1932

Abstract

Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth–death balance in the context of agroecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060223-041716
2024-07-22
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-060223-041716.html?itemId=/content/journals/10.1146/annurev-arplant-060223-041716&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbai R, Singh VK, Snowdon RJ, Kumar A, Schnurbusch T. 2020.. Seeking crops with balanced parts for the ideal whole. . Trends Plant Sci. 25::118993
    [Crossref] [Google Scholar]
  2. 2.
    Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, et al. 2009.. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. . Science 323::26265
    [Crossref] [Google Scholar]
  3. 3.
    Amanda D, Frey FP, Neumann U, Przybyl M, Šimura J, et al. 2022.. Auxin boosts energy generation pathways to fuel pollen maturation in barley. . Curr. Biol. 32::1798811.e8
    [Crossref] [Google Scholar]
  4. 4.
    An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, et al. 2004.. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. . Development 131::361526
    [Crossref] [Google Scholar]
  5. 5.
    Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, et al. 2005.. Cytokinin oxidase regulates rice grain production. . Science 309::74145
    [Crossref] [Google Scholar]
  6. 6.
    Aubuchon-Elder T, Coneva V, Goad DM, Jenkins LM, Yu Y, et al. 2020.. Sterile spikelets contribute to yield in sorghum and related grasses. . Plant Cell 32::350018 6. Provides biochemical evidence to demonstrate the contribution of yield from sterile spikelets to fertile spikelets through photosynthesis in sorghum.
    [Crossref] [Google Scholar]
  7. 7.
    Backhaus AE, Griffiths C, Vergara-Cruces A, Simmonds J, Lee R, et al. 2023.. Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature. . J. Exp. Bot. 74:(17):5088103
    [Crossref] [Google Scholar]
  8. 8.
    Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, et al. 2022.. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. . Plant Physiol. 189::153652 8. Demonstrates that the high expression of an SVP MADS-box gene VRT-A2 represses basal spikelet development in wheat.
    [Crossref] [Google Scholar]
  9. 9.
    Barthélémy D, Caraglio Y. 2007.. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. . Ann. Bot. 99::375407
    [Crossref] [Google Scholar]
  10. 10.
    Bastos LM, Carciochi W, Lollato RP, Jaenisch BR, Rezende CR, et al. 2020.. Winter wheat yield response to plant density as a function of yield environment and tillering potential: a review and field studies. . Front. Plant Sci. 11::54
    [Crossref] [Google Scholar]
  11. 11.
    Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K, et al. 2016.. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. . PNAS 113::896974
    [Crossref] [Google Scholar]
  12. 12.
    Bi X, Van Esse W, Mulki MA, Kirschner G, Zhong J, et al. 2019.. CENTRORADIALIS interacts with FLOWERING LOCUS T-like genes to control floret development and grain number. . Plant Physiol. 180::101330
    [Crossref] [Google Scholar]
  13. 13.
    Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, et al. 2015.. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. . Nat. Plants 1::14016
    [Crossref] [Google Scholar]
  14. 14.
    Bonnett OT. 1935.. The development of the barley spike. . J. Agric. Res. 51::41557
    [Google Scholar]
  15. 15.
    Bonnett OT. 1966.. Inflorescences of maize, wheat, rye, barley, and oats: their initiation and development. Bull. 721 , Univ. Ill. Coll. Agric. Agric. Exp. Stn., Champaign, IL:
    [Google Scholar]
  16. 16.
    Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. 2006.. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. . Plant Cell 18::57485
    [Crossref] [Google Scholar]
  17. 17.
    Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. 1993.. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. . Development 119::72143
    [Crossref] [Google Scholar]
  18. 18.
    Brazel AJ, Ó’Maoiléidigh DS. 2019.. Photosynthetic activity of reproductive organs. . J. Exp. Bot. 70::173754
    [Crossref] [Google Scholar]
  19. 19.
    Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB, et al. 2017.. Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. . Nat. Commun. 8::936
    [Crossref] [Google Scholar]
  20. 20.
    Chaturvedi P, Wiese AJ, Ghatak A, Zaveska Drabkova L, Weckwerth W, Honys D. 2021.. Heat stress response mechanisms in pollen development. . New Phytol. 231::57185
    [Crossref] [Google Scholar]
  21. 21.
    Chuck G, Meeley R, Irish E, Sakai H, Hake S. 2007.. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. . Nat. Genet. 39::151721
    [Crossref] [Google Scholar]
  22. 22.
    Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, et al. 2012.. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. . PLOS ONE 7:(9):e45307
    [Crossref] [Google Scholar]
  23. 23.
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007.. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. . Science 316::103033
    [Crossref] [Google Scholar]
  24. 24.
    Daneva A, Gao Z, Van Durme M, Nowack MK. 2016.. Functions and regulation of programmed cell death in plant development. . Annu. Rev. Cell Dev. Biol. 32::44168
    [Crossref] [Google Scholar]
  25. 25.
    Datta S, Hettiarachchi G, Deng X-W, Holm M. 2006.. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. . Plant Cell 18::7084
    [Crossref] [Google Scholar]
  26. 26.
    DeLong A, Calderon-Urrea A, Dellaporta SL. 1993.. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. . Cell 74::75768
    [Crossref] [Google Scholar]
  27. 27.
    Diggle PK. 1995.. Architectural effects and the interpretation of patterns of fruit and seed development. . Annu. Rev. Ecol. Syst. 26::53152
    [Crossref] [Google Scholar]
  28. 28.
    Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, et al. 2018.. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). . Plant Cell 30::56381
    [Crossref] [Google Scholar]
  29. 29.
    Dixon LE, Pasquariello M, Badgami R, Levin KA, Poschet G, et al. 2022.. MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. . Sci. Adv. 8::eabn5907
    [Crossref] [Google Scholar]
  30. 30.
    Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, et al. 2005.. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. . Science 309::63033 30. Shows that matching the external light–dark cycle with the endogenous circadian period increases photosynthetic efficiency and survival in Arabidopsis.
    [Crossref] [Google Scholar]
  31. 31.
    Dolferus R, Ji X, Richards RA. 2011.. Abiotic stress and control of grain number in cereals. . Plant Sci. 181::33141
    [Crossref] [Google Scholar]
  32. 32.
    Donald CM. 1968.. The breeding of crop ideotypes. . Euphytica 17::385403
    [Crossref] [Google Scholar]
  33. 33.
    Dong Z, Xu Z, Xu L, Galli M, Gallavotti A, et al. 2020.. Necrotic upper tips1 mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. . PNAS 117::2090819 33. Shows that a NAC transcription factor maintains the protoxylem vessel integrity for long-distance water movement and tip floral survival in maize.
    [Crossref] [Google Scholar]
  34. 34.
    Dupuy L, Mackenzie J, Haseloff J. 2010.. Coordination of plant cell division and expansion in a simple morphogenetic system. . PNAS 107::271116
    [Crossref] [Google Scholar]
  35. 35.
    Ejaz M, Von Korff M. 2017.. The genetic control of reproductive development under high ambient temperature. . Plant Physiol. 173::294306
    [Crossref] [Google Scholar]
  36. 36.
    Endo M, Shimizu H, Nohales MA, Araki T, Kay SA. 2014.. Tissue-specific clocks in Arabidopsis show asymmetric coupling. . Nature 515::41922
    [Crossref] [Google Scholar]
  37. 37.
    Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, et al. 2012.. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. . PNAS 109::832833
    [Crossref] [Google Scholar]
  38. 38.
    Fichman Y, Mittler R. 2020.. Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades?. Plant J. 102::88796
    [Crossref] [Google Scholar]
  39. 39.
    Flintham J, Börner A, Worland A, Gale M. 1997.. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. . J. Agric. Sci. 128::1125
    [Crossref] [Google Scholar]
  40. 40.
    Food Agric. Org. U. N. (FAO). 2023.. World Food and Agriculture—Statistical Yearbook 2023. Rome:: FAO. https://doi.org/10.4060/cc8166en
    [Google Scholar]
  41. 41.
    Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas WTB. 2007.. The barley phytomer. . Ann. Bot. 100::72533 41. Proposes the barley phytomer model, which is widely applicable for most cereal crop plant architecture.
    [Crossref] [Google Scholar]
  42. 42.
    Gallagher JP, Man J, Chiaramida A, Rozza IK, Patterson EL, et al. 2023.. GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) homologs share conserved roles in growth repression. . PNAS 120::e2311961120
    [Crossref] [Google Scholar]
  43. 43.
    Gao H, Jin M, Zheng X-M, Chen J, Yuan D, et al. 2014.. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. . PNAS 111::1633742
    [Crossref] [Google Scholar]
  44. 44.
    Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B, et al. 2014.. A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. . Genetics 196::125361
    [Crossref] [Google Scholar]
  45. 45.
