1932

Abstract

A pan-genome is the nonredundant collection of genes and/or DNA sequences in a species. Numerous studies have shown that plant pan-genomes are typically much larger than the genome of any individual and that a sizable fraction of the genes in any individual are present in only some genomes. The construction and interpretation of plant pan-genomes are challenging due to the large size and repetitive content of plant genomes. Most pan-genomes are largely focused on nontransposable element protein coding genes because they are more easily analyzed and defined than noncoding and repetitive sequences. Nevertheless, noncoding and repetitive DNA play important roles in determining the phenotype and genome evolution. Fortunately, it is now feasible to make multiple high-quality genomes that can be used to construct high-resolution pan-genomes that capture all the variation. However, assembling, displaying, and interacting with such high-resolution pan-genomes will require the development of new tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080720-105454
2021-06-17
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080720-105454.html?itemId=/content/journals/10.1146/annurev-arplant-080720-105454&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akakpo R, Carpentier MC, Hsing YI, Panaud O 2020. The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol. 226:44–49
    [Google Scholar]
  2. 2. 
    Allaby R. 2019. Clonal crops show structural variation role in domestication. Nat. Plants 5:915–16
    [Google Scholar]
  3. 3. 
    Alonge M, Wang X, Benoit M, Soyk S, Pereira L et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145–61.e23
    [Google Scholar]
  4. 4. 
    Bai Z, Chen J, Liao Y, Wang M, Liu R et al. 2016. The impact and origin of copy number variations in the Oryza species. BMC Genom.17:261
    [Google Scholar]
  5. 5. 
    Baurens FC, Martin G, Hervouet C, Salmon F, Yohomé D et al. 2019. Recombination and large structural variations shape interspecific edible bananas genomes. Mol. Biol. Evol. 36:97–111
    [Google Scholar]
  6. 6. 
    Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505–30
    [Google Scholar]
  7. 7. 
    Bertolotti AC, Layer RM, Gundappa MK, Gallagher MD, Pehlivanoglu E et al. 2020. The structural variation landscape in 492 Atlantic salmon genomes. Nat. Commun 11:5176
    [Google Scholar]
  8. 8. 
    Beyer W, Novak AM, Hickey G, Chan J, Tan V et al. 2019. Sequence tube maps: making graph genomes intuitive to commuters. Bioinformatics 35:5318–20
    [Google Scholar]
  9. 9. 
    Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M et al. 2016. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17:66
    [Google Scholar]
  10. 10. 
    Caputo A, Fournier PE, Raoult D 2019. Genome and pan-genome analysis to classify emerging bacteria. Biol. Direct14:5
    [Google Scholar]
  11. 11. 
    Carpentier MC, Manfroi E, Wei FJ, Wu HP, Lasserre E et al. 2019. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun.10:24
    [Google Scholar]
  12. 12. 
    Chakraborty M, Emerson JJ, Macdonald SJ, Long AD 2019. Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat. Commun.10:4872
    [Google Scholar]
  13. 13. 
    Cleary A, Farmer A. 2018. Genome Context Viewer: visual exploration of multiple annotated genomes using microsynteny. Bioinformatics 34:1562–64
    [Google Scholar]
  14. 14. 
    Danilevicz MF, Tay Fernandez CG, Marsh JI, Bayer PE, Edwards D 2020. Plant pangenomics: approaches, applications and advancements. Curr. Opin. Plant Biol. 54:18–25
    [Google Scholar]
  15. 15. 
    Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J et al. 2019. Genomic architecture and introgression shape a butterfly radiation. Science 366:594–99
    [Google Scholar]
  16. 16. 
    Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A et al. 2020. Pangenome graphs. Annu. Rev. Genom. Hum. Genet. 21:139–62
    [Google Scholar]
  17. 17. 
    Gao L, Gonda I, Sun H, Ma Q, Bao K et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51:1044–51
    [Google Scholar]
  18. 18. 
    Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM et al. 2018. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36:875–81
    [Google Scholar]
  19. 19. 
    Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H et al. 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7:13390
    [Google Scholar]
  20. 20. 
    Gonnella G, Niehus N, Kurtz S 2019. GfaViz: flexible and interactive visualization of GFA sequence graphs. Bioinformatics 35:2853–55
    [Google Scholar]
  21. 21. 
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40:D1178–86
    [Google Scholar]
  22. 22. 
    Gordon SP, Contreras-Moreira B, Levy JJ, Djamei A, Czedik-Eysenberg A et al. 2020. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat. Commun. 11:3670
    [Google Scholar]
  23. 23. 
    Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D et al. 2017. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun.8:2184
    [Google Scholar]
  24. 24. 
    Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M et al. 2014. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 79:361–74
    [Google Scholar]
  25. 25. 
    Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES et al. 2009. A first-generation haplotype map of maize. Science 326:1115–17
    [Google Scholar]
  26. 26. 
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10:551–64
    [Google Scholar]
  27. 27. 
    Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J et al. 2020. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol.21:35
    [Google Scholar]
  28. 28. 
    Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G et al. 2014. Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–35
    [Google Scholar]
  29. 29. 
    Huang K, Rieseberg LH. 2020. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front. Plant Sci.11:296
    [Google Scholar]
  30. 30. 
    Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J et al. 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 5:54–62
    [Google Scholar]
  31. 31. 
    Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S et al. 2018. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J 16:1265–74
    [Google Scholar]
  32. 32. 
    Jangam D, Feschotte C, Betrán E 2017. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33:817–31
    [Google Scholar]
  33. 33. 
    Kehr B, Helgadottir A, Melsted P, Jonsson H, Helgason H et al. 2017. Diversity in non-repetitive human sequences not found in the reference genome. Nat. Genet. 49:588–93
    [Google Scholar]
  34. 34. 
    Knoll A, Fauser F, Puchta H 2014. DNA recombination in somatic plant cells: mechanisms and evolutionary consequences. Chromosome Res. 22:191–201
    [Google Scholar]
  35. 35. 
    Kobayashi S, Goto-Yamamoto N, Hirochika H 2004. Retrotransposon-induced mutations in grape skin color. Science 304:982
    [Google Scholar]
  36. 36. 
    Koonin EV. 2009. Evolution of genome architecture. Int. J. Biochem. Cell Biol. 41:298–306
    [Google Scholar]
  37. 37. 
    Koonin EV, Wolf YI. 2008. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36:6688–719
    [Google Scholar]
  38. 38. 
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–45
    [Google Scholar]
  39. 39. 
    Ku C, Martin WF. 2016. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70% rule. BMC Biol.14:89
    [Google Scholar]
  40. 40. 
    Lack JB, Lange JD, Tang AD, Corbett-Detig RB, Pool JE 2016. A thousand fly genomes: an expanded Drosophila genome nexus. Mol. Biol. Evol. 33:3308–13
    [Google Scholar]
  41. 41. 
    Li H, Feng X, Chu C 2020. The design and construction of reference pangenome graphs. arXiv:2003.06079 [q-bio.GN]
  42. 42. 
    Li R, Li Y, Zheng H, Luo R, Zhu H et al. 2010. Building the sequence map of the human pan-genome. Nat. Biotechnol. 28:57–62
    [Google Scholar]
  43. 43. 
    Li YH, Zhou G, Ma J, Jiang W, Jin LG et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:1045–52
    [Google Scholar]
  44. 44. 
    Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J et al. 2018. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat. Genet. 50:1574–83
    [Google Scholar]
  45. 45. 
    Lin K, Zhang N, Severing EI, Nijveen H, Cheng F et al. 2014. Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genom.15:250
    [Google Scholar]
  46. 46. 
    Lister C, Jackson D, Martin C 1993. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis. Plant Cell 5:1541–53
    [Google Scholar]
  47. 47. 
    Liu Y, Du H, Li P, Shen Y, Peng H et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:162–76.e13
    [Google Scholar]
  48. 48. 
