Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drøbak BK. 1.  et al. 2002. Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14:2915–27 [Google Scholar]
  2. Allwood EG, Smertenko AP, Hussey PJ. 2.  2001. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett. 499:97–100 [Google Scholar]
  3. Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M. 3.  2011. Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23:3696–710 [Google Scholar]
  4. Bargmann BO, Munnik T. 4.  2006. The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9:515–22 [Google Scholar]
  5. Beck M, Zhou JM, Faulkner C, MacLean D, Robatzek S. 5.  2012. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24:4205–19 [Google Scholar]
  6. Blanchoin L, Boujemaa-Paterski R, Henty JL, Khurana P, Staiger CJ. 6.  2010. Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol. 13:714–23 [Google Scholar]
  7. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. 7.  2014. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94:235–63 [Google Scholar]
  8. Blanchoin L, Michelot A. 8.  2012. Actin cytoskeleton: a team effort during actin assembly. Curr. Biol. 22:R643–45 [Google Scholar]
  9. Blanchoin L, Staiger CJ. 9.  2010. Plant formins: diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta 1803:201–6 [Google Scholar]
  10. Boller T, Felix G. 10.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  11. Boudsocq M, Sheen J. 11.  2013. CDPKs in immune and stress signaling. Trends Plant Sci. 18:30–40 [Google Scholar]
  12. Cai C, Henty-Ridilla JL, Szymanski DB, Staiger CJ. 12.  2014. Arabidopsis myosin XI: a motor rules the tracks. Plant Physiol. 661359–70 [Google Scholar]
  13. Cheung AY, Niroomand S, Zou Y, Wu H-M. 13.  2010. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. PNAS 107:16390–95 [Google Scholar]
  14. Dantán-González E, Rosenstein Y, Quinto C, Sánchez F. 14.  2001. Actin monoubiquitylation is induced in plants in response to pathogens and symbionts. Mol. Plant-Microbe Interact. 14:1267–73 [Google Scholar]
  15. Day B, Henty JL, Porter KJ, Staiger CJ. 15.  2011. The pathogen-actin connection: a platform for defense signaling in plants. Annu. Rev. Phytopathol. 49:489–506 [Google Scholar]
  16. Deeks MJ, Calcutt JR, Ingle EKS, Hawkins TJ, Chapman S. 16.  et al. 2012. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 22:1595–600 [Google Scholar]
  17. Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K. 17.  et al. 2010. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 123:1209–15 [Google Scholar]
  18. Deeks MJ, Hussey PJ. 18.  2005. Arp2/3 and SCAR: Plants move to the fore. Nat. Rev. Mol. Cell Biol. 6:954–64 [Google Scholar]
  19. Dong C-H, Hong Y. 19.  2013. Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep. 32:1715–28 [Google Scholar]
  20. Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M. 20.  et al. 2003. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83:433–73 [Google Scholar]
  21. Doyle T, Botstein D. 21.  1996. Movement of yeast cortical actin cytoskeleton visualized in vivo. PNAS 93:3886–91 [Google Scholar]
  22. Drøbak BK, Franklin-Tong VE, Staiger CJ. 22.  2004. The role of the actin cytoskeleton in plant cell signaling. New Phytol. 163:13–30 [Google Scholar]
  23. Dyachok J, Sparks JA, Liao F, Wang Y-S, Blancaflor EB. 23.  2014. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton 71:311–27 [Google Scholar]
  24. Ehrhardt DW, Frommer WB. 24.  2012. New technologies for 21st century plant science. Plant Cell 24:374–94 [Google Scholar]
  25. Era A, Kutsuna N, Higaki T, Hasezawa S, Nakano A, Ueda T. 25.  2013. Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha. J. Plant Res. 126:113–19 [Google Scholar]
  26. Era A, Tominaga M, Ebine K, Awai C, Saito C. 26.  et al. 2009. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol. 50:1041–48 [Google Scholar]
  27. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. 27.  2005. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700 [Google Scholar]
  28. Fujimoto M, Arimura S-I, Nakazono M, Tustusmi N. 28.  2007. Imaging of plant dynamin-related proteins and clathrin around the plasma membrane by variable incidence angle fluorescence microscopy. Plant Biotechnol. 24:449–55 [Google Scholar]
