1932

Abstract

Cotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080720-113241
2021-06-17
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080720-113241.html?itemId=/content/journals/10.1146/annurev-arplant-080720-113241&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anderson CT, Kieber JJ. 2020. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71:39–69
    [Google Scholar]
  2. 2. 
    Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G et al. 2011. The genome of Theobroma cacao. Nat. Genet. 43:101–8
    [Google Scholar]
  3. 3. 
    Bao Y, Hu GJ, Grover CE, Conover J, Yuan DJ, Wendel JF. 2019. Unraveling cis and trans regulatory evolution during cotton domestication. Nat. Commun. 10:5399Cis- and trans-regulatory elements during cotton domestication.
    [Google Scholar]
  4. 4. 
    Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM et al. 2011. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157:40–54
    [Google Scholar]
  5. 5. 
    Cai Y, Cai X, Wang Q, Wang P, Zhang Y et al. 2020. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol. J. 18:814–28
    [Google Scholar]
  6. 6. 
    Cao JF, Zhao B, Huang CC, Chen ZW, Zhao T et al. 2020. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Mol. Plant 13:1063–77
    [Google Scholar]
  7. 7. 
    Chen CY, Liu YQ, Song WM, Chen DY, Chen FY et al. 2019. An effector from cotton bollworm oral secretion impairs host plant defense signaling. PNAS 116:14331–38
    [Google Scholar]
  8. 8. 
    Chen E, Zhang X, Yang Z, Wang X, Yang Z et al. 2017. Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis. . Mol. Genet. Genom. 292:593–609
    [Google Scholar]
  9. 9. 
    Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667–97
    [Google Scholar]
  10. 10. 
    Chen XY, Chen Y, Heinstein P, Davisson VJ. 1995. Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch. Biochem. Biophys. 324:255–66
    [Google Scholar]
  11. 11. 
    Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 52:525–33Assembly of five allotetraploid cotton genomes, altered epigenetic landscapes, recombination suppression, and wild introgression.
    [Google Scholar]
  12. 12. 
    Chen ZW, Grover CE, Li PB, Wang YM, Nie HS et al. 2017. Molecular evolution of the plastid genome during diversification of the cotton genus. Mol. Phylogenet. Evol. 112:268–76
    [Google Scholar]
  13. 13. 
    Cronn RC, Small RL, Haselkorn T, Wendel JF. 2002. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am. J. Bot. 89:707–25
    [Google Scholar]
  14. 14. 
    Du X, Huang G, He S, Yang Z, Sun G et al. 2018. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 50:796–802
    [Google Scholar]
  15. 15. 
    Effenberger I, Harport M, Pfannstiel J, Klaiber I, Schaller A. 2017. Expression in Pichia pastoris and characterization of two novel dirigent proteins for atropselective formation of gossypol. Appl. Microbiol. Biotechnol. 101:2021–32
    [Google Scholar]
  16. 16. 
    Fang L, Gong H, Hu Y, Liu C, Zhou B et al. 2017. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18:33
    [Google Scholar]
  17. 17. 
    Fang L, Wang Q, Hu Y, Jia Y, Chen J et al. 2017. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 49:1089–98
    [Google Scholar]
  18. 18. 
    Gallagher JP, Grover CE, Rex K, Moran M, Wendel JF 2017. A new species of cotton from Wake Atoll, Gossypium stephensii (Malvaceae). Syst. Bot. 42:115–23
    [Google Scholar]
  19. 19. 
    Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS et al. 2019. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5:1167–76
    [Google Scholar]
  20. 20. 
    Gao W, Xu FC, Long L, Li Y, Zhang JL et al. 2020. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnol. J. 18:1573–84
    [Google Scholar]
  21. 21. 
    Gao Y, Wang H, Liu C, Chu H, Dai D et al. 2018. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience 7:giy051
    [Google Scholar]
  22. 22. 
    Gerstel DU. 1953. Chromosomal translocations in interspecific hybrids of the genus Gossypium. . Evolution 7:234–44
    [Google Scholar]
  23. 23. 
    Grover CE, Arick MA, Thrash A, Conover JL, Sanders WS et al. 2019. Insights into the evolution of the New World diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing. Genome Biol. Evol. 11:53–71
    [Google Scholar]
  24. 24. 
    Guan XY, Li QJ, Shan CM, Wang S, Mao YB et al. 2008. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. . Physiol. Plant. 134:174–82
    [Google Scholar]
  25. 25. 