    Marroni F, Pinosio S, Morgante M 2014. Structural variation and genome complexity: Is dispensable really dispensable?. Curr. Opin. Plant Biol. 18:31–36
    [Google Scholar]
  49. 49. 
    Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE et al.Comput. Pan-Genom. Consort. 2018. Computational pan-genomics: status, promises and challenges. Brief. Bioinformat. 19:118–35
    [Google Scholar]
  50. 50. 
    McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K et al. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. PNAS 106:12273–78
    [Google Scholar]
  51. 51. 
    Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun.8:14363
    [Google Scholar]
  52. 52. 
    Mérot C, Oomen RA, Tigano A, Wellenreuther M 2020. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35:561–72
    [Google Scholar]
  53. 53. 
    Mikheenko A, Kolmogorov M, Hancock J 2019. Assembly Graph Browser: interactive visualization of assembly graphs. Bioinformatics 35:3476–78
    [Google Scholar]
  54. 54. 
    Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H et al. 2017. The pangenome of hexaploid bread wheat. Plant J. 90:1007–13
    [Google Scholar]
  55. 55. 
    Novak A, Hickey G, Garrison E, Blum S, Connelly A et al. 2017. Genome graphs. bioRxiv 101378. https://doi.org/10.1101/101378
    [Crossref]
  56. 56. 
    Osada N, Innan H 2008. Duplication and gene conversion in the Drosophila melanogaster genome. PLOS Genetics 4:e1000305
    [Google Scholar]
  57. 57. 
    Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D 2008. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18:2024–33
    [Google Scholar]
  58. 58. 
    Ou L, Li D, Lv J, Chen W, Zhang Z et al. 2018. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence–absence variation analyses. New Phytol. 220:360–63
    [Google Scholar]
  59. 59. 
    Pardue ML, DeBaryshe PG. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet 37:485–511
    [Google Scholar]
  60. 60. 
    Paten B, Diekhans M, Earl D, St. John J, Ma J et al. 2011. Cactus graphs for genome comparisons. J. Comput. Biol. 18:469–81
    [Google Scholar]
  61. 61. 
    Paten B, Eizenga JM, Rosen YM, Novak AM, Garrison E, Hickey G 2018. Superbubbles, ultrabubbles, and cacti. J. Comput. Biol. 25:649–63
    [Google Scholar]
  62. 62. 
    Paten B, Novak AM, Eizenga JM, Garrison E 2017. Genome graphs and the evolution of genome inference. Genome Res. 27:665–76
    [Google Scholar]
  63. 63. 
    Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ 2018. Genome size diversity and its impact on the evolution of land plants. Genes9:88
    [Google Scholar]
  64. 64. 
    Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K et al. 2020. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science 368:731–36
    [Google Scholar]
  65. 65. 
    Richard GF. 2020. Eukaryotic pangenomes. The Pangenome: Diversity, Dynamics and Evolution of Genomes H Tettelin, D Meidini 253–91 Cham, Switz: Springer
    [Google Scholar]
  66. 66. 
    Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. 2011. Integrative genomics viewer. Nat. Biotechnol. 29:24–26
    [Google Scholar]
  67. 67. 
    Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z et al. 2017. Revisiting ancestral polyploidy in plants. Sci. Adv.3:e1603195
    [Google Scholar]
  68. 68. 
    Schatz MC, Maron LG, Stein JC, Hernandez Wences A, Gurtowski J et al. 2014. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol. 15:506
    [Google Scholar]
  69. 69. 
    Schubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 21:749–57
    [Google Scholar]
  70. 70. 
    Seaman J. 2020. PantoGraph. The Pantograph Project https://graph-genome.github.io/pantograph.html
    [Google Scholar]
  71. 71. 
    Sherman RM, Forman J, Antonescu V, Puiu D, Daya M et al. 2019. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 51:30–35
    [Google Scholar]
  72. 72. 
    Smedley D, Haider S, Durinck S, Pandini L, Provero P et al. 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43:W589–98
    [Google Scholar]
  73. 73. 
    Song JM, Guan Z, Hu J, Guo C, Yang Z et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6:34–45
    [Google Scholar]
  74. 74. 
