Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in , pea, and rice have enabled the identification of four SL biosynthetic enzymes: a /-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.

[Erratum, Closure]

An erratum has been published for this article:
Strigolactones, a Novel Carotenoid-Derived Plant Hormone

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 1.  2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–72 [Google Scholar]
  2. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K. 2.  et al. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. PNAS 108:20242–47 [Google Scholar]
  3. Akiyama K, Matsuzaki K, Hayashi H. 3.  2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27 [Google Scholar]
  4. Alder A, Holdermann I, Beyer P, Al-Babili S. 4.  2008. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem. J. 416:289–96 [Google Scholar]
  5. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M. 5.  et al. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–51 [Google Scholar]
  6. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M. 6.  et al. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51:1019–29 [Google Scholar]
  7. Arite T, Kameoka H, Kyozuka J. 7.  2012. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 31:165–72 [Google Scholar]
  8. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M. 8.  et al. 2009. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–24 [Google Scholar]
  9. Auldridge ME, McCarty DR, Klee HJ. 9.  2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9:315–21 [Google Scholar]
  10. Avendaño-Vázquez AO, Cordoba E, Llamas E, San Román C, Nisar N. 10.  et al. 2014. An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell 26:2524–37 [Google Scholar]
  11. Bainbridge K, Sorefan K, Ward S, Leyser O. 11.  2005. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J. 44:569–80 [Google Scholar]
  12. Beveridge CA, Kyozuka J. 12.  2010. New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 13:34–39 [Google Scholar]
  13. Beveridge CA, Ross JJ, Murfet IC. 13.  1996. Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110:859–65 [Google Scholar]
  14. Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. 14.  2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol. 199:188–202 [Google Scholar]
  15. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. 15.  2004. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14:1232–38 [Google Scholar]
  16. Booker J, Sieberer T, Wright W, Williamson L, Willett B. 16.  et al. 2005. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8:443–49 [Google Scholar]
  17. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. 17.  2003. Secondary metabolite signalling in host–parasitic plant interactions. Curr. Opin. Plant Biol. 6:358–64 [Google Scholar]
  18. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P. 18.  et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 64:1002–17 [Google Scholar]
  19. Brewer PB, Koltai H, Beveridge CA. 19.  2013. Diverse roles of strigolactones in plant development. Mol. Plant 6:18–28 [Google Scholar]
  20. Britton G. 20.  1995. Structure and properties of carotenoids in relation to function. FASEB J. 9:1551–58 [Google Scholar]
  21. Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S. 21.  2014. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett. 588:1802–7 [Google Scholar]
  22. Bu Q, Lv T, Shen H, Luong P, Wang J. 22.  et al. 2014. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 164:424–39 [Google Scholar]
  23. Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB. 23.  1999. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J. 17:427–31 [Google Scholar]
  24. Butler LG. 24.  1995. Chemical communication between the parasitic weed Striga and its crop host. Allelopathy: Organisms, Processes, and Application Inderjit, KMM Dakshini, FA Einhellig 158–68 ACS Symp. Ser. 582 Washington, DC: Am. Chem. Soc. [Google Scholar]
  25. Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O. 25.  2013. A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol. 161:1885–902 [Google Scholar]
  26. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 26.  1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–90 [Google Scholar]
  27. Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL. 27.  2006. Transmembrane traffic in the cytochrome b6f complex. Annu. Rev. Biochem. 75:769–90 [Google Scholar]
  28. Crawford S, Shinohara N, Sieberer T, Williamson L, George G. 28.  et al. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–13 [Google Scholar]
  29. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 29.  2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61:651–79 [Google Scholar]
  30. de Saint Germain A, Bonhomme S, Boyer FD, Rameau C. 30.  2013. Novel insights into strigolactone distribution and signalling. Curr. Opin. Plant Biol. 16:583–89 [Google Scholar]
  31. de Saint Gaermain A, Ligerot Y, Dun EA, Pillot JP, Ross JJ. 31.  et al. 2013. Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol. 163:1012–25 [Google Scholar]
  32. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M. 32.  et al. 2005. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9:109–19 [Google Scholar]
  33. Drummond RS, Martínez-Sánchez NM, Janssen BJ, Templeton KR, Simons JL. 33.  et al. 2009. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol. 151:1867–77 [Google Scholar]
  34. Drummond RS, Sheehan H, Simons JL, Martínez-Sánchez NM, Turner RM. 34.  et al. 2012. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front. Plant Sci. 2:115 [Google Scholar]
  35. Dun EA, de Saint Germain A, Rameau C, Beveridge CA. 35.  2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 158:487–98 [Google Scholar]
  36. Fiore A, Dall'osto L, Fraser PD, Bassi R, Giuliano G. 36.  2006. Elucidation of the β-carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett. 580:4718–22 [Google Scholar]
  37. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 37.  2004. A compound from smoke that promotes seed germination. Science 305:977 [Google Scholar]
