1932

Abstract

The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant–AM fungal interaction across disciplines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-124504
2022-05-20
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-124504.html?itemId=/content/journals/10.1146/annurev-arplant-102820-124504&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agnolucci M, Avio L, Pepe A, Turrini A, Cristani C et al. 2018. Bacteria associated with a commercial mycorrhizal inoculum: community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools. Front. Plant Sci. 9:1956
    [Google Scholar]
  2. 2.
    Akçay E. 2015. Evolutionary models of mutualism. In Mutualism JL Bronstein 57–76 New York: Oxford Univ. Press
    [Google Scholar]
  3. 3.
    Alaux P-L, Naveau F, Declerck S, Cranenbrouck S 2020. Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. Front. Plant Sci. 11:602
    [Google Scholar]
  4. 4.
    Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA. 2015. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19
    [Google Scholar]
  5. 5.
    Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR 2010. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr. Biol. 20:1216–21
    [Google Scholar]
  6. 6.
    Augé RM, Toler HD, Saxton AM. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24
    [Google Scholar]
  7. 7.
    Barto EK, Rillig MC. 2010. Does herbivory really suppress mycorrhiza? A meta-analysis. J. Ecol. 98:745–53
    [Google Scholar]
  8. 8.
    Beals KK, Moore JAM, Kivlin SN, Bayliss SLJ, Lumibao CY et al. 2020. Predicting plant-soil feedback in the field: Meta-analysis reveals that competition and environmental stress differentially influence PSF. Front. Ecol. Evol. 8:191
    [Google Scholar]
  9. 9.
    Bennett AE, Bever JD. 2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–18
    [Google Scholar]
  10. 10.
    Bennett AE, Bever JD. 2009. Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia 160:807–16
    [Google Scholar]
  11. 11.
    Bennett AE, Classen AT. 2020. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology 101:e02978
    [Google Scholar]
  12. 12.
    Bennett AE, Daniell TJ, Öpik M, Davison J, Moora M et al. 2013. Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLOS ONE 8:e83241
    [Google Scholar]
  13. 13.
    Bennett AE, Daniell TJ, White PJ 2013. Benefits of breeding crops for yield response to soil organisms. Molecular Microbial Ecology of the Rhizosphere F de Bruijn 17–27 New York: Wiley
    [Google Scholar]
  14. 14.
    Bennett AE, Orrell P, Malacrino A, Pozo MJ 2018. Fungal-mediated above-belowground interactions: the community approach, stability, evolution, mechanisms, and applications. Aboveground-Belowground Community Ecology T Ohgushi, S Wurst, SN Johnson 234–85 Basel, Switz: Springer
    [Google Scholar]
  15. 15.
    Bennett AE, Preedy K, Golubski A, Umbanhowar J, Borrett SR et al. 2019. Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere 10:e02799
    [Google Scholar]
  16. 16.
    Berger F, Gutjahr C. 2021. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr. Opin. Plant Biol. 59:101994
    [Google Scholar]
  17. 17.
    Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6:9
    [Google Scholar]
  18. 18.
    Bever JD. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75:1965–77
    [Google Scholar]
  19. 19.
    Bever JD. 1999. Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecol. Lett. 2:52–62
    [Google Scholar]
  20. 20.
    Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M. 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12:13–21
    [Google Scholar]
  21. 21.
    Bonfante P, Venice F, Lanfranco L 2019. The mycobiota: Fungi take their place between plants and bacteria. Curr. Opin. Microbiol. 49:18–25
    [Google Scholar]
  22. 22.
    Borowicz V. 2013. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: a search for pattern. Acta Oecol 52:1–9
    [Google Scholar]
  23. 23.
    Brown MS, Bethlenfalvay GJ. 1988. The Glycine-Glomus-Rhizobium symbiosis: VII. Photosynthetic nutrient-use efficiency in nodulated, mycorrhizal soybeans. Plant Physiol 86:1292–97
    [Google Scholar]
  24. 24.
    Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–15
    [Google Scholar]
  25. 25.
