I was a college teacher when opportunity opened a path into academia. A fascination with totipotency channeled me into research on tissue culture. As I was more interested in contributions to food security than in scientific novelty, I turned my attention to the development of genetic modification technology for cereals. From my cell culture experience, I had reasons not to trust for that purpose, and I developed direct gene transfer instead. In the early 1990s, I became aware of the problem of micronutrient deficiency, particularly vitamin A deficiency in rice-eating populations. Golden Rice, which contains increased amounts of provitamin A, was probably instrumental for the concept of biofortification to take off. I realized that this rice would remain an academic exercise if product development and product registration were not addressed, and this is what I focused on after my retirement. Although progress is slowly being made, had I known what this pursuit would entail, perhaps I would not have started. Hopefully Golden Rice will reach the needy during my lifetime.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Al-Babili S, Beyer P. 1.  2005. Golden Rice—five years on the road—five years to go?. Trends Plant Sci. 10:565–73 [Google Scholar]
  2. Alberts B, Beachy R, Balcombe D, Blobel G, Datta S. 2.  et al. 2013. Standing up for GMOs. Science 341:1320 [Google Scholar]
  3. Ammann K. 3.  2014. The debate on the Golden Rice and its background Ask-Force, Sept. 24. http://www.ask-force.org/web/AF-19–Golden-Rice-Review/Ammann-Debate-GR-Background-AF-19-names-fulltext-20140910.pdf
  4. Barton KA, Binns AN, Matzke AJM, Chilton M-D. 4.  1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–43 [Google Scholar]
  5. Baur M, Potrykus I, Paszkowski J. 5.  1990. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10:492–500 [Google Scholar]
  6. Bevan MW, Flavell RB, Chilton M-D. 6.  1983. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–87 [Google Scholar]
  7. Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P. 7.  et al. 2002. Golden Rice: introducing the β-carotene biosynthetic pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132:506S–10S [Google Scholar]
  8. Bilang R, Potrykus I. 8.  1998. Containing excitement over transplastomic plants. Nat. Biotechnol. 16:333–34 [Google Scholar]
  9. Bilang R, Zhang SH, Leduc N, Iglesias VA, Gisel A. 9.  et al. 1993. Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J. 4:735–44 [Google Scholar]
  10. Bliffeld M, Mundy J, Potrykus I, Fütterer J. 10.  1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98:1079–86 [Google Scholar]
  11. Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong G. 11.  et al. 1997. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11:1071–78 [Google Scholar]
  12. Chen G, Müller M, Potrykus I, Hohn T, Fütterer J. 12.  1994. Rice tungro bacilliform virus: transcription and translation in protoplasts. Virology 204:91–100 [Google Scholar]
  13. Clausen M, Krauter R, Schachermeyer G, Potrykus I, Sautter C. 13.  2000. Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol. 18:446–49 [Google Scholar]
  14. Datta K, Potrykus I, Datta SK. 14.  1992. Efficient fertile plant regeneration from protoplasts of the Indica rice breeding line IR72 (Oryza sativa L.). Plant Cell Rep. 11:229–33 [Google Scholar]
  15. Datta SK, Datta K, Potrykus I. 15.  1990. Embryogenesis and plant regeneration from microspores of both “Indica” and “Japonica” rice (Oryza sativa). Plant Sci. 67:83–88 [Google Scholar]
  16. Datta SK, Datta K, Potrykus I. 16.  1990. Fertile Indica rice plants regenerated from protoplasts isolated from microspore derived cell suspensions. Plant Cell Rep. 9:253–56 [Google Scholar]
  17. Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I. 17.  1992. Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol. Biol. 20:619–29 [Google Scholar]
  18. Datta SK, Peterhans A, Datta K, Potrykus I. 18.  1990. Genetically engineered fertile Indica-rice recovered from protoplasts. Nat. Biotechnol. 8:736–40 [Google Scholar]
