This chapter describes the research of developing transgenic barley for synthesis of recombinant proteins with practical significance and of metabolic engineering of proanthocyanidin-free barley. The results were obtained by graduate students, postdoctoral researchers, and visiting scientists at the Carlsberg Laboratory from 1972–1996 and during the past ten years at Washington State University. It is written in appreciation of their enthusiasm, skill, and perseverance.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin P, Ashton AR. 2003. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 35:624–36 [Google Scholar]
  2. Abrahams S, Tanner GJ, Larkin PJ, Ashton AR. 2002. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130:561–76 [Google Scholar]
  3. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–94 [Google Scholar]
  4. Borriss R, Olsen O, Thomsen KK, von Wettstein D. 1989. Hybrid bacillus endo- (1–3,1–4)-β-glucanases: construction of recombinant genes and molecular properties of the gene products. Carlsberg Res. Commun. 54:41–54 [Google Scholar]
  5. Brandt A, Ingversen J. 1976. In vitro synthesis of barley endosperm proteins on wild type and mutant templates. Carlsberg Res. Commun. 41:311–20 [Google Scholar]
  6. Brandt A, Ingversen J. 1978. Isolation and translation of hordein messenger RNA from wild type and mutant endosperm in barley. Carlsberg Res. Commun. 43:451–69 [Google Scholar]
  7. Brandt A, Montembault A, Cameron-Mills V, Rasmussen SK. 1985. Primary structure of a B1 hordein gene from barley. Carlsberg Res. Commun. 50:333–45 [Google Scholar]
  8. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ. et al. 2006. Cellulose synthase-like CsIF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311:1940–42 [Google Scholar]
  9. Cameron-Mills V. 1980. The structure and composition of protein bodies purified from barley endosperm by silica sol density gradients. Carlsberg Res. Commun. 45:557–76 [Google Scholar]
  10. Cameron-Mills V, Brandt A. 1988. A γ-hordein gene. Plant Mol. Biol. 11:449–61 [Google Scholar]
  11. Cameron-Mills V, Ingversen J. 1978. In vitro synthesis and transport of barley endosperm proteins: Reconstitution of functional rough microsomes from polyribosomes and stripped microsomes. Carlsberg Res. Commun. 43:471–89 [Google Scholar]
  12. Cameron-Mills V, Ingversen J, Brandt A. 1978. Transfer of in vitro synthesized barley endosperm proteins into the lumen of the endoplasmic reticulum. Carlsberg Res. Commun. 43:91–102 [Google Scholar]
  13. Cameron-Mills V, Madrid S. 1989. The signal peptide cleavage site of a B1 hordein determined by radiosequencing of the in vitro synthesized and processed polypeptide. Carlsberg Res. Commun. 54:181–92 [Google Scholar]
  14. Cameron-Mills V, von Wettstein D. 1980. Protein body formation in the developing barley endosperm. Carlsberg Res. Commun. 45:577–95 [Google Scholar]
  15. Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH. et al. 2004. Discovery and directed evolution of a glyphosphate tolerance gene. Science 304:1151–54 [Google Scholar]
  16. Dixon RA, Xie DY, Sharma SB. 2005. Proanthocyanidins—a final frontier in flavonoid research. N. Phytol. 165:9–28 [Google Scholar]
  17. Druka A, Kudrna D, Rostoks N, Brueggeman R, von Wettstein D, Kleinhofs A. 2003. Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–78 [Google Scholar]
  18. Entwistle J. 1988. Primary structure of a C-hordein gene from barley. Carlsberg Res. Commun. 53:247–58 [Google Scholar]