  38. Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA. 38.  2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–74 [Google Scholar]
  39. Fraser PD, Bramley PM. 39.  2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43:228–65 [Google Scholar]
  40. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M. 40.  et al. 2014. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. PNAS 111:12246–51 [Google Scholar]
  41. Giuliano G, Al-Babili S, Von Lintig J. 41.  2003. Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci. 8:145–49 [Google Scholar]
  42. Gómez-Roldán V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA. 42.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  43. Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S. 43.  et al. 2012. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol. 160:1303–17 [Google Scholar]
  44. Gutjahr C, Parniske M. 44.  2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29:593–617 [Google Scholar]
  45. Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R. 45.  et al. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. PNAS 111:851–56 [Google Scholar]
  46. Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM. 46.  et al. 2012. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22:2032–36 [Google Scholar]
  47. Hayward A, Stirnberg P, Beveridge C, Leyser O. 47.  2009. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151:400–12 [Google Scholar]
  48. Hoffmann B, Proust H, Belcram K, Labrune C, Boyer F-D. 48.  et al. 2014. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLOS ONE 9:e99206 [Google Scholar]
  49. Howitt CA, Pogson BJ. 49.  2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 29:435–45 [Google Scholar]
  50. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I. 50.  et al. 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86 [Google Scholar]
  51. Isin EM, Guengerich FP. 51.  2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta 1770:314–29 [Google Scholar]
  52. Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K. 52.  et al. 2011. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 51:373–85 [Google Scholar]
  53. Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ. 53.  2012. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235:473–84 [Google Scholar]
  54. Jamil M, Charnikhova T, Jamil T, Ali Z, Mohamed NEMA. 54.  et al. 2014. Influence of fertilizer microdosing on strigolactone production and Striga hermonthica parasitism in pearl millet. Int. J. Agric. Biol. 16:935–40 [Google Scholar]
  55. Jiang L, Liu X, Xiong G, Liu H, Chen F. 55.  et al. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–5 [Google Scholar]
  56. Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K. 56.  et al. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142:1014–26 [Google Scholar]
  57. Kachanovsky DE, Filler S, Isaacson T, Hirschberg J. 57.  2012. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. PNAS 109:19021–26 [Google Scholar]
  58. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J. 58.  et al. 2013. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–60 [Google Scholar]
  59. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S. 59.  et al. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–16 [Google Scholar]
  60. Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P. 60.  et al. 2012. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196:535–47 [Google Scholar]
  61. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA. 61.  et al. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155:974–87 [Google Scholar]
  62. Koltai H. 62.  2014. Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci. 19:727–33 [Google Scholar]
  63. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M. 63.  et al. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–44 [Google Scholar]
  64. Lechat M-M, Pouvreau J-B, Péron T, Gauthier M, Montiel G. 64.  et al. 2012. PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. J. Exp. Bot. 63:5311–22 [Google Scholar]
  65. Ledger SE, Janssen BJ, Karunairetnam S, Wang T, Snowden KC. 65.  2010. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). New Phytol. 188:803–13 [Google Scholar]
  66. Liang J, Zhao L, Challis R, Leyser O. 66.  2010. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J. Exp. Bot. 61:3069–78 [Google Scholar]
  67. Lin H, Wang R, Qian Q, Yan M, Meng X. 67.  et al. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–25 [Google Scholar]
  68. Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S. 68.  et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–65 [Google Scholar]
  69. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. 69.  2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244–56 [Google Scholar]
  70. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W. 70.  et al. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178:863–74 [Google Scholar]
  71. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK. 71.  et al. 2010. Does abscisic acid affect strigolactone biosynthesis?. New Phytol. 187:343–54 [Google Scholar]
  72. Luqut D, Zhang BG, Dingkuhn M, Dexet A, Clément-Vidal A. 72.  2005. Phenotypic plasticity of rice seedlings: case of phosphorus deficiency. Plant Prod. Sci. 8 8:14551 [Google Scholar]
  73. Lynch JP, Brown KM. 73.  2001. Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–37 [Google Scholar]
  74. Maass D, Arango J, Wust F, Beyer P, Welsch R. 74.  2009. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLOS ONE 4:e6373 [Google Scholar]
  75. Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K. 75.  et al. 2009. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 73:2460–65 [Google Scholar]
  76. Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ. 76.  2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139:920–34 [Google Scholar]
  77. Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M. 77.  et al. 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160:1329–41 [Google Scholar]
