Scholar]
  14. 14. 
    Blencowe M, Arneson D, Ding J, Chen Y-W, Saleem Z, Yang X 2019. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg. Top. Life Sci. 3:379–98
    [Google Scholar]
  15. 15. 
    Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L et al. 2006. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7:R36
    [Google Scholar]
  16. 16. 
    Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M 2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111:10598–603
    [Google Scholar]
  17. 17. 
    Bothma JP, Norstad MR, Alamos S, Garcia HG 2018. LlamaTags: a versatile tool to image transcription factor dynamics in live embryos. Cell 173:1810–22.e16
    [Google Scholar]
  18. 18. 
    Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J et al. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–6
    [Google Scholar]
  19. 19. 
    Brewster RC, Weinert FM, Garcia HG, Song D, Rydenfelt M, Phillips R. 2014. The transcription factor titration effect dictates level of gene expression. Cell 156:1312–23
    [Google Scholar]
  20. 20. 
    Brooks MD, Cirrone J, Pasquino AV, Alvarez JM, Swift J et al. 2019. Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat. Commun. 10:1569
    [Google Scholar]
  21. 21. 
    Brooks MD, Juang C-L, Katari MS, Alvarez JM, Pasquino A et al. 2021. ConnecTF: a platform to integrate transcription factor–gene interactions and validate regulatory networks. Plant Physiol 185:4966Constructs the ConnecTF platform to analyze publicly available data sets on TF–target gene interactions and validate predicted gene regulatory networks.
    [Google Scholar]
  22. 22. 
    Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–67
    [Google Scholar]
  23. 23. 
    Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M et al. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675Characterizes EIN3 TF binding dynamics using ChIP-seq and addresses the contribution of EIN3 to transcriptional ethylene responses.
    [Google Scholar]
  24. 24. 
    Charoensawan V, Martinho C, Wigge PA. 2015.. “ Hit-and-run”: Transcription factors get caught in the act. BioEssays 37:748–54
    [Google Scholar]
  25. 25. 
    Cirrone J, Brooks MD, Bonneau R, Coruzzi GM, Shasha DE. 2020. OutPredict: Multiple datasets can improve prediction of expression and inference of causality. Sci. Rep. 10:6804
    [Google Scholar]
  26. 26. 
    Clark NM, Hinde E, Winter CM, Fisher AP, Crosti G et al. 2016. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. eLife 5:e14770
    [Google Scholar]
  27. 27. 
    Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y et al. 2020. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 21:104
    [Google Scholar]
  28. 28. 
    Cuvier O, Fierz B. 2017. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18:457
    [Google Scholar]
  29. 29. 
    Delgado FM, Gomez-Vela F. 2019. Computational methods for gene regulatory networks reconstruction and analysis: a review. Artif. Intell. Med. 95:133–45
    [Google Scholar]
  30. 30. 
    Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MC. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 48:840–52.e5Exploits single-cell transcriptomics to reveal key developmental regulators of root cell differentiation in Arabidopsis.
    [Google Scholar]
  31. 31. 
    Desai JS, Sartor RC, Lawas LM, Jagadish SVK, Doherty CJ. 2017. Improving gene regulatory network inference by incorporating rates of transcriptional changes. Sci. Rep. 7:17244
    [Google Scholar]
  32. 32. 
    Ding Y, Fromm M, Avramova Z. 2012. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3:740
    [Google Scholar]
  33. 33. 
    Dinneny JR, Long TA, Wang JY, Jung JW, Mace D et al. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–45
    [Google Scholar]
  34. 34. 
    Doidy J, Li Y, Neymotin B, Edwards MB, Varala K et al. 2016.. “ Hit-and-run” transcription: De novo transcription initiated by a transient bZIP1 “hit” persists after the “run. .” BMC Genom 17:92
    [Google Scholar]
  35. 35. 
    Dong P, Tu X, Chu P-Y, P, Zhu N et al. 2017. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10:1497–509
    [Google Scholar]
  36. 36. 
    Dorrity MW, Alexandre C, Hamm M, Vigil A-L, Fields S et al. 2020. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. bioRxiv 204792. https://doi.org/10.1101/2020.07.17.204792
    [Crossref]
  37. 37. 