  19. Entwistle J, Knudsen S, Müller M, Cameron-Mills V. 1991. Amber codon suppression: the in vivo and in vitro analysis of two C-hordein genes from barley. Plant Mol. Biol. 17:1217–31 [Google Scholar]
  20. Fincher GB, Lock PA, Morgan MM, Lingelbach K, Wettenhall REH. et al. 1986. Primary structure of the (1→3,1→4)-β-D-glucan 4-glucanohydrolase from barley aleurone. Proc. Natl. Acad. Sci. USA 83:2081–85 [Google Scholar]
  21. Giese H, Hopp E. 1984. Influence of nitrogen nutrition on the amount of hordein, protein Z and β-amylase messenger RNA in developing endosperms of barley. Carlsberg Res. Commun. 49:365–83 [Google Scholar]
  22. Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. 1995. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3–1,4-β-glucanase. J. Biol. Chem. 270:3081–88 [Google Scholar]
  23. Harthill JE, Thomsen KK. 1995. Analysis of glycan structures of barley (1–3,1–4)-β-D-glucan 4-glucanohydrolase isoenzyme EII. Plant Physiol. Biochem. 33:9–18 [Google Scholar]
  24. Hopp HE, Rasmussen SK, Brandt A. 1983. Organization and transcription of B1 hordein genes in high lysine mutants of barley. Carlsberg Res. Commun. 48:201–16 [Google Scholar]
  25. Horvath H, Huang J, Wong OT, Kohl E, Okita T. et al. 2000. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. USA 97:1914–19 [Google Scholar]
  26. Horvath H, Huang J, Wong OT, von Wettstein D. 2002. Experiences with genetic transformation of barley and characteristics of transgenic plants. In Barley Science ed. GA Slafer, JL Molina-Cano, R Savin, JL Araus, J Romagosa pp. 143–76 New York: Harworth [Google Scholar]
  27. Horvath H, Jensen LG, Wong OT, Kohl E, Ullrich SE. et al. 2001. Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor. Appl. Genet. 102:1–11 [Google Scholar]
  28. Jende-Strid B. 1988. Analysis of proanthocyanidins and phenolic acids in barley, malt, hops and beer. In Modern Methods of Plant Analysis. New Ser. Vol. 7: Beer Analysis, ed. HF Linskens, JF Jackson pp. 110–27 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  29. Jende-Strid B. 1991. Gene-enzyme relations in the pathway of flavonoid biosynthesis in barley. Theor. Appl. Genet. 81:668–74 [Google Scholar]
  30. Jende-Strid B. 1993. Genetic control of flavonoid biosynthesis in barley. Hereditas 119:187–204 [Google Scholar]
  31. Jende-Strid B, Møller BL. 1981. Analysis of proanthocyanidins in wild-type and mutant barley (Hordeum vulgare L.). Carlsberg Res. Commun. 46:53–64 [Google Scholar]
  32. Jensen LG. 1994. Developmental patterns of enzymes and proteins during mobilization of endosperm stores in germinating barley grains. Hereditas 121:53–72 [Google Scholar]
  33. Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK, von Wettstein D. 1996. Transgenic barley expressing a protein-engineered, thermostable (1,3–1,4)-β-glucanase during germination. Proc. Natl. Acad. Sci. USA 93:3487–91 [Google Scholar]
  34. Jensen LG, Politz O, Olsen O, Thomsen KK, von Wettstein D. 1998. Inheritance of a codon optimized transgene expressing heat stable (1,3–1,4)-β-glucanase in scutellum and aleurone of germinating barley. Hereditas 129:215–25 [Google Scholar]
  35. Keitel T, Meldgaard M, Heinemann U. 1994. Cation binding to a Bacillus (1,3–1,4)-β-glucanase: Geometry, affinity and effect on protein stability. Eur. J. Biochem. 222:203–14 [Google Scholar]