    Bull JJ, Molineux IJ, Rice WR. 1991. Selection of benevolence in a host-parasite system. Evolution 45:875–82
    [Google Scholar]
  26. 26.
    Chagnon P-L, Bradley RL, Klironomos JN. 2015. Trait-based partner selection drives mycorrhizal network assembly. Oikos 124:1609–16
    [Google Scholar]
  27. 27.
    Chagnon P-L, Bradley RL, Maherali H, Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18:484–91Proposes grouping AM fungi and host plants according to their life history strategies.
    [Google Scholar]
  28. 28.
    Chaudhary VB, Aguilar-Trigueros CA, Rillig MC. 2022. Fungal dispersal across spatial scales. Annu. Rev. Ecol. Evol. Syst. 53: In press
    [Google Scholar]
  29. 29.
    Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J et al. 2016. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3:160028Presents an extensive database, including metadata, on AM fungi and plant responses in terms of biomass.
    [Google Scholar]
  30. 30.
    Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I et al. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009–23
    [Google Scholar]
  31. 31.
    Chiu CH, Choi J, Paszkowski U. 2018. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytol 217:552–57
    [Google Scholar]
  32. 32.
    Chu Q, Wang X, Yang Y, Chen F, Zhang F, Feng G 2013. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497–505
    [Google Scholar]
  33. 33.
    Clark RB. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22
    [Google Scholar]
  34. 34.
    Clavijo McCormick A, Unsicker SB, Gershenzon J 2012. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–10
    [Google Scholar]
  35. 35.
    Cope KR, Kafle A, Yakha JK, Pfeffer PE, Strahan GD et al. 2020. Physiological and transcriptomic response of Medicago truncatula to colonization with high and low benefit mycorrhizal fungi. bioRxiv 421693. https://doi.org/10.1101/2020.12.11.421693
    [Crossref]
  36. 36.
    Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ et al. 2019. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22:1274–84
    [Google Scholar]
  37. 37.
    Cruz-Paredes C, Jakobsen I, Nybroe O 2020. Different sensitivity of a panel of Rhizophagus isolates to AMF-suppressive soils. Appl. Soil Ecol. 155:5
    [Google Scholar]
  38. 38.
    Davison J, García de León D, Zobel M, Moora M, Bueno CG et al. 2020. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytol 226:1117–28
    [Google Scholar]
  39. 39.
    Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T et al. 2021. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol 231:763–76
    [Google Scholar]
  40. 40.
    de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ et al. 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J 103:951–64
    [Google Scholar]
  41. 41.
    Deveau A, Labbé J 2016. Mycorrhiza helper bacteria. Molecular Mycorrhizal Symbiosis F Martin 437–50 Hoboken, NJ: Wiley
    [Google Scholar]
  42. 42.
    Deveautour C, Chieppa J, Nielsen UN, Boer MM, Mitchell C et al. 2020. Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation. Fungal Ecol. 46:100899Shows that variation in water availability promotes melanin content in AM fungal spores.
    [Google Scholar]
  43. 43.
    Elliott AJ, Daniell TJ, Cameron DD, Field KJ 2021. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants People Planet 3:588–99
    [Google Scholar]
  44. 44.
    Emmett BD, Lévesque-Tremblay V, Harrison MJ. 2021. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15:2276–88Demonstrates that AM fungi host a conserved microbiome different from that of bulk soil.
    [Google Scholar]
  45. 45.
    Evelin H, Devi TS, Gupta S, Kapoor R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front. Plant Sci. 10:470
    [Google Scholar]
  46. 46.
    Ezawa T, Saito K. 2018. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol 220:1116–21
    [Google Scholar]
  47. 47.
    Fabiańska I, Pesch L, Koebke E, Gerlach N, Bucher M 2020. Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota. PLOS ONE 15:e0232633
    [Google Scholar]
  48. 48.
    Faghihinia M, Zou Y, Chen Z, Bai Y, Li W et al. 2020. Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl. Soil Ecol. 153:103591
    [Google Scholar]
  49. 49.
    Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ. 2012. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat. Commun. 3:835
    [Google Scholar]
  50. 50.