    Gendron JM, Staiger D. 2023.. New horizons in plant photoperiodism. . Annu. Rev. Plant Biol. 74::481509
    [Crossref] [Google Scholar]
  46. 46.
    Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, et al. 2008.. Autophagy regulated by day length determines the number of fertile florets in wheat. . Plant J. 55::101024
    [Crossref] [Google Scholar]
  47. 47.
    Gol L, Haraldsson EB, Von Korff M. 2021.. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. . J. Exp. Bot. 72::12236
    [Crossref] [Google Scholar]
  48. 48.
    Gol L, Tomé F, von Korff M. 2017.. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. . J. Exp. Bot. 68::1399410
    [Crossref] [Google Scholar]
  49. 49.
    Golan G, Abbai R, Schnurbusch T. 2022.. Exploring the trade-off between individual fitness and community performance of wheat crops using simulated canopy shade. . Plant Cell Environ. 46:(10):314457
    [Crossref] [Google Scholar]
  50. 50.
    Guo Z, Chen D, Alqudah AM, Röder MS, Ganal MW, Schnurbusch T. 2017.. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. . New Phytol. 214::25770
    [Crossref] [Google Scholar]
  51. 51.
    Guo Z, Chen D, Röder MS, Ganal MW, Schnurbusch T. 2018.. Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. . Plant J. 95::90918
    [Crossref] [Google Scholar]
  52. 52.
    Gustin JL, Boehlein SK, Shaw JR, Junior W, Settles AM, et al. 2018.. Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control. . Sci. Rep. 8::13032
    [Crossref] [Google Scholar]
  53. 53.
    Hattori Y, Nagai K, Ashikari M. 2011.. Rice growth adapting to deepwater. . Curr. Opin. Plant Biol. 14::1005
    [Crossref] [Google Scholar]
  54. 54.
    Hedden P. 2003.. The genes of the Green Revolution. . Trends Genet. 19::59
    [Crossref] [Google Scholar]
  55. 55.
    Heng Y, Wu C, Long Y, Luo S, Ma J, et al. 2018.. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. . Plant Cell 30::889906
    [Crossref] [Google Scholar]
  56. 56.
    Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, et al. 2023.. A molecular framework for grain number determination in barley. . Sci. Adv. 9::eadd0324 56. Provides genetic and molecular frameworks encompassing floral initiation and maturation for grain number determination in barley.
    [Crossref] [Google Scholar]
  57. 57.
    Huang Y, Maurer A, Giehl RFH, Zhao S, Golan G, et al. 2024.. Dynamic phytomeric growth contributes to local adaptation in barley. . Mol. Biol. Evol. 41::msae011
    [Crossref] [Google Scholar]
  58. 58.
    Huang Y, Zhao S, Fu Y, Sun H, Ma X, et al. 2018.. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. . Plant J. 96::71633
    [Crossref] [Google Scholar]
  59. 59.
    Jacott CN, Boden SA. 2020.. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. . J. Exp. Bot. 71::574051
    [Crossref] [Google Scholar]
  60. 60.
    Jeon J-S, Jang S, Lee S, Nam J, Kim C, et al. 2000.. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. . Plant Cell 12::87184
    [Google Scholar]
  61. 61.
    Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, et al. 2018.. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. . Nat. Commun. 9::822
    [Crossref] [Google Scholar]
  62. 62.
    Jiao Y, Wang Y, Xue D, Wang J, Yan M, et al. 2010.. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. . Nat. Genet. 42::54144
    [Crossref] [Google Scholar]
  63. 63.
    Josse E-M, Halliday KJ. 2008.. Skotomorphogenesis: the dark side of light signalling. . Curr. Biol. 18::R114446
    [Crossref] [Google Scholar]
  64. 64.
    Kamal R, Muqaddasi QH, Zhao Y, Schnurbusch T. 2022.. Spikelet abortion in six-rowed barley is mainly influenced by final spikelet number, with potential spikelet number acting as a suppressor trait. . J. Exp. Bot. 73::200520
    [Crossref] [Google Scholar]
  65. 65.
    Kato Y, Kamoshita A, Yamagishi J. 2008.. Preflowering abortion reduces spikelet number in upland rice (Oryza sativa L.) under water stress. . Crop. Sci. 48::238995
    [Crossref] [Google Scholar]
  66. 66.