    Stein LD, Mungall C, Shu S, Caudy M, Mangone M et al. 2002. The generic genome browser: a building block for a model organism system database. Genome Res. 12:1599–610
    [Google Scholar]
  75. 75. 
    Sun C, Hu Z, Zheng T, Lu K, Zhao Y et al. 2017. RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res. 45:597–605
    [Google Scholar]
  76. 76. 
    Tao Y, Zhao X, Mace E, Henry R, Jordan D 2019. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 12:156–69
    [Google Scholar]
  77. 77. 
    Telenti A, Pierce LCT, Biggs WH, Di Iulio J, Wong EHM et al. 2016. Deep sequencing of 10,000 human genomes. PNAS 113:11901–6
    [Google Scholar]
  78. 78. 
    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome. .” PNAS 102:13950–55
    [Google Scholar]
  79. 79. 
    Tian X, Li R, Fu W, Li Y, Wang X et al. 2020. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci. China Life Sci. 63:750–63
    [Google Scholar]
  80. 80. 
    Turco G, Schnable JC, Pedersen B, Freeling M 2013. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses. Front. Plant Sci.4:170
    [Google Scholar]
  81. 81. 
    Vernikos G, Medini D, Riley DR, Tettelin H 2015. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23:148–54
    [Google Scholar]
  82. 82. 
    Vu GTH, Schmutzer T, Bull F, Cao HX, Fuchs J et al. 2015. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8: eplantgenome2015.04.0021
    [Google Scholar]
  83. 83. 
    Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S et al. 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49
    [Google Scholar]
  84. 84. 
    Wendel JF. 2015. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102:1753–56
    [Google Scholar]
  85. 85. 
    Wendel JF, Lisch D, Hu G, Mason AS 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49:1–7
    [Google Scholar]
  86. 86. 
    Wick RR, Schultz MB, Zobel J, Holt KE 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–52
    [Google Scholar]
  87. 87. 
    Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311–16
    [Google Scholar]
  88. 88. 
    Xue AT, Ruggiero RP, Hickerson MJ, Boissinot S 2018. Differential effect of selection against LINE retrotransposons among vertebrates inferred from whole-genome data and demographic modeling. Genome Biol. Evol. 10:1265–81
    [Google Scholar]
  89. 89. 
    Yao W, Li G, Zhao H, Wang G, Lian X, Xie W 2015. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 16:187
    [Google Scholar]
  90. 90. 
    Yokoyama TT, Sakamoto Y, Seki M, Suzuki Y, Kasahara M 2019. MoMI-G: modular multi-scale integrated genome graph browser. BMC Bioinformat.20:548
    [Google Scholar]
  91. 91. 
    Yu C, Zhang J, Peterson T 2011. Genome rearrangements in maize induced by alternative transposition of reversed Ac/Ds termini. Genetics 188:59–67
    [Google Scholar]
  92. 92. 
    Yu J, Golicz AA, Lu K, Dossa K, Zhang Y et al. 2019. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol. J. 17:881–92
    [Google Scholar]
  93. 93. 
    Zhang J, Peterson T. 2004. Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167:1929–37
    [Google Scholar]
  94. 94. 
    Zhao Q, Feng Q, Lu H, Li Y, Wang A et al. 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50:278–84
    [Google Scholar]
  95. 95. 
    Zhou P, Silverstein KAT, Ramaraj T, Guhlin J, Denny R et al. 2017. Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genom.18:261
    [Google Scholar]
  96. 96. 
    Zhou Y, Minio A, Massonnet M, Solares E, Lv Y et al. 2019. The population genetics of structural variants in grapevine domestication. Nat. Plants 5:965–79
    [Google Scholar]
  97. 97. 
    Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J et al. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33:408–14
    [Google Scholar]
  98. 98. 
    Ziolkowski PA, Blanc G, Sadowski J 2003. Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome. Nucleic Acids Res. 31:1339–50
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-080720-105454
Loading
/content/journals/10.1146/annurev-arplant-080720-105454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error