    Guan XY, Pang MX, Nah G, Shi XL, Ye WX et al. 2014. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5:3050
    [Google Scholar]
  26. 26. 
    Han LB, Li YB, Wang FX, Wang WY, Liu J et al. 2019. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae. . Plant Cell 31:520–36
    [Google Scholar]
  27. 27. 
    Han LB, Li YB, Wang HY, Wu XM, Li CL et al. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25:4421–38
    [Google Scholar]
  28. 28. 
    Hao J, Tu L, Hu H, Tan J, Deng F et al. 2012. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 63:6267–81
    [Google Scholar]
  29. 29. 
    Heil M. 2011. Nectar: generation, regulation, and ecological functions. Trends Plant Sci 16:191–200
    [Google Scholar]
  30. 30. 
    Hovav R, Chaudhary B, Udall JA, Flagel L, Wendel JF. 2008. Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics 179:1725–33
    [Google Scholar]
  31. 31. 
    Hu HY, He X, Tu LL, Zhu LF, Zhu ST et al. 2016. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J 88:921–35
    [Google Scholar]
  32. 32. 
    Hu HY, Wang MJ, Ding YH, Zhu ST, Zhao GN et al. 2018. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnol. J. 16:1002–12
    [Google Scholar]
  33. 33. 
    Hu W, Qin W, Jin Y, Wang P, Yan Q et al. 2020. Genetic and evolution analysis of extrafloral nectary in cotton. Plant Biotechnol. J. 18:2081–95
    [Google Scholar]
  34. 34. 
    Hu Y, Chen J, Fang L, Zhang Z, Ma W et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51:739–48
    [Google Scholar]
  35. 35. 
    Huang G, Wu Z, Percy RG, Bai M, Li Y et al. 2020. Genome sequence of Gossypium herbaceum, and genome update of G.arboreum and G. hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 52:516–24Resolved controversial concepts surrounding the A-genome donor of diploid A-genomes and other allotetraploid cotton species.
    [Google Scholar]
  36. 36. 
    Huang G, Zhu YX. 2019. Plant polyploidy and evolution. J. Integr. Plant Biol. 61:4–6
    [Google Scholar]
  37. 37. 
    Huang JQ, Fang X, Tian X, Chen P, Lin JL et al. 2020. Aromatization of natural products by a specialized detoxification enzyme. Nat. Chem. Biol. 16:250–56The distinct aromatization mechanism evolved from a detoxification pathway in cotton.
    [Google Scholar]
  38. 38. 
    Huang JQ, Lin JL, Guo XX, Tian X, Tian Y et al. 2020. RES transformation for biosynthesis and detoxification. Sci. China Life Sci. 63:1–6
    [Google Scholar]
  39. 39. 
    Huang XZ, Chen JY, Xiao HJ, Xiao YT, Wu J et al. 2015. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. . Sci. Rep. 5:11867
    [Google Scholar]
  40. 40. 
    Ismayil A, Yang M, Haxim Y, Wang Y, Li J et al. 2020. Cotton leaf curl Multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases. Plant Cell 32:1124–35
    [Google Scholar]
  41. 41. 
    Jacobowitz JR, Weng JK. 2020. Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annu. Rev. Plant Biol. 71:631–58
    [Google Scholar]
  42. 42. 
    Janga MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST et al. 2019. Genes regulating gland development in the cotton plant. Plant Biotechnol. J. 17:1142–53
    [Google Scholar]
  43. 43. 
    Jia Q, Liu N, Xie K, Dai Y, Han S et al. 2016. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. . PLOS Pathog 12:e1005668
    [Google Scholar]
  44. 44. 
    Jiang YJ, Guo WZ, Zhu HY, Ruan YL, Zhang TZ. 2012. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol. J. 10:301–12
    [Google Scholar]
  45. 45. 
    Joußen N, Agnolet S, Lorenz S, Schöne SE, Ellinger R et al. 2012. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. PNAS 109:15206–11
    [Google Scholar]
  46. 46. 
    Kumar V, Singh B, Singh SK, Rai KM, Singh SP et al. 2018. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. . Plant J 95:1069–83
    [Google Scholar]
  47. 47. 
    Lee J, Burns TH, Light G, Sun Y, Fokar M et al. 2010. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–205
    [Google Scholar]
  48. 48. 
    Li F, Li M, Wang P, Cox KL Jr., Duan L et al. 2017. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 215:1462–75
    [Google Scholar]
  49. 49. 