  29. Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H. 29.  1997. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114:295–305 [Google Scholar]
  30. Gibbon BC, Kovar DR, Staiger CJ. 30.  1999. Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–63 [Google Scholar]
  31. Gu Y, Fu Y, Dowd P, Li S, Vernoud V. 31.  et al. 2005. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol. 169:127–38 [Google Scholar]
  32. Hardham AR, Jones DA, Takemoto D. 32.  2007. Cytoskeleton and cell wall function in penetration resistance. Curr. Opin. Plant Biol. 10:342–48 [Google Scholar]
  33. Hawkins TJ, Deeks MJ, Wang PW, Hussey PJ. 33.  2014. The evolution of the actin binding NET superfamily. Front. Plant Sci. 5:e254 [Google Scholar]
  34. Henty JL, Bledsoe SW, Khurana P, Meagher RB, Day B. 34.  et al. 2011. Arabidopsis actin depolymerizing factor 4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. Plant Cell 23:3711–26 [Google Scholar]
  35. Henty-Ridilla JL, Li J, Blanchoin L, Staiger CJ. 35.  2013. Actin dynamics in the cortical array of plant cells. Curr. Opin. Plant Biol. 16:678–87 [Google Scholar]
  36. Henty-Ridilla JL, Li J, Day B, Staiger CJ. 36.  2014. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26:340–52 [Google Scholar]
  37. Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. 37.  2013. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLOS Pathog. 9:e1003290 [Google Scholar]
  38. Higaki T, Kojo KH, Hasezawa S. 38.  2010. Critical role of actin bundling in plant cell morphogenesis. Plant Signal. Behav. 5:484–88 [Google Scholar]
  39. Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S. 39.  2010. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 61:156–65 [Google Scholar]
  40. Higaki T, Sano T, Hasezawa S. 40.  2007. Actin microfilament dynamics and actin side-binding proteins in plants. Curr. Opin. Plant Biol. 10:549–52 [Google Scholar]
  41. Hoffmann C, Moes D, Dieterle M, Neumann K, Moreau F. 41.  et al. 2014. Live cell imaging approaches reveal actin cytoskeleton-induced self-association of the actin-bundling protein WLIM1. J. Cell Sci. 127:583–98 [Google Scholar]
  42. Huang S, Gao L, Blanchoin L, Staiger CJ. 42.  2006. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol. Biol. Cell 17:1946–58 [Google Scholar]
  43. Hussey PJ, Hashimoto T. 43.  2008. The cytoskeleton and signal transduction: role and regulation of plant actin- and microtubule-binding proteins. Annu. Plant Rev. 33:244–72 [Google Scholar]
  44. Jiang K, Sorefam K, Deeks MJ, Bevan MW, Hussey PJ, Hetherington AM. 44.  2012. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24:2032–40 [Google Scholar]
  45. Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C. 45.  et al. 2009. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. PNAS 106:13106–11 [Google Scholar]
  46. Kandasamy MK, McKinney EC, Meagher RB. 46.  2002. Functional nonequivalency of actin isovariants in Arabidopsis. Mol. Biol. Cell 13:251–61 [Google Scholar]
  47. Kandasamy MK, McKinney EC, Meagher RB. 47.  2009. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21:701–18 [Google Scholar]
  48. Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ. 48.  2004. The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr. Biol. 14:145–49 [Google Scholar]
  49. Ketelaar T, Anthony RG, Hussey PJ. 49.  2004. Green fluorescent protein-mTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerization factor's actin depolymerizing activity in vitro. Plant Physiol. 136:3990–98 [Google Scholar]
  50. Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ. 50.  2010. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in bundle formation and turnover. Plant Cell 22:2727–48 [Google Scholar]
  51. Klotz J, Nick P. 51.  2011. A novel actin–microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol. 193:576–89 [Google Scholar]
  52. Konopka CA, Bednarek SY. 52.  2008. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J. 53:186–96 [Google Scholar]
  53. Kovar DR, Drøbak BK, Staiger CJ. 53.  2000. Maize profilin isoforms are functionally distinct. Plant Cell 12:583–98 [Google Scholar]
  54. Li J, Arieti R, Staiger CJ. 54.  2014. Actin filament dynamics and their role in plant cell expansion. Plant Cell Wall Patterning and Cell Shape H Fukuda 127–62 Hoboken, NJ: Wiley & Sons [Google Scholar]