  78. Medina HR, Cerda-Olmedo E, Al-Babili S. 78.  2011. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol. Microbiol. 82:199–208 [Google Scholar]
  79. Moise AR, Al-Babili S, Wurtzel ET. 79.  2013. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev. 114:164–93 [Google Scholar]
  80. Moise AR, von Lintig J, Palczewski K. 80.  2005. Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends Plant Sci. 10:178–86 [Google Scholar]
  81. Morris SE, Turnbull C, Murfet IC, Beveridge C. 81.  2001. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126:1205–13 [Google Scholar]
  82. Motonami N, Ueno K, Nakashima H, Nomura S, Mizutani M. 82.  et al. 2013. The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry 93:41–48 [Google Scholar]
  83. Mouchel CF, Leyser O. 83.  2007. Novel phytohormones involved in long-range signaling. Curr. Opin. Plant Biol. 10:473–76 [Google Scholar]
  84. Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM. 84.  et al. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4:2613 [Google Scholar]
  85. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR. 85.  et al. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. PNAS 108:8897–902 [Google Scholar]
  86. Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J. 86.  2014. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J. 78:80–93 [Google Scholar]
  87. Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. 87.  2013. Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 112:391–408 [Google Scholar]
  88. Parker C. 88.  2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65:453–59 [Google Scholar]
  89. Pasare SA, Ducreux LJ, Morris WL, Campbell R, Sharma SK. 89.  et al. 2013. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol. 198:1108–20 [Google Scholar]
  90. Peret B, Clement M, Nussaume L, Desnos T. 90.  2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 16:442–50 [Google Scholar]
  91. Perez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S. 91.  et al. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–72 [Google Scholar]
  92. Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG. 92.  et al. 2011. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–39 [Google Scholar]
  93. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M. 93.  2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. PNAS 109:5535–40 [Google Scholar]
  94. Rasmussen A, Depuydt S, Goormachtig S, Geelen D. 94.  2013. Strigolactones fine-tune the root system. Planta 238:615–26 [Google Scholar]
  95. Ruch S, Beyer P, Ernst H, Al-Babili S. 95.  2005. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol. Microbiol. 55:1015–24 [Google Scholar]
  96. Ruiz-Sola , Rodríguez-Concepción M. 96.  2012. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158 [Google Scholar]
  97. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester HJ. 97.  2013. The biology of strigolactones. Trends Plant Sci. 18:72–83 [Google Scholar]
  98. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L. 98.  et al. 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiol. 155:721–34 [Google Scholar]
  99. Sánchez-Calderón L, López-Bucio J, Chacon-Lopez A, Cruz-Ramírez A, Nieto-Jacobo F. 99.  et al. 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 46:174–84 [Google Scholar]
  100. Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM. 100.  2013. Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 76:1–9 [Google Scholar]
  101. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW. 101.  et al. 2014. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165:1221–32 [Google Scholar]
  102. Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S. 102.  2006. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem. J. 398:361–69 [Google Scholar]
  103. Schlicht M, Šamajová O, Schachtschabel D, Mancuso S, Menzel D. 103.  et al. 2008. D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. Plant J. 55:709–17 [Google Scholar]
  104. Schmitz AM, Harrison MJ. 104.  2014. Signaling events during initiation of arbuscular mycorrhizal symbiosis. J. Integr. Plant Biol. 56:250–61 [Google Scholar]
  105. Schwartz SH. 105.  1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–74 [Google Scholar]
  106. Schwartz SH, Qin X, Loewen MC. 106.  2004. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279:46940–45 [Google Scholar]
  107. Seto Y, Sado A, Asami K, Hanada A, Umehara M. 107.  et al. 2014. Carlactone is an endogenous biosynthetic precursor for strigolactones. PNAS 111:1640–45 [Google Scholar]
  108. Seto Y, Yamaguchi S. 108.  2014. Strigolactone biosynthesis and perception. Curr. Opin. Plant Biol. 21:1–6 [Google Scholar]
  109. Shinohara N, Taylor C, Leyser O. 109.  2013. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biol. 11:e1001474 [Google Scholar]
  110. Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC. 110.  2007. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol. 143:697–706 [Google Scholar]
  111. Smith SE, Smith FA. 111.  2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62:227–50 [Google Scholar]
  112. Smith SM, Li J. 112.  2014. Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21:23–29 [Google Scholar]
  113. Smith SM, Waters MT. 113.  2012. Strigolactones: destruction-dependent perception?. Curr. Biol. 22:R924–27 [Google Scholar]
  114. Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM. 114.  et al. 2005. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–59 [Google Scholar]
  115. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K. 115.  et al. 2003. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17:1469–74 [Google Scholar]
  116. Stirnberg P, Furner IJ, Leyser O. 116.  2007. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50:80–94 [Google Scholar]
  117. Sun H, Tao J, Liu S, Huang S, Chen S. 117.  et al. 2014. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65:6735–46 [Google Scholar]