    Li FG, Fan GY, Lu CR, Xiao GH, Zou CS et al. 2015. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33:524–30
    [Google Scholar]
  50. 50. 
    Li FG, Fan GY, Wang K, Sun F, Yuan Y et al. 2014. Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46:567–72
    [Google Scholar]
  51. 51. 
    Li L, Wang XL, Huang GQ, Li XB. 2007. Molecular characterization of cotton GhTUA9 gene specifically expressed in fibre and involved in cell elongation. J. Exp. Bot. 58:3227–38
    [Google Scholar]
  52. 52. 
    Li X, Schuler MA, Berenbaum MR. 2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–15
    [Google Scholar]
  53. 53. 
    Li XB, Fan XP, Wang XL, Cai L, Yang WC. 2005. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–75
    [Google Scholar]
  54. 54. 
    Li Y, Wang NN, Wang Y, Liu D, Gao Y et al. 2018. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis. Plant J 96:1269–82
    [Google Scholar]
  55. 55. 
    Liang CZ, Meng ZH, Meng ZG, Malik W, Yan R et al. 2016. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep. 6:35040
    [Google Scholar]
  56. 56. 
    Liu B, Zhu Y, Zhang T. 2015. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation. PLOS ONE 10:e0116272
    [Google Scholar]
  57. 57. 
    Liu NA, Tu LL, Tang WX, Gao WH, Lindsey K, Zhang XL. 2014. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. . Plant J 80:331–44
    [Google Scholar]
  58. 58. 
    Liu X, Zhao B, Zheng HJ, Hu Y, Lu G et al. 2015. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci. Rep. 5:14139
    [Google Scholar]
  59. 59. 
    Liu ZH, Chen Y, Wang NN, Chen YH, Wei N et al. 2020. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol 225:2439–52
    [Google Scholar]
  60. 60. 
    Luo M, Xiao Y, Li X, Lu X, Deng W et al. 2007. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51:419–30
    [Google Scholar]
  61. 61. 
    Ma D, Hu Y, Yang CQ, Liu BL, Fang L et al. 2016. Genetic basis for glandular trichome formation in cotton. Nat. Commun. 7:10456The basic helix-loop-helix-type transcription factor GoPGF as the positive regulator of glandular trichome formation in cotton.
    [Google Scholar]
  62. 62. 
    Ma Z, He S, Wang X, Sun J, Zhang Y et al. 2018. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 50:803–13
    [Google Scholar]
  63. 63. 
    Mansoor S, Briddon RW, Zafar Y, Stanley J. 2003. Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–34
    [Google Scholar]
  64. 64. 
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY et al. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25:1307–13
    [Google Scholar]
  65. 65. 
    Mao YB, Liu YQ, Chen DY, Chen FY, Fang X et al. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun. 8:13925
    [Google Scholar]
  66. 66. 
    McMichael SC. 1960. Combined effects of glandless genes gl2 and gl3 on pigment glands in cotton plant. Agron. J. 52:385–86
    [Google Scholar]
  67. 67. 
    Mittal A, Gampala SS, Ritchie GL, Payton P, Burke JJ, Rock CD. 2014. Related to ABA-insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol. J. 12:578–89
    [Google Scholar]
  68. 68. 
    Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G et al. 2002. Herbivory: Caterpillar saliva beats plant defences. Nature 416:599–600
    [Google Scholar]
  69. 69. 
    Pang C-Y, Wang H, Pang Y, Xu C, Jiao Y et al. 2010. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol. Cell. Proteom. 9:2019–33
    [Google Scholar]
  70. 70. 
    Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–27Multiple-fold ploidization in the Gossypium lineage conferred large gene duplications and genetic complexity.
    [Google Scholar]
  71. 71. 
    Preuss ML, Kovar DR, Lee YRJ, Staiger CJ, Delmer DP, Liu B. 2004. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–55
    [Google Scholar]
  72. 72. 
    Pu L, Li Q, Fan XP, Yang WC, Xue YB. 2008. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–20
    [Google Scholar]
  73. 73. 
    Purushotham P, Ho R, Zimmer J. 2020. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369:1089–94
    [Google Scholar]
  74. 74. 
    Qi TC, Wang JJ, Huang H, Liu B, Gao H et al. 2015. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27:1634–49
    [Google Scholar]
  75. 75. 
    Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX. 2007. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692–704
    [Google Scholar]
  76. 76. 