  55. Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ. 55.  2012. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–54 [Google Scholar]
  56. Li J, Staiger BH, Henty-Ridilla JL, Abu-Abied M, Sadot E. 56.  et al. 2014. The availability of filament ends modulates actin stochastic dynamics in live plant cells. Mol. Biol. Cell 25:1263–75 [Google Scholar]
  57. Li L-J, Ren F, Gao X-Q, Wei P-C, Wang X-C. 57.  2013. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ. 36:484–97 [Google Scholar]
  58. Li M, Hong Y, Wang X. 58.  2009. Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791:927–35 [Google Scholar]
  59. Li X, Li J-H, Wang W, Chen N-Z, Ma T-S. 59.  et al. 2014. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. Plant Cell Environ. 37:1548–60 [Google Scholar]
  60. Lucas J, Shaw SL. 60.  2008. Cortical microtubule arrays in the Arabidopsis seedling. Curr. Opin. Plant Biol. 11:94–98 [Google Scholar]
  61. Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y. 61.  2012. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J. Biol. Chem. 287:19008–17 [Google Scholar]
  62. Martiniére A, Gayral P, Hawes C, Runions J. 62.  2011. Building bridges: FORMIN1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 66:354–65 [Google Scholar]
  63. Michelot A, Berro J, Guérin C, Boujemaa-Paterski R, Staiger CJ. 63.  et al. 2007. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 17:825–33 [Google Scholar]
  64. Michelot A, Derivery E, Paterski-Boujemaa R, Guérin C, Huang S. 64.  et al. 2006. A novel mechanism for the formation of actin-filament bundles by a non-processive formin. Curr. Biol. 16:1924–30 [Google Scholar]
  65. Michelot A, Guérin C, Huang S, Ingouff M, Richard S. 65.  et al. 2005. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17:2296–313 [Google Scholar]
  66. Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X. 66.  et al. 2012. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLOS Biol. 10:e1001299 [Google Scholar]
  67. Nolen BJ, Tomasevic N, Russell A, Pierce DW, Jia Z. 67.  et al. 2009. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460:1031–34 [Google Scholar]
  68. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N. 68.  et al. 2003. CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell 15:2805–15 [Google Scholar]
  69. Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M. 69.  et al. 2008. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol. 148:829–42 [Google Scholar]
  70. Opalski KS, Schultheiss H, Kogel K-H, Hückelhoven R. 70.  2005. The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J. 41:291–303 [Google Scholar]
  71. Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F. 71.  et al. 2010. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22:3034–52 [Google Scholar]
  72. Peremyslov VV, Prokhnevsky AI, Dolja VV. 72.  2010. Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell 22:1883–97 [Google Scholar]
  73. Pleskot R, Li J, Žárský V, Potocký M, Staiger CJ. 73.  2013. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18:496–504 [Google Scholar]
  74. Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M. 74.  et al. 2012. Turnover of phosphatidic acid through distinct signalling pathways affects multiple aspects of pollen tube growth in tobacco. Front. Plant Sci. 3:e54 [Google Scholar]
  75. Pleskot R, Pejchar P, Staiger CJ, Potocký M. 75.  2014. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front. Plant Sci. 5:e5 [Google Scholar]
  76. Pleskot R, Potocky M, Pejchar P, Linek J, Bezvoda R. 76.  et al. 2010. Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62:494–507 [Google Scholar]
  77. Pollard TD, Blanchoin L, Mullins RD. 77.  2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545–76 [Google Scholar]
  78. Pollard TD, Cooper JA. 78.  1986. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55:987–1035 [Google Scholar]
  79. Pollard TD, Cooper JA. 79.  2009. Actin, a central player in cell shape and movement. Science 27:1208–12 [Google Scholar]
  80. Porter K, Shimono M, Tian M, Day B. 80.  2012. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLOS Pathog. 8:e1003006 [Google Scholar]
  81. Preuss ML, Kovar DR, Lee Y-RJ, Staiger CJ, Delmer DP, Liu B. 81.  2004. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol. 136:3945–55 [Google Scholar]