  36. Keitel T, Simon O, Borriss R, Heinemann U. 1993. Molecular and active-site structure of a Bacillus 1–3,1–4-β-glucanase. Proc. Natl. Acad. Sci. USA 90:5287–91 [Google Scholar]
  37. Kohl EA. 2003. Development of transgenic barley expressing (1,4)-β-xylanase. M.Sc. thesis Washington State Univ. Pullman:74pp. [Google Scholar]
  38. Kristensen H. 1987. Selektion af proanthocyanidin-frie bygmutantkerner. Hoved opgave I planteforædling. Inst. Landbr. Plantekult. Copenhagen: R. Vet. Agric. Univ. [Google Scholar]
  39. Kristensen H, Aastrup S. 1986. A non-destructive screening method for proantho-cyanidin-free barley mutants. Carlsberg Res. Commun. 51:509–13 [Google Scholar]
  40. Kristiansen KN. 1984. Biosynthesis of proanthocyanidins in barley: Genetic control of the conversion of dihydroquercetin to catechin and procyanidins. Carlsberg Res. Commun. 49:503–24 [Google Scholar]
  41. Kristiansen KN. 1986. Conversion of (+)-dihydroquercetin to (+)-2,3-trans-3,4-cis- leucocyanidin and (+)-catechin with an enzyme extract from maturing grains of barley. Carlsberg Res. Commun. 51:51–60 [Google Scholar]
  42. Kristiansen KN, Rohde W. 1991. Structure of the Hordeum vulgare gene encoding dihydro-flavonol-4-reductase and molecular analysis of ant 18 mutants blocked in flavonoid synthesis. Mol. Gen. Genet. 230:49–59 [Google Scholar]
  43. Marles MA, Ray H, Gruber MY. 2003. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–83 [Google Scholar]
  44. Meldgaard M. 1992. Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695–706 [Google Scholar]
  45. Meldgaard M, Harthill J, Petersen B, Olsen O. 1995. Glycan modification of a thermostable recombinant (1–3,1–4)-β-glucanase secreted from Saccharomyces cerevisiae is determined by strain and culture condition. Glycoconjug. J. 12:380–90 [Google Scholar]
  46. Meldgaard M, Svendsen I. 1994. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3–1,4)-β-glucanases secreted from yeast. Microbiology 140:159–66 [Google Scholar]
  47. Møgelsvang S, Simpson D. 1998. Protein folding and transport from the endoplasmic reticulum to the Golgi apparatus in plants. J. Plant Physiol. 153:1–15 [Google Scholar]
  48. Müller M, Knudsen S. 1993. The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J. 4:343–55 [Google Scholar]
  49. Müller M, Muth JR, Gallusci P, Knudsen S, Maddaloni M. et al. 1995. Regulation of storage protein synthesis in cereal seeds: Developmental and nutritional aspects. J. Plant Physiol. 145:606–13 [Google Scholar]
  50. Munck L, von Wettstein D. 1974. Effects of genes that change the amino acid composition of barley endosperm. In “Workshop on Genetic Improvement of Seed Proteins” at. Natl. Acad. Sci. USA 1974:71–82 [Google Scholar]
  51. Olsen O, Borriss R, Simon O, Thomsen KK. 1991. Hybrid Bacillus (1–3,1–4)-β-glucanases: Engineering thermostable enzymes by construction of hybrid genes. Mol. Gen. Genet. 225:177–85 [Google Scholar]
  52. Olsen O, Thomsen KK. 1991. Improvement of bacterial β-glucanase thermostability by glycosylation. J. Gen. Microbiol. 137:579–85 [Google Scholar]
  53. Olsen O, Thomsen KK, Weber J, Duus , Svendsen I. et al. 1996. Transplanting two unique β-glucanase catalytic activities into one multienzyme, which forms glucose. Bio/Technology 14:71–76 [Google Scholar]
  54. Olsen O, Wang X, von Wettstein D. 1993. Sodium azide mutagenesis: Preferential generation of A⋅ T → G⋅C transitions in the barley Ant18 gene. Proc. Natl. Acad. Sci. USA 90:8043–47 [Google Scholar]