    Qin YM, Zhu YX. 2011. How cotton fibers elongate: a tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14:106–11A linear cell-growth mode for cotton fiber cell elongation.
    [Google Scholar]
  77. 77. 
    Ramsay NA, Glover BJ. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70
    [Google Scholar]
  78. 78. 
    Renny-Byfield S, Page JT, Udall JA, Sanders WS, Peterson DG et al. 2016. Independent domestication of two Old World cotton species. Genome Biol. Evol. 8:1940–47
    [Google Scholar]
  79. 79. 
    Ruan YL, Llewellyn DJ, Furbank RT. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–64
    [Google Scholar]
  80. 80. 
    Salih H, Gong WF, He SP, Sun GF, Sun JL, Du XM. 2016. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. . BMC Genet 17:129
    [Google Scholar]
  81. 81. 
    Schuler MA. 2012. Insect P450s: mounted for battle in their war against toxins. Mol. Ecol. 21:4157–59
    [Google Scholar]
  82. 82. 
    Shan CM, Shangguan XX, Zhao B, Zhang XF, Chao LM et al. 2014. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 5:5519
    [Google Scholar]
  83. 83. 
    Shangguan XX, Yang CQ, Zhang XF, Wang LJ. 2016. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol. Plant. 158:200–12
    [Google Scholar]
  84. 84. 
    Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM et al. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–64
    [Google Scholar]
  85. 85. 
    Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J et al. 2009. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–99
    [Google Scholar]
  86. 86. 
    Song Q, Zhang T, Stelly DM, Chen ZJ. 2017. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99
    [Google Scholar]
  87. 87. 
    Song XW, Li Y, Cao XF, Qi YJ. 2019. MicroRNAs and their regulatory roles in plant–environment interactions. Annu. Rev. Plant Biol. 70:489–525
    [Google Scholar]
  88. 88. 
    Stephens SG. 1944. Phenogenetic evidence for the amphidiploid origin of New World cottons. Nature 153:53–54
    [Google Scholar]
  89. 89. 
    Stiff MR, Haigler CH. 2016. Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis. Sci. Rep. 6:27883
    [Google Scholar]
  90. 90. 
    Sun W, Gao Z, Wang J, Huang Y, Chen Y et al. 2019. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytol 222:864–81
    [Google Scholar]
  91. 91. 
    Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS 2006. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. PNAS 103:18054–59
    [Google Scholar]
  92. 92. 
    Tang C, Min LF, Zhang TZ, Pan JJ, Jing SR et al. 1996. Genetic analysis for Hai-1 strain of glandless cotton (G. barbadense L.): interaction between Gl2e and Gl1. . Cotton Sci. Sin. 8:138–40
    [Google Scholar]
  93. 93. 
    Tao XY, Xue XY, Huang YP, Chen XY, Mao YB. 2012. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol. Ecol. 21:4371–85
    [Google Scholar]
  94. 94. 
    Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–75
    [Google Scholar]
  95. 95. 
    Teh BT, Lim K, Yong CH, Ng CCY, Rao SR et al. 2017. The draft genome of tropical fruit durian (Durio zibethinus). Nat. Genet. 49:1633–41
    [Google Scholar]
  96. 96. 
    Thyssen GN, Fang DD, Turley RB, Florane CB, Li P et al. 2017. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. Plant J 90:111–21
    [Google Scholar]
  97. 97. 
    Tian X, Ruan JX, Huang JQ, Fang X, Mao Y et al. 2016. Gossypol: phytoalexin of cotton. Sci. China Life Sci. 59:122–29
    [Google Scholar]
  98. 98. 
    Tian X, Ruan JX, Huang JQ, Yang CQ, Fang X et al. 2018. Characterization of gossypol biosynthetic pathway. PNAS 115:E5410–18
    [Google Scholar]
  99. 99. 
    Tian Y, Du J, Wu H, Guan X, Chen W et al. 2020. The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton. J. Exp. Bot. 71:3499–511
    [Google Scholar]
  100. 100. 
    Tiwari SC, Wilkins TA 1995. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can. J. Bot. 73:746–57
    [Google Scholar]
  101. 101. 
    Udall JA, Long E, Hanson C, Yuan DJ, Ramaraj T et al. 2019. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri. G3 9:3079–85
    [Google Scholar]
  102. 102. 
    Udall JA, Long E, Ramaraj T, Conover JL, Yuan DJ et al. 2019. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front. Plant Sci. 10:1541
    [Google Scholar]
  103. 103. 