    Kellogg EA. 2001.. Evolutionary history of the grasses. . Plant Physiol. 125::1198205
    [Crossref] [Google Scholar]
  67. 67.
    Kennedy S, Lynch J, Spink J, Bingham I. 2018.. Grain number and grain filling of two-row malting barley in response to variation in post-anthesis radiation: analysis by grain position on the ear and its implications for yield improvement and quality. . Field Crops Res. 225::7482
    [Crossref] [Google Scholar]
  68. 68.
    Kirby EJM, Rymer JL. 1974.. Development of the vascular system in the ear of barley. . Ann. Bot. 38::56573
    [Crossref] [Google Scholar]
  69. 69.
    Kirby EJM, Rymer JL. 1975.. The vascular anatomy of the barley spikelet. . Ann. Bot. 39::20511
    [Crossref] [Google Scholar]
  70. 70.
    Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, et al. 2022.. Recruitment of an ancient branching program to suppress carpel development in maize flowers. . PNAS 119::e2115871119
    [Crossref] [Google Scholar]
  71. 71.
    Klingenberg CP. 1998.. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. . Biol. Rev. 73::79123
    [Crossref] [Google Scholar]
  72. 72.
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, et al. 2002.. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. . Plant Cell Physiol. 43::1096105
    [Crossref] [Google Scholar]
  73. 73.
    Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, et al. 2007.. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. . PNAS 104::142429 73. Discovery of an evolutionarily conserved carpel repressor HD-Zip I transcription factor in barley.
    [Crossref] [Google Scholar]
  74. 74.
    Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, et al. 2013.. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. . PNAS 110::13198203
    [Crossref] [Google Scholar]
  75. 75.
    Koppolu R, Chen S, Schnurbusch T. 2022.. Evolution of inflorescence branch modifications in cereal crops. . Curr. Opin. Plant Biol. 65::102168
    [Crossref] [Google Scholar]
  76. 76.
    Koppolu R, Jiang G, Milner SG, Muqaddasi QH, Rutten T, et al. 2022.. The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. . Theor. Appl. Genet. 135::57190
    [Crossref] [Google Scholar]
  77. 77.
    Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW. 1989.. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. . Plant Cell 1::1195208
    [Crossref] [Google Scholar]
  78. 78.
    Li G, Kuijer HN, Yang X, Liu H, Shen C, et al. 2021.. MADS1 maintains barley spike morphology at high ambient temperatures. . Nat. Plants 7::1093107
    [Crossref] [Google Scholar]
  79. 79.
    Li H, Xue D, Gao Z, Yan M, Xu W, et al. 2009.. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. . Plant J. 57::593605
    [Crossref] [Google Scholar]
  80. 80.
    Li K, Debernardi JM, Li C, Lin H, Zhang C, et al. 2021.. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. . Plant Cell 33::362144
    [Crossref] [Google Scholar]
  81. 81.
    Li M, Hensel G, Mascher M, Melzer M, Budhagatapalli N, et al. 2019.. Leaf variegation and impaired chloroplast development caused by a truncated CCT domain gene in albostrians barley. . Plant Cell 31::143045
    [Crossref] [Google Scholar]
  82. 82.
    Li M, Hensel G, Melzer M, Junker A, Tschiersch H, et al. 2021.. Mutation of the ALBOSTRIANS ohnologous gene HvCMF3 impairs chloroplast development and thylakoid architecture in barley. . Front. Plant Sci. 12::732608
    [Crossref] [Google Scholar]
  83. 83.
    Li M, Kim C. 2021.. Chloroplast ROS and stress signaling. . Plant Commun. 9::100264
    [Google Scholar]
  84. 84.
    Li X, Wang H, Li H, Zhang L, Teng N, et al. 2006.. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). . Physiol. Plant. 127::7019
    [Crossref] [Google Scholar]
  85. 85.
    Liu H, Zhou X, Li Q, Wang L, Xing Y. 2020.. CCT domain-containing genes in cereal crops: flowering time and beyond. . Theor. Appl. Genet. 133::138596
    [Crossref] [Google Scholar]
  86. 86.
    Liu J, Shen J, Xu Y, Li X, Xiao J, Xiong L. 2016.. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. . J. Exp. Bot. 67::578598
    [Crossref] [Google Scholar]
  87. 87.
    Lunde C, Kimberlin A, Leiboff S, Koo AJ, Hake S. 2019.. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. . Commun. Biol. 2::114
    [Crossref] [Google Scholar]
  88. 88.