  82. Qin T, Liu X, Li J, Sun J, Song L-F, Mao T. 82.  2014. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26:325–39 [Google Scholar]
  83. Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S. 83.  2013. Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–17 [Google Scholar]
  84. Ren H-Y, Xiang Y. 84.  2007. The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–82 [Google Scholar]
  85. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D. 85.  et al. 2008. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5:605–7 [Google Scholar]
  86. Rizvi SA, Neidt EM, Cui J, Feiger Z, Skau CT. 86.  et al. 2009. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16:1158–69 [Google Scholar]
  87. Robatzek S. 87.  2014. Endocytosis: at the crossroads of pattern recognition immune receptors and pathogen effectors. Applied Plant Cell Biology P Nick, Z Opartny 273–97 Plant Cell Monogr. 22 Berlin: Springer-Verlag [Google Scholar]
  88. Rosero A, Žárský V, Cvrcková F. 88.  2013. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 64:585–97 [Google Scholar]
  89. Saarikangas J, Zhao H, Lappalainen P. 89.  2010. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90:259–89 [Google Scholar]
  90. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J. 90.  et al. 2013. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol. 162:675–88 [Google Scholar]
  91. Schmidt SM, Panstruga R. 91.  2007. Cytoskeletal functions in plant–microbe interactions. Physiol. Mol. Plant Pathol. 71:135–48 [Google Scholar]
  92. Segonzac C, Zipfel C. 92.  2011. Activation of plant pattern-recognition receptors by bacteria. Curr. Opin. Microbiol. 14:54–61 [Google Scholar]
  93. Shaw SL, Ehrhardt DW. 93.  2013. Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu. Rev. Plant Biol. 64:351–75 [Google Scholar]
  94. Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW. 94.  2004. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol. 136:3968–78 [Google Scholar]
  95. Shi M, Xie Y, Zheng Y, Wang J, Su Y. 95.  et al. 2013. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. Plant J. 73:747–60 [Google Scholar]
  96. Smertenko AP, Deeks MJ, Hussey PJ. 96.  2010. Strategies of actin reorganisation in plant cells. J. Cell Sci. 123:3019–28 [Google Scholar]
  97. Smertenko AP, Jiang C-J, Simmons NJ, Weeds AG, Davies DR, Hussey PJ. 97.  1998. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J. 14:187–93 [Google Scholar]
  98. Snowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ. 98.  2002. Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14:2613–26 [Google Scholar]
  99. Sparkes I. 99.  2012. Recent advances in understanding plant myosin function: life in the fast lane. Mol. Plant 4:805–12 [Google Scholar]
  100. Staiger CJ. 100.  2000. Signaling to the actin cytoskeleton in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:257–88 [Google Scholar]
  101. Staiger CJ, Hussey PJ. 101.  2004. Actin and actin-modulating proteins. The Plant Cytoskeleton in Cell Differentiation and Development PJ Hussey 32–80 Oxford, UK: Blackwell [Google Scholar]
  102. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. 102.  2010. Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 61:1969–86 [Google Scholar]
  103. Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW, Blanchoin L. 103.  2009. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184:269–80 [Google Scholar]
  104. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP. 104.  et al. 2010. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. PNAS 107:8860–65 [Google Scholar]
  105. Szymanski DB. 105.  2005. Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr. Opin. Plant Biol. 8:103–12 [Google Scholar]
  106. Testerink C, Munnik T. 106.  2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci. 10:368–75 [Google Scholar]
  107. Testerink C, Munnik T. 107.  2011. Molecular, cellular and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62:2349–61 [Google Scholar]
  108. Tholl S, Moreau F, Hoffmann C, Arumugam K, Dieterle M. 108.  et al. 2011. Arabidopsis actin depolymerizing factors (ADFs) 1 and 9 display antagonistic activities. FEBS Lett. 585:1821–27 [Google Scholar]
  109. Thomas C. 109.  2012. Bundling actin filaments from membranes: some novel players. Front. Plant Sci. 3:e00118 [Google Scholar]