  19. Dubock AC. 19.  2009. Crop conundrum. Nutr. Rev. 67:17–20 [Google Scholar]
  20. Dubock AC. 20.  2013. Golden Rice: a long-running story at the watershed of the GM debate Viewpoint, Biosci. Farming Afr. http://b4fa.org/wp-content/uploads/2013/10/Viewpoints-Dubock.pdf
  21. Durand J, Potrykus I, Donn G. 21.  1973. Plantes issues de protoplasts de Petunia. Z. Pflanzenphysiol. 69:24–32 [Google Scholar]
  22. Fisch F. 22.  2013. Ein Versuch: Genforschung zwischen den Fronten Zurich: Helden Verlag
  23. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS. 23.  et al. 1983. Expression of bacterial genes in plant cells. PNAS 80:4803–7 [Google Scholar]
  24. Fütterer J, Potrykus I, Bao Y, Li L, Burns TN. 24.  et al. 1996. Position dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J. Virol. 70:2999–3010 [Google Scholar]
  25. Fütterer J, Potrykus I, Valles-Brau MP, Dasgupta I, Hull R, Hohn T. 25.  1993. Splicing in a plant pararetrovirus. Virology 198:663–70 [Google Scholar]
  26. Fütterer J, Rothnie HM, Hohn T, Potrykus I. 26.  1997. Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J. Virol. 71:7984–89 [Google Scholar]
  27. Gisel A, Rothen B, Iglesias VA, Potrykus I, Sautter C. 27.  1996. In vivo observation of large foreign DNA molecules in host plant cells. Eur. J. Cell Biol. 69:368–72 [Google Scholar]
  28. Gisel A, Rothen B, Iglesias VA, Potrykus I, Sautter C. 28.  1998. In situ monitoring of DNA: The plant nuclear envelope allows passage of short DNA fragments. Plant J. 16:621–26 [Google Scholar]
  29. 29. Gold. Rice Proj 2014. The Golden Rice Humanitarian Board. http://www.goldenrice.org/Content1-Who/who1_humbo.php
  30. Harms CT, Lörz H, Potrykus I. 30.  1978. Multiple-drop-array (MDA) technique for the large scale testing of culture media variations in hanging micro drop cultures of single cell systems. II. Evaluation of hormone combinations for optimal division response in Nicotiana tabacum protoplast cultures. Plant Sci. Lett. 14:237–44 [Google Scholar]
  31. Harms CT, Potrykus I. 31.  1978. Enrichment for heterokaryocytes by the use of iso-osmotic density gradients after protoplast fusion. Theor. Appl. Genet. 53:49–56 [Google Scholar]
  32. Harms CT, Potrykus I. 32.  1978. Fractionation of plant protoplast types by iso-osmotic density gradient centrifugation. Theor. Appl. Genet. 53:57–63 [Google Scholar]
  33. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. 33.  1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–13 [Google Scholar]
  34. Hess D, Potrykus I, Donn G, Durand J, Hoffmann F. 34.  1973. Transformation experiments in higher plants: prerequisites for the use of isolated protoplasts. Colloq. Int. CNRS 212:343–51 [Google Scholar]
  35. Iglesias VA, Gisel A, Bilang R, Leduc N, Potrykus I, Sautter C. 35.  1993. Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic microtargeting. Planta 192:84–91 [Google Scholar]
  36. 36. Int. Rice Res. Inst. (IRRI) 2014. What is the status of the Golden Rice project coordinated by IRRI? FAQ item, IRRI, Los Baños, Philipp. http://irri.org/golden-rice/faqs/what-is-the-status-of-the-golden-rice-project-coordinated-by-irri
  37. James C. 37.  2013. Global status of commercialized biotech/GM crops: 2013 Brief 46, Int. Serv. Acquis. Agri-Biotech Appl. Ithaca, NY. http://www.isaaa.org/resources/publications/briefs/46
  38. Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J. 38.  et al. 2011. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLOS ONE 6:e24476 [Google Scholar]
  39. Klöti A, Henrich C, Bieri S, He X, Chen G. 39.  et al. 1999. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. Plant Mol. Biol. 40:249–66 [Google Scholar]
  40. Kost B, Galli A, Potrykus I, Neuhaus G. 40.  1995. High efficiency transient and stable transformation by optimized DNA microinjection into N. tabacum protoplasts. J. Exp. Bot. 46:1157–67 [Google Scholar]