    Walford SA, Wu YR, Llewellyn DJ, Dennis ES. 2011. GhMYB25-like: a key factor in early cotton fibre development. Plant J 65:785–97
    [Google Scholar]
  104. 104. 
    Wan Q, Guan X, Yang N, Wu H, Pan M et al. 2016. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol 210:1298–310
    [Google Scholar]
  105. 105. 
    Wang D, Fan W, Guo X, Wu K, Zhou S et al. 2019. MaGenDB: a functional genomics hub for Malvaceae plants. Nucleic Acids Res 48:D1076–84
    [Google Scholar]
  106. 106. 
    Wang GD, Li QJ, Luo B, Chen XY. 2004. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat. Biotechnol. 22:893–97
    [Google Scholar]
  107. 107. 
    Wang HY, Wang J, Gao P, Jiao GL, Zhao PM et al. 2009. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol. J. 7:13–23
    [Google Scholar]
  108. 108. 
    Wang JA, Wang HY, Zhao PM, Han LB, Jiao GL et al. 2010. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 51:1276–90
    [Google Scholar]
  109. 109. 
    Wang K, Huang G, Zhu Y. 2016. Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci. China Life Sci. 59:112–21
    [Google Scholar]
  110. 110. 
    Wang K, Wang D, Zheng X, Qin A, Zhou J et al. 2019. Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nat. Commun. 10:4714
    [Google Scholar]
  111. 111. 
    Wang K, Wang Z, Li F, Ye W, Wang J et al. 2012. The draft genome of a diploid cotton Gossypium raimondii. . Nat. Genet. 44:1098–103The first sequenced cotton genome.
    [Google Scholar]
  112. 112. 
    Wang LL, Cheng H, Xiong FJ, Ma SY, Zheng L et al. 2020. Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. Sci. China Life Sci. 63:190517
    [Google Scholar]
  113. 113. 
    Wang MJ, Tu LL, Lin M, Lin Z, Wang PC et al. 2017. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49:579–87
    [Google Scholar]
  114. 114. 
    Wang MJ, Tu LL, Yuan D, Zhu D, Shen C et al. 2019. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. . Nat. Genet 51:224–29
    [Google Scholar]
  115. 115. 
    Wang MJ, Wang PC, Tu LL, Zhu ST, Zhang L et al. 2016. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res 44:4067–79
    [Google Scholar]
  116. 116. 
    Wang MY, Zhao PM, Cheng HQ, Han LB, Wu XM et al. 2013. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162:1669–80
    [Google Scholar]
  117. 117. 
    Wang S, Wang JW, Yu N, Li CH, Luo B et al. 2004. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–34
    [Google Scholar]
  118. 118. 
    Wang S, Wu XM, Liu CH, Shang JY, Gao F, Guo HS. 2020. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLOS Pathog 16:e1008481
    [Google Scholar]
  119. 119. 
    Wang Z, Yang Z, Li F 2019. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol. J. 17:1706–22
    [Google Scholar]
  120. 120. 
    Watt G. 1907. The Wild and Cultivated Cotton Plants of the World London: Longmans
    [Google Scholar]
  121. 121. 
    Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM. 2009. Evolution and natural history of the cotton genus. Genetics and Genomics of Cotton AH Paterson 3–22 New York: Springer-Verlag
    [Google Scholar]
  122. 122. 
    Westengen OT, Huaman Z, Heun M. 2005. Genetic diversity and geographic pattern in early South American cotton domestication. Theor. Appl. Genet. 110:392–402
    [Google Scholar]
  123. 123. 
    Wong GK, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS et al. 2020. Sequencing and analyzing the transcriptomes of a thousand species across the tree of life for green plants. Annu. Rev. Plant Biol. 71:741–65
    [Google Scholar]
  124. 124. 
    Wu H, Tian Y, Wan Q, Fang L, Guan X et al. 2018. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol 217:883–95
    [Google Scholar]
  125. 125. 
    Wu Y, Liu F, Yang DG, Li W, Zhou XJ et al. 2018. Comparative chloroplast genomics of Gossypium species: insights into repeat sequence variations and phylogeny. Front. Plant Sci. 9:376
    [Google Scholar]
  126. 126. 
    Xia Y, Huang G, Zhu Y. 2019. Sustainable plant disease control: biotic information flow and behavior manipulation. Sci. China Life Sci. 62:1710–13
    [Google Scholar]
  127. 127. 