  118. Sun Z, Gantt E, Cunningham FX. 118.  1996. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J. Biol. Chem. 271:24349–52 [Google Scholar]
  119. Tian L. 119.  2003. Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–32 [Google Scholar]
  120. Tian L, DellaPenna D. 120.  2001. Characterization of a second carotenoid β-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol. Biol. 47:379–88 [Google Scholar]
  121. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D. 121.  2004. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid ε-ring hydroxylation activity. PNAS 101:402–7 [Google Scholar]
  122. Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M. 122.  et al. 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146:1368–85 [Google Scholar]
  123. Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y. 123.  2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 53:107–17 [Google Scholar]
  124. Troughton A. 124.  1977. The effect of the prevention of the production of additional root axes upon the growth of plants of Lolium perenne. Ann. Bot. 42:269–76 [Google Scholar]
  125. Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E. 125.  et al. 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6:741–49 [Google Scholar]
  126. Turnbull C, Booker J, Leyser O. 126.  2002. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32:255–62 [Google Scholar]
  127. Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y. 127.  2011. Ent-2′-epi-orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J. Agric. Food Chem. 59:10485–90 [Google Scholar]
  128. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. 128.  2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51:1118–26 [Google Scholar]
  129. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 129.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  130. Urquhart S, Foo E, Reid JB. 130.  2015. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting. Physiol. Plant. In press. doi: 10.1111/ppl.12246
  131. Van Norman JM, Zhang J, Cazzonelli CI, Pogson BJ, Harrison PJ. 131.  et al. 2014. Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative. PNAS 111:E1300–9 [Google Scholar]
  132. Vogel JT, Tan BC, McCarty DR, Klee HJ. 132.  2008. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J. Biol. Chem. 283:11364–73 [Google Scholar]
  133. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W. 133.  et al. 2010. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 61:300–11 [Google Scholar]
  134. Waldie T, McCulloch H, Leyser O. 134.  2014. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79:607–22 [Google Scholar]
  135. Walter MH, Strack D. 135.  2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat. Prod. Rep. 28:663–92 [Google Scholar]
  136. Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. 136.  2013. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 27:681–88 [Google Scholar]
  137. Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA. 137.  2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 159:1073–85 [Google Scholar]
  138. Waters MT, Scaffidi A, Flematti GR, Smith SM. 138.  2013. The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol. 16:667–73 [Google Scholar]
  139. Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM. 139.  2014. The karrikin response system of Arabidopsis. Plant J. 79:623–31 [Google Scholar]
  140. Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. 140.  2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126:875–82 [Google Scholar]
  141. Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S. 141.  et al. 2013. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant 6:153–63 [Google Scholar]
  142. Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. 142.  2014. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408 [Google Scholar]
  143. Yan J, Liu Y, Mao D, Li L, Kuang T. 143.  2001. The presence of 9-cis-β-carotene in cytochrome b6f complex from spinach. Biochim. Biophys. Acta 1506:182–88 [Google Scholar]
  144. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y. 144.  1998. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–73 [Google Scholar]
  145. Yoneyama K, Kisugi T, Xie X, Yoneyama K. 145.  2013. Chemistry of strigolactones: Why and how do plants produce so many strigolactones?. Molecular Microbial Ecology of the Rhizosphere 1 FJ de Bruijn 373–79 Hoboken, NJ: Wiley & Sons [Google Scholar]
  146. Yoneyama K, Takeuchi Y, Yokota T. 146.  2001. Production of clover broomrape seed germination stimulants by red clover root requires nitrate but is inhibited by phosphate and ammonium. Physiol. Plant. 112:25–30 [Google Scholar]
  147. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T. 147.  et al. 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?. Planta 235:1197–207 [Google Scholar]
  148. Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K. 148.  2013. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238:885–94 [Google Scholar]
  149. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y. 149.  et al. 2007. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–32 [Google Scholar]
  150. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. 150.  2007. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–38 [Google Scholar]
  151. Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M. 151.  et al. 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10:1028–33 [Google Scholar]
  152. Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y. 152.  et al. 2013. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23:436–39 [Google Scholar]
  153. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K. 153.  et al. 2013. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–10 [Google Scholar]
  154. Zou J, Zhang S, Zhang W, Li G, Chen Z. 154.  et al. 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48:687–98 [Google Scholar]
  155. Zwanenburg B, Pospisil T. 155.  2013. Structure and activity of strigolactones: new plant hormones with a rich future. Mol. Plant 6:38–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error