  55. Outtrup H. 1981. Structure of prodelphinidins in barley. Proc. Eur. Brew. Conv. Congr. Copenhagen 1981:323–33 [Google Scholar]
  56. Outtrup H, Schaumburg K. 1981. Structure elucidation of some proanthocyanidins in barley by 1H 270 MHz NMR spectroscopy. Carlsberg Res. Commun. 46:43–52 [Google Scholar]
  57. Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue G-P. 2000. Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol. Breed. 6:113–24 [Google Scholar]
  58. Pelger S, Høyer-Hansen G. 1989. The reaction of monoclonal antibodies with hordeins from five different Hordeum species. Hereditas 111:273–79 [Google Scholar]
  59. Pelletier MK, Murrell JR, Shirley BW. 1997. Characterisation of flavonol synthase and leucoanthocyanidin dioxygenase genes in. Arabidopsis. Plant Physiol. 113:1437–45 [Google Scholar]
  60. Phillipson BA. 1993. Expression of a hybrid (1–3,1–4)-β-glucanase in barley protoplasts. Plant Sci. 91:195–206 [Google Scholar]
  61. Politz O, Simon O, Olsen O, Borriss R. 1993. Determinants for the enhanced thermostability of hybrid (1–3,1–4)-β-glucanases. Eur. J. Biochem. 216:829–34 [Google Scholar]
  62. Rasmussen SK, Brandt A. 1986. Nucleotide sequences of cDNA clones for C-hordein polypeptides. Carlsberg Res. Commun. 51:371–79 [Google Scholar]
  63. Rasmussen SK, Hopp HE, Brandt A. 1983. Nucleotide sequences of cDNA clones for B1 hordein polypeptides. Carlsberg Res. Commun. 48:187–99 [Google Scholar]
  64. Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B. et al. 2003. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol. 132:1448–63 [Google Scholar]
  65. Rechinger KB, Bougri OV, Cameron-Mills V. 1993. Evolutionary relationship of the members of the sulphur-rich hordein family revealed by common antigenic determinants. Theor. Appl. Genet. 85:829–40 [Google Scholar]
  66. Rechinger KB, Simpson DJ, Svendsen I, Cameron-Mills V. 1993. A role for γ3 hordein in the transport and targeting of prolamin polypeptides to the vacuole of developing barley endosperm. Plant J. 4:841–53 [Google Scholar]
  67. Sharma SB, Dixon RA. 2005. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J. 44:62–75 [Google Scholar]
  68. Skadhauge B, Gruber MY, Thomsen KK, von Wettstein D. 1997. Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. Am. J. Bot. 84:494–503 [Google Scholar]
  69. Skadhauge B, Thomsen KK, von Wettstein D. 1997. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–60 [Google Scholar]
  70. Sørensen MB. 1989. Mapping of the Hor2 locus in barley by pulsed field gel electrophoresis. Carlsberg Res. Commun. 54:109–20 [Google Scholar]
  71. Sørensen MB. 1992. Methylation of B-hordein genes in barley endosperm is inversely correlated with gene activity and affected by the regulatory gene Lys3. Proc. Natl. Acad. Sci. USA 89:4119–23 [Google Scholar]
  72. Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N. 2002. T-DNA integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. USA 99:2146–51 [Google Scholar]
  73. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR. 2003. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278:31647–56 [Google Scholar]
  74. Tanner GJ, Kristiansen KN. 1993. Synthesis of 3H-3,4-cis-leucocyanidin and enzymatic reduction to catechin. Anal. Biochem. 209:274–77 [Google Scholar]
  75. Tanner GJ, Kristiansen KN, Jende-Strid B. 1992. Biosynthesis of proanthocyanidins (condensed tannins) in barley. Bull. Liaison Groupe Polyphen. 16:170–73 [Google Scholar]