    Meng X, Muszynski MG, Danilevskaya ON. 2011.. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. . Plant Cell 23::94260
    [Crossref] [Google Scholar]
  89. 89.
    Meyer HM. 2020.. In search of function: nuclear bodies and their possible roles as plant environmental sensors. . Curr. Opin. Plant Biol. 58::3340
    [Crossref] [Google Scholar]
  90. 90.
    Miralles DJ, Richards RA, Slafer GA. 2000.. Duration of the stem elongation period influences the number of fertile florets in wheat and barley. . Funct. Plant Biol. 27::93140
    [Crossref] [Google Scholar]
  91. 91.
    Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, et al. 2010.. OsSPL14 promotes panicle branching and higher grain productivity in rice. . Nat. Genet. 42::54549
    [Crossref] [Google Scholar]
  92. 92.
    Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. 2015.. CO2-Responsive CONSTANS, CONSTANS-Like, and Time of Chlorophyll a/b Binding Protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. . Plant Physiol. 167::132131
    [Crossref] [Google Scholar]
  93. 93.
    Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao R, et al. 2020.. Antagonistic regulation of the gibberellic acid response during stem growth in rice. . Nature 584::10914
    [Crossref] [Google Scholar]
  94. 94.
    Ning Q, Jian Y, Du Y, Li Y, Shen X, et al. 2021.. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. . Nat. Commun. 12::5832
    [Crossref] [Google Scholar]
  95. 95.
    Noodén LD, Penney JP. 2001.. Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). . J. Exp. Bot. 52::215159
    [Crossref] [Google Scholar]
  96. 96.
    Olson ME, Rosell JA. 2013.. Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. . New Phytol. 197::120413
    [Crossref] [Google Scholar]
  97. 97.
    Osella AV, Mengarelli DA, Mateos J, Dong S, Yanovsky MJ, et al. 2018.. FITNESS, a CCT domain-containing protein, deregulates reactive oxygen species levels and leads to fine-tuning trade-offs between reproductive success and defence responses in Arabidopsis. . Plant Cell Environ. 41::232841
    [Crossref] [Google Scholar]
  98. 98.
    Oury V, Tardieu F, Turc O. 2016.. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. . Plant Physiol. 171::98696
    [Google Scholar]
  99. 99.
    Paaby AB, Rockman MV. 2014.. Cryptic genetic variation: evolution's hidden substrate. . Nat. Rev. Genet. 15::24758
    [Crossref] [Google Scholar]
  100. 100.
    Pankin A, Campoli C, Dong X, Kilian B, Sharma R, et al. 2014.. Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. . Genetics 198::38396
    [Crossref] [Google Scholar]
  101. 101.
    Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, et al. 2022.. EAR APICAL DEGENERATION 1 regulates maize ear development by maintaining malate supply for apical inflorescence. . Plant Cell 34::222241
    [Crossref] [Google Scholar]
  102. 102.
    Pérez-Gianmarco TI, Slafer GA, González FG. 2019.. Photoperiod-sensitivity genes shape floret development in wheat. . J. Exp. Bot. 70::133948
    [Crossref] [Google Scholar]
  103. 103.
    Philipp N, Weichert H, Bohra U, Weschke W, Schulthess AW, Weber H. 2018.. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. . PLOS ONE 13::e0205452
    [Crossref] [Google Scholar]
  104. 104.
    Postma JA, Hecht VL, Hikosaka K, Nord EA, Pons TL, Poorter H. 2021.. Dividing the pie: a quantitative review on plant density responses. . Plant Cell Environ. 44::107294
    [Crossref] [Google Scholar]
  105. 105.
    Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, et al. 2015.. Evolution of the grain dispersal system in barley. . Cell 162::52739
    [Crossref] [Google Scholar]
  106. 106.
    Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P, et al. 2015.. The genetic basis of composite spike form in barley and ‘Miracle-Wheat. ’. Genetics 201::15565
    [Crossref] [Google Scholar]
  107. 107.
    Poursarebani N, Trautewig C, Melzer M, Nussbaumer T, Lundqvist U, et al. 2020.. COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. . Nat. Commun. 11::5138
    [Crossref] [Google Scholar]
  108. 108.
    Prieto P, Ochagavía H, Savin R, Griffiths S, Slafer GA. 2018.. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. . J. Exp. Bot. 69::263345
    [Crossref] [Google Scholar]
  109. 109.
    Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E. 2007.. Evolution and development of inflorescence architectures. . Science 316:(5830):145256 109. A developmental model describing the evolution of inflorescence architecture and its association with climate and life history in plants.
    [Crossref] [Google Scholar]
  110. 110.
    Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, et al. 2011.. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. . Nat. Genet. 43::16972
    [Crossref] [Google Scholar]
  111. 111.
    Ren D, Li Y, He G, Qian Q. 2020.. Multifloret spikelet improves rice yield. . New Phytol. 225::23016
    [Crossref] [Google Scholar]
  112. 112.
    Rotasperti L, Tadini L, Chiara M, Crosatti C, Guerra D, et al. 2022.. The barley mutant happy under the sun 1 (hus1): an additional contribution to pale green crops. . Environ. Exp. Bot. 196::104795
    [Crossref] [Google Scholar]
  113. 113.
    Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR. 2012.. Molecular regulation of seed and fruit set. . Trends Plant Sci. 17::65665
    [Crossref] [Google Scholar]
  114. 114.
    Sadras VO, Denison RF. 2009.. Do plant parts compete for resources? An evolutionary viewpoint. . New Phytol. 183::56574
    [Crossref] [Google Scholar]
  115. 115.
    Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, et al. 2019.. Unleashing floret fertility in wheat through the mutation of a homeobox gene. . PNAS 116::518287
    [Crossref] [Google Scholar]
  116. 116.
    Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T, et al. 2017.. Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. . Plant Physiol. 175::172031
    [Crossref] [Google Scholar]
  117. 117.
    Sakuma S, Schnurbusch T. 2020.. Of floral fortune: tinkering with the grain yield potential of cereal crops. . New Phytol. 225::187382
    [Crossref] [Google Scholar]
  118. 118.
    Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith D, et al. 2010.. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. . PNAS 107::2272227
    [Crossref] [Google Scholar]
  119. 119.
    Selva C, Shirley NJ, Houston K, Whitford R, Baumann U, et al. 2021.. HvLEAFY controls the early stages of floral organ specification and inhibits the formation of multiple ovaries in barley. . Plant J. 108::50927
    [Crossref] [Google Scholar]
  120. 120.
    Sentoku N, Kato H, Kitano H, Imai R. 2005.. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. . Mol. Genet. Genom. 273::19
    [Crossref] [Google Scholar]
  121. 121.
    Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, et al. 2023.. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. . Plant Cell 25::39734001
    [Crossref] [Google Scholar]
  122. 122.
    Shannon S, Meeks-Wagner DR. 1991.. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. . Plant Cell 3::87792
    [Crossref] [Google Scholar]
  123. 123.
    Shen C, Liu H, Guan Z, Yan J, Zheng T, et al. 2020.. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering. . Plant Cell 32::346984
    [Crossref] [Google Scholar]
  124. 124.
    Shen S, Ma S, Wu L, Zhou S-L, Ruan Y-L. 2023.. Winners take all: competition for carbon resource determines grain fate. . Trends Plant Sci. 28:(8):893901
    [Crossref] [Google Scholar]
  125. 125.
    Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, et al. 2023.. A ‘wiring diagram’ for sink strength traits impacting wheat yield potential. . J. Exp. Bot. 74::4071
    [Crossref] [Google Scholar]
  126. 126.
    Stephenson AG. 1981.. Flower and fruit abortion: proximate causes and ultimate functions. . Annu. Rev. Ecol. Syst. 12::25379
    [Crossref] [Google Scholar]
  127. 127.
    Strömberg CA. 2011.. Evolution of grasses and grassland ecosystems. . Annu. Rev. Earth Planet. Sci. 39::51744
    [Crossref] [Google Scholar]
  128. 128.
    Stroock AD, Pagay VV, Zwieniecki MA, Holbrook NM. 2014.. The physicochemical hydrodynamics of vascular plants. . Annu. Rev. Fluid Mech. 46::61542
    [Crossref] [Google Scholar]
  129. 129.
    Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011.. Identification of a functional transposon insertion in the maize domestication gene tb1. . Nat. Genet. 43::116063
    [Crossref] [Google Scholar]
  130. 130.
    Thiel J, Koppolu R, Trautewig C, Hertig C, Kale SM, et al. 2021.. Transcriptional landscapes of floral meristems in barley. . Sci. Adv. 7::eabf0832 130. A comprehensive transcriptomic analysis covering floral initiation and maturation through laser-captured microdissection of floral meristems in barley.