  41. Kost B, Schnorf M, Potrykus I, Neuhaus G. 41.  1995. Non-destructive detection of firefly luciferase (LUC) activity in single plant cells using a cooled, slow-scan CCD camera and an optimized assay. Plant J. 8:155–66 [Google Scholar]
  42. Leduc N, Iglesias VA, Bilang R, Gisel A, Potrykus I, Sautter C. 42.  1994. Gene transfer to inflorescence and flower meristems using ballistic microtargeting. Sex. Plant Reprod. 7:135–43 [Google Scholar]
  43. Li HQ, Huang YW, Liang CY, Guo JY, Liu HX. 43.  et al. 1998. Regeneration of cassava plants via shoot organogenesis. Plant Cell Rep. 17:410–14 [Google Scholar]
  44. Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J. 44.  1996. Genetic transformation of cassava (Manihot esculenta Crantz). Nat. Biotechnol. 14:736–40 [Google Scholar]
  45. Lucca P, Hurrell R, Potrykus I. 45.  2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102:392–97 [Google Scholar]
  46. Lucca P, Ye X, Potrykus I. 46.  2001. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43–49 [Google Scholar]
  47. Lurquin PF. 47.  2001. The Green Phoenix: A History of Genetically Modified Plants New York: Columbia Univ. Press
  48. Lusardi MC, Neuhaus-Url G, Potrykus I, Neuhaus G. 48.  1994. An approach towards genetically engineered cell fate mapping in maize using the Lc gene as visible marker: transactivation capacity of the Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. Plant J. 5:571–82 [Google Scholar]
  49. Mouras A, Saul MW, Essad S, Potrykus I. 49.  1987. Localization by in situ hybridization of a low copy chimaeric resistance gene introduced into plants by direct gene transfer. Mol. Gen. Genet. 207:204–9 [Google Scholar]
  50. Nagata T, Takebe I. 50.  1970. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–8 [Google Scholar]
  51. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ. 51.  et al. 2005. A new version of Golden Rice with increased pro-vitamin A content. Nat. Biotechnol. 23:482–87 [Google Scholar]
  52. Paszkowski J, Baur M, Bogucki A, Potrykus I. 52.  1988. Gene targeting in plants. EMBO J. 7:4021–26 [Google Scholar]
  53. Paszkowski J, Shillito RD, Saul MW, Hohn T, Hohn B, Potrykus I. 53.  1984. Direct gene transfer to plants. EMBO J. 3:2717–22 [Google Scholar]
  54. Perez-Vicente R, Wen XD, Wang ZY, Leduc N, Sautter C. 54.  et al. 1993. Culture of vegetative and floral meristems in ryegrasses: potential targets of microballistic transformation. J. Plant Physiol. 142:610–17 [Google Scholar]
  55. Potrykus I. 55.  1970. Mutation und Rückmutation extrachromosomal vererbter Plastidenmerkmale von Petunia [Mutations and back-mutations of extrachromosomally inherited plastid traits in Petunia]. Z. Pflanzenzücht. 63:24–40 [Google Scholar]
  56. Potrykus I. 56.  1971. Intra and interspecific fusion of protoplasts from petals of Torrenia baillioni and Torrenia fournierii. Nat. New Biol. 231:57–58 [Google Scholar]
  57. Potrykus I. 57.  1973. Transplantation of chloroplasts into protoplasts of Petunia. Z. Pflanzenphysiol. 70:364–66 [Google Scholar]
  58. Potrykus I. 58.  1979. The old problem of protoplast culture—cereals. Proceedings of the 5th International Protoplast Symposium243–54 Oxford: Pergamon
  59. Potrykus I. 59.  1989. Gene transfer to cereals: an assessment. TIBTECH 7:269–73 [Google Scholar]
  60. Potrykus I. 60.  1990. Gene transfer to cereals: an assessment. Nat. Biotechnol. 8:535–42 [Google Scholar]
  61. Potrykus I. 61.  1990. Gene transfer to plants: a critical assessment. Physiol. Plant. 79:123–220 [Google Scholar]
  62. Potrykus I. 62.  1991. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205–25 [Google Scholar]
  63. Potrykus I. 63.  1992. Micro-targeting of microprojectiles to target areas in the micrometre range. Nature 355:568–69 [Google Scholar]
  64. Potrykus I. 64.  2001. Golden Rice and beyond. Plant Physiol. 125:1157–61 [Google Scholar]
  65. Potrykus I. 65.  2001. The “Golden Rice” tale. In Vitro Cell Dev. Biol. Plant 37:93–100 [Google Scholar]
  66. Potrykus I. 66.  2005. GMO-technology and malnutrition: public sector responsibility and failure. Electron. J. Biotechnol. 8:3 http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/1116/1498 [Google Scholar]