    Dubitzky W, Wolkenhauer O, Yokota H, Cho K-H 2013. Encyclopedia of Systems Biology New York: Springer
    [Google Scholar]
  38. 38. 
    Dufourt J, Trullo A, Hunter J, Fernandez C, Lazaro J et al. 2018. Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat. Commun. 9:5194
    [Google Scholar]
  39. 39. 
    Eadara JK, Hadlock KG, Lutter LC. 1996. Chromatin structure and factor site occupancies in an in vivo–assembled transcription elongation complex. Nucleic Acids Res 24:3887–95
    [Google Scholar]
  40. 40. 
    Fogelberg C, Palade V 2009. Machine learning and genetic regulatory networks: a review and a roadmap. Foundations of Computational Intelligence, Vol. 1 A-E Hassanien, A Abraham, AV Vasilakos, W Pedrycz 3–34 New York: Springer
    [Google Scholar]
  41. 41. 
    Geurts P. 2018. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 8:3384
    [Google Scholar]
  42. 42. 
    Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD 2008. Cell-specific nitrogen responses mediate developmental plasticity. PNAS 105:803–08
    [Google Scholar]
  43. 43. 
    Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B et al. 2009. Backup in gene regulatory networks explains differences between binding and knockout results. Mol. Syst. Biol. 5:276
    [Google Scholar]
  44. 44. 
    Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. PNAS 106:16529–34
    [Google Scholar]
  45. 45. 
    Grönlund A, Lötstedt P, Elf J. 2013. Transcription factor binding kinetics constrain noise suppression via negative feedback. Nat. Commun. 4:1864
    [Google Scholar]
  46. 46. 
    Gurdon JB, Javed K, Vodnala M, Garrett N 2020. Long-term association of a transcription factor with its chromatin binding site can stabilize gene expression and cell fate commitment. PNAS 117:15075–84
    [Google Scholar]
  47. 47. 
    Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M et al. 2008. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. PNAS 105:4939–44
    [Google Scholar]
  48. 48. 
    Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S et al. 2016. Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis. Plant Cell 28:2715–34
    [Google Scholar]
  49. 49. 
    Heerah S, Molinari R, Guerrier S, Marshall-Colón A. 2020. Granger-causal testing for irregularly sampled time series with application to nitrogen signaling in Arabidopsis. bioRxiv 152819. https://doi.org/10.1101/2020.06.15.152819
    [Crossref]
  50. 50. 
    Hempel S, Koseska A, Nikoloski Z, Kurths J. 2011. Unraveling gene regulatory networks from time-resolved gene expression data—a measures comparison study. BMC Bioinform 12:292
    [Google Scholar]
  51. 51. 
    Hipp L, Beer J, Kuchler O, Reisser M, Sinske D et al. 2019. Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. PNAS 116:880–89
    [Google Scholar]
  52. 52. 
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:13–23
    [Google Scholar]
  53. 53. 
    Huynh-Thu VA, Geurts P 2019. Unsupervised gene network inference with decision trees and random forests. Gene Regulatory Networks: Methods and Protocols G Sanguinetti, VA Huynh-Thu 195–215 New York: Springer
    [Google Scholar]
  54. 54. 
    Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010. Inferring regulatory networks from expression data using tree-based methods. PLOS ONE 5:e12776
    [Google Scholar]
  55. 55. 
    Inukai S, Kock KH, Bulyk ML. 2017. Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43:110–19
    [Google Scholar]
  56. 56. 
    Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. 2013. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25:820–33
    [Google Scholar]
  57. 57. 
    Jariani A, Vermeersch L, Cerulus B, Perez-Samper G, Voordeckers K et al. 2020. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. eLife 9:e55320
    [Google Scholar]
  58. 58. 
    Johnson KA, Goody RS. 2011. The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50:8264–69
    [Google Scholar]
  59. 59. 
    Jolma IW, Laerum OD, Lillo C, Ruoff P. 2010. Circadian oscillators in eukaryotes. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:533–49
    [Google Scholar]
  60. 60. 
    Kiddle SJ, Windram OP, McHattie S, Mead A, Beynon J et al. 2010. Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics 26:355–62
    [Google Scholar]
  61. 61. 