  76. Tanner GJ, Moore AE, Larkin PJ. 1994. Proanthocyanidins inhibit hydrolysis of leaf proteins by rumen microflora in vitro. Br. J. Nutr. 71:947–58 [Google Scholar]
  77. Ullrich SE, Rasmussen U, Høyer-Hansen G, Brandt A. 1986. Monoclonal antibodies to hordein polypeptides. Carlsberg Res. Commun. 51:381–99 [Google Scholar]
  78. von Wettstein D. 1979. Biochemical and molecular genetics in the improvement of malting barley and brewers yeast. Proc. 17th Congr. Eur. Brewery Convent., West Berl. pp. 587–629
  79. von Wettstein D. 1983. Genetic engineering in the adaptation of plants to evolving human needs. Experientia 39:687–713 [Google Scholar]
  80. von Wettstein D. 1995. Breeding of value added barley by mutation and protein engineering. Induced Mutat. Mol. Tech. Crop Improv., Proc. FAO/IAEA Symp. pp. 67–76 Vienna: IAEA-SM-340/15 [Google Scholar]
  81. von Wettstein D. 2004. Transgenic barley. In Proc. 9th Int. Barley Genet. Symp., Brno, Czech Republ. Czech J. Genet. Plant Breed. 40:79 [Google Scholar]
  82. von Wettstein D. 2006. Fascination with chloroplasts and chromosome pairing. Progr. Bot. 67:1–28 [Google Scholar]
  83. von Wettstein D, Cochran JS, Ullrich SE, Kannangara CG, Jitkov VA. et al. 2004. Registration of ‘Radiant’ Barley. Crop Sci. 44:1859–60 [Google Scholar]
  84. von Wettstein D, Jende-Strid B, Ahrenst-Larsen B, Erdal K. 1980. Proanthocyanidin-free barley prevents the formation of beer haze. MBAA Techn. Q. 17:16–23 [Google Scholar]
  85. von Wettstein D, Jende-Strid B, Ahrenst-Larsen B, Sørensen JA. 1977. Biochemical mutant in barley renders chemical stabilization of beer superfluous. Carlsberg Res. Commun. 42:341–51 [Google Scholar]
  86. von Wettstein D, Mikhaylenko G, Froseth JA, Kannangara CG. 2000. Improved barley broiler feed with transgenic malt containing heat-stable (1,3–1,4)-β-glucanase. Proc. Natl. Acad. Sci. USA 97:13512–17 [Google Scholar]
  87. von Wettstein D, Nilan RA, Ahrenst-Larsen B, Erdal K, Ingversen J. et al. 1985. Proanthocyanidin-free barley for brewing: Progress in breeding for high yield and research tool in polyphenol chemistry. MBAA Techn. Q. 22:41–52 [Google Scholar]
  88. von Wettstein D, Warner J, Kannangara CG. 2003. Supplements of transgenic malt or grain containing (1,3–1,4)-β-glucanase to barley based broiler diets lift their nutritive value to that of corn. Br. J. Poultry Sci. 44:438–49 [Google Scholar]
  89. Wang X, Olsen O, Knudsen S. 1993. Expression of the dihydroflavonol reductase gene in an anthocyanidin-free barley mutant. Hereditas 119:67–75 [Google Scholar]
  90. Wilson SM, Burton RA, Doblin MS, Stone BA, Newbigin EJ. et al. 2006. Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta 224:655–67 [Google Scholar]
  91. Wolf N. 1992. Structure of the genes encoding Hordeum vulgare (1→3,1→4)-β-glucanase isoenzymes I and II and functional analysis of their promoters in barley aleurone protoplasts. Mol. Gen. Genet. 234:33–42 [Google Scholar]
  92. Xie DY, Sharma SB, Dixon RA. 2004. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch. Biochem. Biophys. 422:91–102 [Google Scholar]
  93. Xie DY, Sharma SB, Palva NL, Ferreira DF, Dixon RA. 2003. Role of anthocyanidin reductase encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–99 [Google Scholar]
  94. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA. 2006. Metabolic engineering of proanthocyanidins through coexpression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45:895–907 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error