  67. Potrykus I. 67.  2010. Constraints to biotechnology introduction for poverty alleviation. New Biotechnol. 27:447–48 [Google Scholar]
  68. Potrykus I. 68.  2010. Lessons from the “Humanitarian Golden Rice” project: regulation prevents development of public good genetically engineered crop products. New Biotechnol. 27:466–72 [Google Scholar]
  69. Potrykus I. 69.  2010. The private sector's role in public sector genetically engineered crop projects. New Biotechnol. 27:578–81 [Google Scholar]
  70. Potrykus I. 70.  2010. Regulation must be revolutionized. Nature 466:561 [Google Scholar]
  71. Potrykus I. 71.  2012. “Golden Rice”, a GMO-product for public good, and the consequences of GE-regulation. J. Plant Biochem. Biotechnol. 21:68–75 [Google Scholar]
  72. Potrykus I. 72.  2012. Unjustified regulation prevents use of GMO technology for public good. Trends Biotechnol. 31:131–33 [Google Scholar]
  73. Potrykus I. 73.  2013. Genetic modification and the public good. Eur. Rev. 21:Suppl. S1S68–79 [Google Scholar]
  74. Potrykus I, Durand J. 74.  1972. Callus formation from single protoplasts of Petunia. Nature 327:286–87 [Google Scholar]
  75. Potrykus I, Harms CT, Lörz H. 75.  1976. Problems in culturing cereal protoplasts. Cell Genetics in Higher Plants D Dudits, G Farkas, P Maliga 129–40 Budapest, Hung: Akad. Kiadó [Google Scholar]
  76. Potrykus I, Harms CT, Lörz H. 76.  1978. Multiple-drop-array (MDA) technique for the large-scale testing of culture media variations in hanging microdrop cultures of single cell systems. I: The technique. Plant Sci. Lett. 14:231–35 [Google Scholar]
  77. Potrykus I, Hoffmann F. 77.  1973. Transplantation of nuclei into protoplasts of higher plants. Z. Pflanzenphysiol. 69:287–89 [Google Scholar]
  78. Potrykus I, Paszkowski J, Saul MW, Petruska J, Shillito RD. 78.  1985. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol. Gen. Genet. 199:169–77 [Google Scholar]
  79. Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD. 79.  1985. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199:183–88 [Google Scholar]
  80. Puonti-Kaerlas J, Klöti A, Potrykus I. 80.  1999. Biotechnological contributions to food security with cassava and rice. Plant Biotechnol. 16:39–48 [Google Scholar]
  81. Sautter C, Iglesias VA, Stein DM, Potrykus I. 81.  1992. Micro-targeting: a highly efficient and very flexible ballistic gene transfer system for meristems and immature embryos. J. Cell. Biochem. 50:Suppl. 16F211 [Google Scholar]
  82. Sautter C, Leduc N, Bilang R, Iglesias VA, Gisel A. 82.  et al. 1995. Shoot apical meristems as a target for gene transfer by microballistics. Euphytica 85:45–51 [Google Scholar]
  83. Sautter C, Waldner H, Neuhaus-Url G, Galli A, Neuhaus G, Potrykus I. 83.  1991. Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Nat. Biotechnol. 9:1080–85 [Google Scholar]
  84. Schlamann HR, Gisel AA, Quaedvlieg NE, Bloemberg GV, Lugtenberg GJ. 84.  et al. 1997. Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development 124:4887–95 [Google Scholar]
  85. Schnorf M, Neuhaus-Url G, Galli A, Iida S, Potrykus I, Neuhaus G. 85.  1991. An improved approach for transformation of plant cells by microinjection: molecular and genetic analysis. Transgenic Res. 1:23–30 [Google Scholar]
  86. Schnorf M, Potrykus I, Neuhaus G. 86.  1994. Microinjection technique: routine system for characterization of microcapillaries by bubble pressure measurement. Exp. Cell Res. 210:260–67 [Google Scholar]
  87. Schocher RJ, Shillito RD, Saul MW, Paszkowski J, Potrykus I. 87.  1986. Co-transformation of unlinked foreign genes into plants by direct gene transfer. Nat. Biotechnol. 4:1093–96 [Google Scholar]
  88. Semba RD. 88.  2012. The Vitamin A Story: Lifting the Shadow of Death World Rev. Nutr. Diet. 104 Basel, Switz: Karger
  89. Spangenberg G, Valles-Brau VP, Wang ZY, Nagel J, Potrykus I. 89.  1994. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci. 97:83–94 [Google Scholar]