    Kimura H, Sugaya K, Cook PR. 2002. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159:777–82
    [Google Scholar]
  62. 62. 
    Koryachko A, Matthiadis A, Ducoste JJ, Tuck J, Long TA, Williams C. 2015. Computational approaches to identify regulators of plant stress response using high-throughput gene expression data. Curr. Plant Biol. 3:20–29
    [Google Scholar]
  63. 63. 
    Koryachko A, Matthiadis A, Muhammad D, Foret J, Brady SM et al. 2015. Clustering and differential alignment algorithm: identification of early stage regulators in the Arabidopsis thaliana iron deficiency response. PLOS ONE 10:e0136591
    [Google Scholar]
  64. 64. 
    Krouk G, Lingeman J, Marshall-Colón A, Coruzzi G, Shasha D. 2013. Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol 14:123
    [Google Scholar]
  65. 65. 
    Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM. 2010. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11:R123
    [Google Scholar]
  66. 66. 
    Kumar N, Singh A, Kulkarni RV. 2015. Transcriptional bursting in gene expression: analytical results for general stochastic models. PLOS Comput. Biol. 11:e1004292
    [Google Scholar]
  67. 67. 
    Kuo MH, Allis CD. 1999. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–33
    [Google Scholar]
  68. 68. 
    Lai X, Verhage L, Hugouvieux V, Zubieta C. 2018. Pioneer factors in animals and plants—colonizing chromatin for gene regulation. Molecules 23:1914
    [Google Scholar]
  69. 69. 
    Lämke J, Brzezinka K, Altmann S, Bäurle I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35:162–75
    [Google Scholar]
  70. 70. 
    Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. 2011. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–78
    [Google Scholar]
  71. 71. 
    Li Y, Pearl SA, Jackson SA. 2015. Gene networks in plant biology: approaches in reconstruction and analysis. Trends Plant Sci 20:664–75
    [Google Scholar]
  72. 72. 
    Li Y, Varala K, Coruzzi GM. 2015. From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks. Trends Genetics 31:509–15
    [Google Scholar]
  73. 73. 
    Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD. 2012. Genome-wide protein–DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484:251–55
    [Google Scholar]
  74. 74. 
    Liu K-H, Niu Y, Konishi M, Wu Y, Du H et al. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 545:311–16
    [Google Scholar]
  75. 75. 
    Loffreda A, Jacchetti E, Antunes S, Rainone P, Daniele T et al. 2017. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat. Commun. 8:313
    [Google Scholar]
  76. 76. 
    MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. 2011. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 27:141–48
    [Google Scholar]
  77. 77. 
    Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N et al. 2018. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat. Commun. 9:1376
    [Google Scholar]
  78. 78. 
    Mangan S, Alon U 2003. Structure and function of the feed-forward loop network motif. PNAS 100:11980–85
    [Google Scholar]
  79. 79. 
    Mangan S, Zaslaver A, Alon U. 2003. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334:197–204
    [Google Scholar]
  80. 80. 
    Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2020. A cis-regulatory atlas in maize at single-cell resolution. bioRxiv 315499. https://doi.org/10.1101/2020.09.27.315499
    [Crossref]
  81. 81. 
    Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ et al. 2012. Wisdom of crowds for robust gene network inference. Nat. Methods 9:796–804
    [Google Scholar]
  82. 82. 
    Marchand G, Huynh-Thu VA, Kane NC, Arribat S, Varès D et al. 2014. Bridging physiological and evolutionary time-scales in a gene regulatory network. New Phytol 203:685–96
    [Google Scholar]
  83. 83. 
    Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E et al. 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4:1713
    [Google Scholar]
  84. 84. 
    McNally JG, Müller WG, Walker D, Wolford R, Hager GL. 2000. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–65
    [Google Scholar]
  85. 85. 
    Michaelis L, Menten ML. 1913. Die Kinetik der Invertinwirkung. Biochem. Z. 49:333–369
    [Google Scholar]
  86. 86. 
    Michailidis G, d'Alché-Buc F. 2013. Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues. Math. Biosci. 246:326–34
    [Google Scholar]
  87. 87. 
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27
    [Google Scholar]
  88. 88. 
    Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM et al. 2018. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7:e40497Discovers that Zelda and Bicoid interact only transiently with sites of active transcription in Drosophila embryos.
    [Google Scholar]
  89. 89. 
    Morisaki T, Müller WG, Golob N, Mazza D, McNally JG. 2014. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat. Commun. 5:4456
    [Google Scholar]
  90. 90. 
    Muhammad D, Schmittling S, Williams C, Long TA. 2017. More than meets the eye: emergent properties of transcription factors networks in Arabidopsis. Biochim. Biophys. Acta Gene Regul. Mech. 1860:64–74
    [Google Scholar]
  91. 91. 
    Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E et al. 2012. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90
    [Google Scholar]
  92. 92. 
    O'Malley RC, Huang S-SC, Song L, Lewsey MG, Bartlett A et al. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–92Develops a DAP-seq approach that identifies genomic regions bound by TFs in vitro and reveals that TF binding is DNA methylation sensitive.
    [Google Scholar]
  93. 93. 
    Opgen-Rhein R, Strimmer K 2007. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1:37
    [Google Scholar]
  94. 94. 
    Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL et al. 2017. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat. Commun. 8:15896
    [Google Scholar]
  95. 95. 
    Para A, Li Y, Coruzzi GM. 2018. μChIP-seq for genome-wide mapping of in vivo TF-DNA interactions in Arabidopsis root protoplasts. Root Development D Ristova, E Barbez 249–61 New York: Springer
    [Google Scholar]
  96. 96. 
    Para A, Li Y, Marshall-Colón A, Varala K, Francoeur NJ et al. 2014. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. PNAS 111:10371–76
    [Google Scholar]
  97. 97. 
    Pfeiffer A, Shi H, Tepperman JM, Zhang Y, Quail PH. 2014. Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis. Mol. Plant 7:1598–618
    [Google Scholar]
  98. 98. 
    Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG et al. 2010. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLOS ONE 5:e9202
    [Google Scholar]
  99. 99. 
    Rennie S, Dalby M, Van Duin L, Andersson R. 2018. Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions. Nat. Commun. 9:487
    [Google Scholar]
  100. 100. 
    Sakuraba Y, Jeong J, Kang M-Y, Kim J, Paek N-C, Choi G. 2014. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5:4636
    [Google Scholar]
  101. 101. 
    Sanguinetti G 2019. Gene regulatory network inference: an introductory survey. Gene Regulatory Networks: Methods and Protocols G Sanguinetti, VA Huynh-Thu 1–23 New York: Springer
    [Google Scholar]
  102. 102. 
    Sayou C, Nanao MH, Jamin M, Posé D, Thévenon E et al. 2016. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat. Commun. 7:11222
    [Google Scholar]
  103. 103. 
    Schaffner W. 1988. A hit-and-run mechanism for transcriptional activation?. Nature 336:427–28
    [Google Scholar]
  104. 104. 
    Schmitt WA, Raab RM, Stephanopoulos G. 2004. Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14:1654–63
    [Google Scholar]
  105. 105. 
    Schrynemackers M, Küffner R, Geurts P. 2013. On protocols and measures for the validation of supervised methods for the inference of biological networks. Front. Genet. 4:262
    [Google Scholar]
  106. 106. 
    Serin EA, Nijveen H, Hilhorst HW, Ligterink W. 2016. Learning from co-expression networks: possibilities and challenges. Front. Plant Sci 7:444
    [Google Scholar]
  107. 107. 
    Shah M, Funnell AP, Quinlan KG, Crossley M. 2019. Hit and run transcriptional repressors are difficult to catch in the act. BioEssays 41:1900041
    [Google Scholar]
  108. 108. 
    Shalit-Kaneh A, Kumimoto RW, Filkov V, Harmer SL 2018. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. PNAS 115:7147–52Reveals that multiple feedback loops of the plant clock help ensure rhythmicity under adverse environmental conditions.
    [Google Scholar]
  109. 109. 
    Sharma R, Singh G, Bhattacharya S, Singh A. 2018. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLOS ONE 13:e0203266
    [Google Scholar]
  110. 110. 