    [Crossref] [Google Scholar]
  131. 131.
    Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A, et al. 2017.. Leaf primordium size specifies leaf width and vein number among row-type classes in barley. . Plant J. 91::60112
    [Crossref] [Google Scholar]
  132. 132.
    Thirulogachandar V, Koppolu R, Schnurbusch T. 2021.. Strategies of grain number determination differentiate barley row types. . J. Exp. Bot. 72::775468
    [Crossref] [Google Scholar]
  133. 133.
    Thirulogachandar V, Schnurbusch T. 2021.. ‘Spikelet stop’ determines the maximum yield potential stage in barley. . J. Exp. Bot. 72::774353
    [Crossref] [Google Scholar]
  134. 134.
    Tian J, Wang C, Xia J, Wu L, Xu G, et al. 2019.. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. . Science 365::65864
    [Crossref] [Google Scholar]
  135. 135.
    Tokutsu R, Fujimura-Kamada K, Matsuo T, Yamasaki T, Minagawa J. 2019.. The CONSTANS flowering complex controls the protective response of photosynthesis in the green alga Chlamydomonas. . Nat. Commun. 10::4099
    [Crossref] [Google Scholar]
  136. 136.
    Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005.. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. . Science 310::103134
    [Crossref] [Google Scholar]
  137. 137.
    Ugarte CC, Trupkin SA, Ghiglione H, Slafer G, Casal JJ. 2010.. Low red/far-red ratios delay spike and stem growth in wheat. . J. Exp. Bot. 61::315162
    [Crossref] [Google Scholar]
  138. 138.
    Van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, Von Korff M. 2017.. Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. . Plant Physiol. 174::2397408
    [Crossref] [Google Scholar]
  139. 139.
    Vélez-Bermúdez I-C, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla J-M, et al. 2015.. A MYB/ZML complex regulates wound-induced lignin genes in maize. . Plant Cell 27::324559
    [Crossref] [Google Scholar]
  140. 140.
    Waddington S, Cartwright P, Wall P. 1983.. A quantitative scale of spike initial and pistil development in barley and wheat. . Ann. Bot. 51::11930
    [Crossref] [Google Scholar]
  141. 141.
    Wang C, Yang Q, Wang W, Li Y, Guo Y, et al. 2017.. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. . New Phytol. 215::150315
    [Crossref] [Google Scholar]
  142. 142.
    Wang Q, Su Q, Nian J, Zhang J, Guo M, et al. 2021.. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. . Mol. Plant 14::101223
    [Crossref] [Google Scholar]
  143. 143.
    Wang Q-L, Sun A-Z, Chen S-T, Chen L-S, Guo F-Q. 2018.. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. . Nat. Plants 4::28088
    [Crossref] [Google Scholar]
  144. 144.
    Wang Y, Du F, Wang J, Wang K, Tian C, et al. 2022.. Improving bread wheat yield through modulating an unselected AP2/ERF gene. . Nat. Plants 8::93039
    [Crossref] [Google Scholar]
  145. 145.
    Ware A, Walker CH, Šimura J, González-Suárez P, Ljung K, et al. 2020.. Auxin export from proximal fruits drives arrest in temporally competent inflorescences. . Nat. Plants 6::699707
    [Crossref] [Google Scholar]
  146. 146.
    Watson MA, Casper BB. 1984.. Morphogenetic constraints on patterns of carbon distribution in plants. . Annu. Rev. Ecol. Syst. 15::23358
    [Crossref] [Google Scholar]
  147. 147.
    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992.. LEAFY controls floral meristem identity in Arabidopsis. . Cell 69::84359
    [Crossref] [Google Scholar]
  148. 148.
    Weiner J. 2019.. Looking in the wrong direction for higher-yielding crop genotypes. . Trends Plant Sci. 24::92733
    [Crossref] [Google Scholar]
  149. 149.
    Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, et al. 2006.. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. . Plant Cell 18::297184
    [Crossref] [Google Scholar]
  150. 150.
    West GB, Brown JH, Enquist BJ. 1999.. A general model for the structure and allometry of plant vascular systems. . Nature 400::66467 150. Provides a mathematical model that describes a general quarter-power law for vascular plant–size allometric scaling relations.
    [Crossref] [Google Scholar]
  151. 151.
    Whingwiri E, Kuo J, Stern W. 1981.. The vascular system in the rachis of a wheat ear. . Ann. Bot. 48::189202
    [Crossref] [Google Scholar]
  152. 152.