  90. Spangenberg G, Wang ZY, Potrykus I. 90.  1997. Biotechnology in Forage and Turf Grass Improvement Monogr. Theor. Appl. Genet. 23 Berlin: Springer-Verlag
  91. Spangenberg G, Wang ZY, Wu XL, Nagel J, Iglesias VA, Potrykus I. 91.  1995. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J. Plant Physiol. 145:693–701 [Google Scholar]
  92. Spangenberg G, Wang ZY, Wu XL, Nagel J, Potrykus I. 92.  1995. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci. 108:209–17 [Google Scholar]
  93. Stein JA, Sachdev HPS, Qaim M. 93.  2006. Potential impact and cost-effectiveness of Golden Rice. Nat. Biotechnol. 24:1200–1 [Google Scholar]
  94. Takamizo T, Spangenberg G, Suginobu K, Potrykus I. 94.  1992. Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol. Gen. Genet. 231:1–6 [Google Scholar]
  95. Tang G, Hu Y, Yin S, Wang Y, Dallal GE. 95.  et al. 2012. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children. Am. J. Clin. Nutr. 96:658–64 [Google Scholar]
  96. Tang G, Quin J, Dolnikowski GG, Russell RM, Grusak MA. 96.  2009. Golden Rice is an effective source of vitamin A. Am. J. Clin. Nutr. 89:1776–83 [Google Scholar]
  97. Thomas E, King PJ, Potrykus I. 97.  1977. Shoot and embryo-like structure formation from cultured tissue of Sorghum bicolor. Naturwissenschaften 64:587 [Google Scholar]
  98. Thro AM, Fregene M, Taylor N, Raemakers KCJJM, Puonti-Kaerlas J. 98.  et al. 1999. Genetic biotechnologies and cassava-based development. Biotechnology of Food Crops in Developing Countries T Hohn, KM Leisinger 142–85 Berlin: Springer-Verlag [Google Scholar]
  99. Thro AM, Taylor N, Raemakers CCJM, Puonti-Kaerlas J, Schöpke C. 99.  et al. 1998. Maintaining the cassava biotechnology network. Nat. Biotechnol. 16:428–30 [Google Scholar]
  100. Uncu AO, Doganlar S, Frary A. 100.  2013. Biotechnology for enhanced nutritional quality in plants. Crit. Rev. Plant Sci. 32:321–43 [Google Scholar]
  101. Wang ZY, Nagel J, Potrykus I, Spangenberg G. 101.  1993. Plants from cell suspension-derived protoplasts in Lolium species. Plant Sci. 94:179–93 [Google Scholar]
  102. Wang ZY, Takamizo T, Iglesias VA, Osusky M, Nagel J. 102.  et al. 1992. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Nat. Biotechnol. 10:691–96 [Google Scholar]
  103. Wenzel G, Hoffmann F, Potrykus I, Thomas E. 103.  1975. The separation of viable rye microspores from mixed populations and their development in culture. Mol. Gen. Genet. 138:293–97 [Google Scholar]
  104. Wernicke W, Brettell R. 104.  1982. Morphogenesis from cultured leaf tissue of Sorghum bicolor—culture initiation. Protoplasma 111:19–27 [Google Scholar]
  105. Wernicke W, Brettell R, Wakizuka T, Potrykus I. 105.  1981. Adventitious embryo and root formation from rice leaves. Z. Pflanzenphysiol. 103:361–66 [Google Scholar]
  106. Wernicke W, Harms CT, Lörz H, Thomas E. 106.  1978. Selective enrichment for embryogenic microspore populations. Naturwissenschaften 65:540 [Google Scholar]
  107. Wernicke W, Potrykus I, Thomas E. 107.  1982. Morphogenesis from cultured leaf tissue of Sorghum bicolor—the morphogenetic pathway. Protoplasma 111:53–62 [Google Scholar]
  108. Wünn J, Klöti A, Burkhardt P, Ghosh-Biswas GC, Launis K. 108.  et al. 1996. Transgenic Indica rice breeding line IR58 expressing a synthetic CryA(b) gene from Bacillus thuringiensis provides effective insect pest control. Nat. Biotechnol. 14:171–76 [Google Scholar]
  109. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P. 109.  et al. 2000. Engineering provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–5 [Google Scholar]
  110. Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W. 110.  2003. Two cassava promoters related to vascular expression and storage root formation. Planta 218:192–203 [Google Scholar]
  111. Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J. 111.  2003. Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Res. 12:243–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error