  110. Thomas C, Tholl S, Moes D, Dieterle M, Papuga J. 110.  et al. 2009. Actin bundling in plants. Cell Motil. Cytoskelet. 66:940–57 [Google Scholar]
  111. Tominaga M, Nakano A. 111.  2012. Plant-specific myosin XI, a molecular perspective. Front. Plant Sci. 3:e211 [Google Scholar]
  112. Tóth R, Gerding-Reimers C, Deeks MJ, Menninger S, Gallegos RM. 112.  et al. 2012. Prieurianin/endosidin 1 is an actin stabilizing small molecule identified from chemical genetic screen for circadian clock effectors in Arabidopsis thaliana. Plant J. 71:338–52 [Google Scholar]
  113. van Gisbergen PAC, Li M, Wu S-Z, Bezanilla M. 113.  2012. Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. J. Cell Biol. 198:235–50 [Google Scholar]
  114. Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M. 114.  2010. Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–82 [Google Scholar]
  115. Vidali L, Rounds CM, Hepler PK, Bezanilla M. 115.  2009. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLOS ONE 4:e5744 [Google Scholar]
  116. Vidali L, van Gisenbergen PAC, Guérin C, Franco P, Li M. 116.  et al. 2009. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. PNAS 106:13341–46 [Google Scholar]
  117. Vizcay-Barrena G, Webb SED, Martin-Fernandez ML, Wilson ZA. 117.  2011. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J. Exp. Bot. 62:5419–28 [Google Scholar]
  118. Voigt B, Timmers ACJ, Samaj J, Müller J, Baluska F, Menzel D. 118.  2005. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 84:595–608 [Google Scholar]
  119. Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ. 119.  et al. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24:1397–405 [Google Scholar]
  120. Wang X, Teng Y, Wang Q, Li X, Sheng S. 120.  et al. 2006. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol. 141:1591–603 [Google Scholar]
  121. Wang X-L, Gao X-Q, Wang X-C. 121.  2011. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement. Plant Cell Environ. 34:1248–57 [Google Scholar]
  122. Wang Y-S, Motes CM, Mohamalawari DR, Blancaflor EB. 122.  2004. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil. Cytoskelet. 59:79–93 [Google Scholar]
  123. Wang Y-S, Yoo C-M, Blancaflor EB. 123.  2008. Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2. New Phytol. 177:525–36 [Google Scholar]
  124. Whippo CW, Khurana P, Davis PA, DeBlasio SL, Sloover D. 124.  et al. 2011. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. Curr. Biol. 21:59–64 [Google Scholar]
  125. Wu G, Gu Y, Li S, Yang Z. 125.  2001. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–56 [Google Scholar]
  126. Wu J-Q, Pollard TD. 126.  2005. Counting cytokinesis proteins globally and locally in fission yeast. Science 310:310–14 [Google Scholar]
  127. Yang W, Ren S, Zhang X, Gao M, Ye S. 127.  et al. 2011. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell 23:661–80 [Google Scholar]
  128. Yokota E, Shimmen T. 128.  2010. Plant myosins. The Plant Cyoskeleton B Liu 33–56 Adv. Plant Biol. 2 New York: Springer [Google Scholar]
  129. Zhang H, Qu X, Bao C, Khurana P, Wang Q. 129.  et al. 2010. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22:2749–67 [Google Scholar]
  130. Zhang W, Zhao Y, Guo Y, Ye K. 130.  2012. Plant actin-binding protein SCAB1 is dimeric actin cross-linker with atypical pleckstrin homology domain. J. Biol. Chem. 287:11981–90 [Google Scholar]
  131. Zhang Y, Xiao Y, Du F, Cao L, Dong H, Ren H. 131.  2011. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol. 190:667–82 [Google Scholar]
  132. Zhang Z, Zhang Y, Tan H, Wang Y, Li G. 132.  et al. 2011. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23:681–700 [Google Scholar]
  133. Zhao Y, Zhao S, Mao T, Qu X, Cao W. 133.  et al. 2011. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell 23:2314–30 [Google Scholar]
  134. Zheng Y, Xie Y, Jiang Y, Qu X, Huang S. 134.  2013. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 severs actin filaments and regulates actin cable turnover to promote pollen tube growth. Plant Cell 25:3405–23 [Google Scholar]
  135. Zhu L, Zhang Y, Kang E, Xu Q, Wang M. 135.  et al. 2013. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25:851–67 [Google Scholar]
  136. Zipfel C. 136.  2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:414–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error