    Xiao GH, Wang K, Huang G, Zhu YX. 2016. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. J. Integr. Plant Biol. 58:577–89
    [Google Scholar]
  128. 128. 
    Xiao GH, Zhao P, Zhang Y. 2019. A pivotal role of hormones in regulating cotton fiber development. Front. Plant Sci. 10:87
    [Google Scholar]
  129. 129. 
    Xiao YH, Li DM, Yin MH, Li XB, Zhang M et al. 2010. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J. Plant Physiol. 167:829–37
    [Google Scholar]
  130. 130. 
    Xu B, Gou JY, Li FG, Shangguan XX, Zhao B et al. 2013. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Mol. Plant 6:945–58
    [Google Scholar]
  131. 131. 
    Xue Y, Chen R, Qu L, Cao X. 2020. Noncoding RNA: from dark matter to bright star. Sci. China Life Sci. 63:463–68
    [Google Scholar]
  132. 132. 
    Yan Q, Wang Y, Li Q, Zhang ZS, Ding H et al. 2018. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnol. J. 16:1735–47
    [Google Scholar]
  133. 133. 
    Yang CL, Liang S, Wang HY, Han LB, Wang FX et al. 2015. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Mol. Plant 8:399–411
    [Google Scholar]
  134. 134. 
    Yang H, Zhang D, Li X, Li H, Zhang D et al. 2016. Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol. Breeding 36:34
    [Google Scholar]
  135. 135. 
    Yang Y, Chen T, Ling X, Ma Z. 2017. Gbvdr6, a gene encoding a receptor-like protein of cotton (Gossypium barbadense), confers resistance to verticillium wilt in Arabidopsis and Upland cotton. Front. Plant Sci. 8:2272
    [Google Scholar]
  136. 136. 
    Yang Z, Ge X, Yang Z, Qin W, Sun G et al. 2019. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat. Commun. 10:2989
    [Google Scholar]
  137. 137. 
    Yang Z, Qanmber G, Wang Z, Yang Z, Li F 2020. Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci 25:488–500
    [Google Scholar]
  138. 138. 
    Yang ZR, Zhang CJ, Yang XJ, Liu K, Wu ZX et al. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203:437–48
    [Google Scholar]
  139. 139. 
    Yu Y, Wu S, Nowak J, Wang G, Han L et al. 2019. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nat. Plants 5:498–504Live-cell imaging in cotton confirmed that fiber cells elongate via the unique linear cell-growth or tip-biased diffuse growth mode.
    [Google Scholar]
  140. 140. 
    Yuan DJ, Tang ZH, Wang MJ, Gao WH, Tu LL et al. 2015. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci. Rep. 5:17662
    [Google Scholar]
  141. 141. 
    Zhang J, Huang GQ, Zou D, Yan JQ, Li Y et al. 2018. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol 217:625–40
    [Google Scholar]
  142. 142. 
    Zhang L, Xu Y, Zhang X, Ma X, Zhang L et al. 2020. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnol. J. 18:1796–809
    [Google Scholar]
  143. 143. 
    Zhang M, Han LB, Wang WY, Wu SJ, Jiao GL et al. 2017. Overexpression of GhFIM2 propels cotton fiber development by enhancing actin bundle formation. J. Integr. Plant Biol. 59:531–34
    [Google Scholar]
  144. 144. 
    Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L et al. 2011. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat. Biotechnol. 29:453–58
    [Google Scholar]
  145. 145. 
    Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ et al. 2016. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol. Plant 9:939–42
    [Google Scholar]
  146. 146. 
    Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2:16153Endogenous miRNAs are exported from cotton plants into the fungal pathogen Verticillium dahliae to activate fungus–host interactions.
    [Google Scholar]
  147. 147. 
    Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 33:531–37
    [Google Scholar]
  148. 148. 
    Zhao B, Cao JF, Hu GJ, Chen ZW, Wang LY et al. 2018. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol 218:1061–75
    [Google Scholar]
  149. 149. 
    Zhao T, Tao XY, Feng SL, Wang LY, Hong H et al. 2018. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biol. 19:195
    [Google Scholar]
  150. 150. 
    Zhou Y, Zhang ZT, Li M, Wei XZ, Li XJ et al. 2015. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling. Plant Biotechnol. J. 13:269–80
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-080720-113241
Loading
/content/journals/10.1146/annurev-arplant-080720-113241
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error