    Shimbo T, Du Y, Grimm SA, Dhasarathy A, Mav D et al. 2013. MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLOS Genet 9:e1004028
    [Google Scholar]
  111. 111. 
    Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y et al. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27:2241–47.e4
    [Google Scholar]
  112. 112. 
    Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM et al. 2015. Transcription factor trapping by RNA in gene regulatory elements. Science 350:978–81
    [Google Scholar]
  113. 113. 
    Song L, Huang SC, Wise A, Castanon R, Nery JR et al. 2016. A transcription factor hierarchy defines an environmental stress response network. Science 354:aag1550Combines the binding profiles of 21 TFs with differentially expressed genes in response to ABA to reveal a stress response network.
    [Google Scholar]
  114. 114. 
    Song Q, Lee J, Akter S, Rogers M, Grene R, Li S 2020. Prediction of condition-specific regulatory genes using machine learning. Nucleic Acids Res 48:e62Develops a machine learning approach that integrates expression, TF–DNA binding, and open chromatin data to infer condition-specific regulatory genes.
    [Google Scholar]
  115. 115. 
    Spivakov M. 2014. Spurious transcription factor binding: non-functional or genetically redundant?. BioEssays 36:798–806
    [Google Scholar]
  116. 116. 
    Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT et al. 2014. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep 8:2015–30
    [Google Scholar]
  117. 117. 
    Swift J, Alvarez JM, Araus V, Gutiérrez RA, Coruzzi GM 2020. Nutrient dose-responsive transcriptome changes driven by Michaelis–Menten kinetics underlie plant growth rates. PNAS 117:12531–40
    [Google Scholar]
  118. 118. 
    Swift J, Coruzzi GM. 2017. A matter of time—how transient transcription factor interactions create dynamic gene regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech. 1860:75–83
    [Google Scholar]
  119. 119. 
    Szabo Q, Bantignies F, Cavalli G. 2019. Principles of genome folding into topologically associating domains. Sci. Adv. 5:eaaw1668
    [Google Scholar]
  120. 120. 
    Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y. 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:124–28
    [Google Scholar]
  121. 121. 
    Tanay A. 2006. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res 16:962–72
    [Google Scholar]
  122. 122. 
    Tian C, Du Q, Xu M, Du F, Jiao Y 2020. Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv 305029. https://doi.org/10.1101/2020.09.20.305029
    [Crossref]
  123. 123. 
    Tian F, Yang D-C, Meng Y-Q, Jin J, Gao G 2020. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48:D1104–13
    [Google Scholar]
  124. 124. 
    Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58:267–88
    [Google Scholar]
  125. 125. 
    Todeschini A-L, Georges A, Veitia RA 2014. Transcription factors: specific DNA binding and specific gene regulation. Trends Genet 30:211–19
    [Google Scholar]
  126. 126. 
    Torti S, Fornara F, Vincent C, Andrés F, Nordström K et al. 2012. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24:444–62
    [Google Scholar]
  127. 127. 
    Varala K, Li Y, Marshall-Colón A, Para A, Coruzzi GM. 2015.. “ Hit-and-run” leaves its mark: catalyst transcription factors and chromatin modification. BioEssays 37:851–56
    [Google Scholar]
  128. 128. 
    Varala K, Marshall-Colón A, Cirrone J, Brooks MD, Pasquino AV et al. 2018. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. PNAS 115:6494–99Exploits time-series data and machine learning algorithms to uncover gene regulatory networks controlling dynamic responses to nitrogen.
    [Google Scholar]
  129. 129. 
    Wang M, Wang P, Lin M, Ye Z, Li G et al. 2018. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4:90
    [Google Scholar]
  130. 130. 
    Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips M-M, Pham GM et al. 2016. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28:2365–84
    [Google Scholar]
  131. 131. 
    Zander M, Lewsey MG, Clark NM, Yin L, Bartlett A et al. 2020. Integrated multi-omics framework of the plant response to jasmonic acid. Nat. Plants 6:290–302
    [Google Scholar]
  132. 132. 
    Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 12:648–60
    [Google Scholar]
  133. 133. 
    Zhang W, Zhang T, Wu Y, Jiang J. 2012. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–31
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-081320-090914
Loading
/content/journals/10.1146/annurev-arplant-081320-090914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error