    Wolde GM, Schnurbusch T. 2019.. Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched headt (bht-A1) near isogenic lines. . Funct. Plant Biol. 46::102335
    [Crossref] [Google Scholar]
  153. 153.
    Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM. 2016.. Evolution of VRN2/Ghd7-like genes in vernalization-mediated repression of grass flowering. . Plant Physiol. 170::212435
    [Crossref] [Google Scholar]
  154. 154.
    Wyatt R. 1982.. Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. . Am. J. Bot. 69::58594
    [Crossref] [Google Scholar]
  155. 155.
    Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013.. Glucose–TOR signalling reprograms the transcriptome and activates meristems. . Nature 496::18186
    [Crossref] [Google Scholar]
  156. 156.
    Yan L, Fu D, Li C, Blechl A, Tranquilli G, et al. 2006.. The wheat and barley vernalization gene VRN3 is an orthologue of FT. . PNAS 103::1958186
    [Crossref] [Google Scholar]
  157. 157.
    Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, et al. 2012.. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. . Plant Cell 24::142036
    [Crossref] [Google Scholar]
  158. 158.
    Yang H, Nukunya K, Ding Q, Thompson BE. 2021.. Tissue-specific transcriptomics reveal functional differences in floral development. . Plant Physiol. 188::115873
    [Crossref] [Google Scholar]
  159. 159.
    Yao Y, Yamamoto Y, Yoshida T, Nitta Y, Miyazaki A. 2000.. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. . Soil Sci. Plant Nutr. 46::63141
    [Crossref] [Google Scholar]
  160. 160.
    Yoshida A, Suzaki T, Tanaka W, Hirano H-Y. 2009.. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. . PNAS 106::201038
    [Crossref] [Google Scholar]
  161. 161.
    Yoshida A, Terada Y, Toriba T, Kose K, Ashikari M, Kyozuka J. 2016.. Analysis of rhizome development in Oryza longistaminata, a wild rice species. . Plant Cell Physiol. 57::221320
    [Crossref] [Google Scholar]
  162. 162.
    Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, et al. 2017.. VRS2 regulates hormone-mediated inflorescence patterning in barley. . Nat. Genet. 49::15761
    [Crossref] [Google Scholar]
  163. 163.
    Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, et al. 2020.. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. . New Phytol. 225::35675
    [Crossref] [Google Scholar]
  164. 164.
    Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, et al. 2012.. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. . PNAS 109::432631
    [Crossref] [Google Scholar]
  165. 165.
    Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, et al. 2022.. Phylotranscriptomics resolves the phylogeny of Pooideae and uncovers factors for their adaptive evolution. . Mol. Biol. Evol. 39::msac026
    [Crossref] [Google Scholar]
  166. 166.
    Zhang T, Li Y, Ma L, Sang X, Ling Y, et al. 2017.. LATERAL FLORET 1 induced the three-florets spikelet in rice. . PNAS 114::998489
    [Crossref] [Google Scholar]
  167. 167.
    Zhang X, Jia H, Li T, Wu J, Nagarajan R, et al. 2022.. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. . Science 376::18083
    [Crossref] [Google Scholar]
  168. 168.
    Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, et al. 2011.. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. . Nat. Commun. 2::467
    [Crossref] [Google Scholar]
  169. 169.
    Zhong J, van Esse GW, Bi X, Lan T, Walla A, et al. 2021.. INTERMEDIUM-M encodes an HvAP2L-H5 ortholog and is required for inflorescence indeterminacy and spikelet determinacy in barley. . PNAS 118::e2011779118
    [Crossref] [Google Scholar]
  170. 170.
    Zhong X, Liang K, Peng B, Tian K, Li X, et al. 2020.. Basal internode elongation of rice as affected by light intensity and leaf area. . Crop J. 8::6270
    [Crossref] [Google Scholar]
  171. 171.
    Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, et al. 2020.. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. . Nat. Commun. 11::5118
    [Crossref] [Google Scholar]
  172. 172.
    Zhu Z, Esche F, Babben S, Trenner J, Serfling A, et al. 2022.. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. . J. Exp. Bot. 74:(9):291231
    [Crossref] [Google Scholar]
  173. 173.
    Zwirek M, Waugh R, McKim SM. 2019.. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. . New Phytol. 221::195065
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-060223-041716
Loading
/content/journals/10.1146/annurev-arplant-060223-041716
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error