    Foster KR, Kokko H. 2006. Cheating can stabilize cooperation in mutualisms. Proc. R. Soc. B 273:2233–39
    [Google Scholar]
  51. 51.
    Foster KR, Wenseleers T. 2006. A general model for the evolution of mutualisms. J. Evol. Biol. 19:1283–93
    [Google Scholar]
  52. 52.
    Frew A, Price JN, Oja J, Vasar M, Öpik M. 2021. Impacts of elevated atmospheric CO2 on arbuscular mycorrhizal fungi and their role in moderating plant allometric partitioning. Mycorrhiza 31:423–30
    [Google Scholar]
  53. 53.
    Gamalero E, Berta G, Massa N, Glick BR, Lingua G. 2008. Synergistic interactions between the ACC deaminase–producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol. Ecol. 64:459–67
    [Google Scholar]
  54. 54.
    Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E. 2016. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–50
    [Google Scholar]
  55. 55.
    Gavito ME, Jakobsen I, Mikkelsen TN, Mora F. 2019. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol 223:896–907
    [Google Scholar]
  56. 56.
    Gilbert L, Johnson D 2015. Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores. Curr. Opin. Plant Biol. 26:100–5
    [Google Scholar]
  57. 57.
    González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M. 2016. Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7:1088
    [Google Scholar]
  58. 58.
    Grime JP. 1974. Vegetation classification by reference to strategies. Nature 250:26–31
    [Google Scholar]
  59. 59.
    Grman E. 2012. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–18
    [Google Scholar]
  60. 60.
    Groten K, Nawaz A, Nguyen NHT, Santhanam R, Baldwin IT. 2015. Silencing a key gene of the common symbiosis pathway in Nicotiana attenuata specifically impairs arbuscular mycorrhizal infection without influencing the root-associated microbiome or plant growth. Plant Cell Environ 38:2398–416
    [Google Scholar]
  61. 61.
    Gruden K, Lidoy J, Petek M, Podpe V, Flors V et al. 2020. Ménage à trois: unraveling the mechanisms regulating plant-microbe-arthropod interactions. Trends Plant Sci 25:1215–26
    [Google Scholar]
  62. 62.
    Hetrick BAD, Wilson GWT, Cox TS. 1992. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can. J. Bot. 70:2032–40
    [Google Scholar]
  63. 63.
    Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M et al. 2018. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1:116
    [Google Scholar]
  64. 64.
    Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J et al. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394–407
    [Google Scholar]
  65. 65.
    Huang R, Li Z, Mao C, Zhang H, Sun Z et al. 2020. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytol 225:1762–76
    [Google Scholar]
  66. 66.
    Jakobsen I, Hammer EC 2015. Nutrient dynamics in arbuscular mycorrhizal networks. Mycorrhizal Networks TR Horton 91–131 Dordrecht, Neth: Springer
    [Google Scholar]
  67. 67.
    Jiang F, Zhang L, Zhou J, George TS, Feng G 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230:304–15Shows that extraradical AM fungal hyphae transport phosphate-solubilizing bacteria to sources of organic P.
    [Google Scholar]
  68. 68.
    Jiang Y, Wang W, Xie Q, Liu N, Liu L et al. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–75
    [Google Scholar]
  69. 69.
    Johnson D, Gilbert L. 2015. Interplant signalling through hyphal networks. New Phytol 205:1448–53
    [Google Scholar]
  70. 70.
    Johnson NC. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–47
    [Google Scholar]
  71. 71.
    Johnson NC, Hoeksema JD, Bever JD, Chaudhary VB, Gehring C et al. 2006. From Lilliput to Brobdingnag: extending models of mycorrhizal function across scales. BioScience 56:889–900
    [Google Scholar]
  72. 72.
    Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA. 2015. Mycorrhizal phenotypes and the Law of the Minimum. New Phytol 205:1473–84Demonstrates that the plant mycorrhizal response depends on the type of nutrient limitation.
    [Google Scholar]
  73. 73.
    Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38:651–64
    [Google Scholar]
  74. 74.
    Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J et al. 2020. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. J. Exp. Bot. 71:4972–84
    [Google Scholar]
  75. 75.
    Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biol. Biochem. 41:1233–44
    [Google Scholar]
  76. 76.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M et al. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6:e29107
    [Google Scholar]
  77. 77.
    Kiers ET, Denison RF. 2008. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 39:215–36
    [Google Scholar]
  78. 78.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–82
    [Google Scholar]
  79. 79.
    Kiers ET, West SA, Wyatt GA, Gardner A, Bücking H, Werner GD. 2016. Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat. Plants 2:16063
    [Google Scholar]
  80. 80.
    Klironomos JN. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–301
    [Google Scholar]
  81. 81.
    Kokkoris V, Chagnon P-L, Yildirir G, Clarke K, Goh D et al. 2021. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr. Biol. 31:1531–38Shows that host plant identity affects nucleotype ratios in dikaryotic AM fungi.
    [Google Scholar]
  82. 82.
    Kokkoris V, Li Y, Hamel C, Hanson K, Hart M 2019. Site specificity in establishment of a commercial arbuscular mycorrhizal fungal inoculant. Sci. Total Environ. 660:1135–43
    [Google Scholar]
  83. 83.
    Konvalinková T, Jansa J. 2016. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front. Plant Sci. 7:782
    [Google Scholar]
  84. 84.
    Konvalinková T, Püschel D, Řezáčová V, Gryndlerová H, Jansa J. 2017. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419:319–33
    [Google Scholar]
  85. 85.
    Koricheva J, Gange AC, Jones T. 2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–97
    [Google Scholar]
  86. 86.
    Koziol L, Bever JD. 2019. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J. Ecol. 107:622–32
    [Google Scholar]
  87. 87.
    Landis FC, Fraser LH. 2008. A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–79
    [Google Scholar]
  88. 88.
    Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–46
    [Google Scholar]
  89. 89.
    Le Pioufle O, Declerck S 2018. Reducing water availability impacts the development of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 and its ability to take up and transport phosphorus under in vitro conditions. Front. Microbiol. 9:1254
    [Google Scholar]
  90. 90.
    Lehnert H, Serfling A, Friedt W, Ordon F. 2018. Genome-wide association studies reveal genomic regions associated with the response of wheat (Triticum aestivum L.) to mycorrhizae under drought stress conditions. Front. Plant Sci. 9:1728
    [Google Scholar]
  91. 91.
    Lekberg Y, Bever JD, Bunn RA, Callaway RM, Hart MM et al. 2018. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21:1268–81
    [Google Scholar]
  92. 92.
    Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15
    [Google Scholar]
  93. 93.
    MacLean AM, Bravo A, Harrison MJ. 2017. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29:2319–35
    [Google Scholar]
  94. 94.
    Martin-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R. 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:322–34
    [Google Scholar]
  95. 95.
    Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ et al. 2016. Recognizing plant defense priming. Trends Plant Sci 21:818–22
    [Google Scholar]
  96. 96.
    Mateus ID, Masclaux FG, Aletti C, Rojas EC, Savary R et al. 2019. Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. ISME J. 13:1226–38Reveals that plant and fungal genotypes modulate transcriptional responses during symbiosis.
    [Google Scholar]
  97. 97.
    Mauch-Mani B, Baccelli I, Luna E, Flors V 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485–512
    [Google Scholar]
  98. 98.
    McHaffie MB, Maherali H. 2020. Variation in mycorrhizal growth response influences competitive interactions and mechanisms of plant species coexistence. Oecologia 192:755–65
    [Google Scholar]
  99. 99.
    Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H 2015. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 25:533–46
    [Google Scholar]
  100. 100.
    Merckx V, Bidartondo MI. 2008. Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc. R. Soc. B 275:1029–35
    [Google Scholar]
  101. 101.
    Merrild MP, Ambus P, Rosendahl S, Jakobsen I 2013. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol 200:229–40
    [Google Scholar]
  102. 102.
    Millar NS, Bennett AE. 2016. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–41
    [Google Scholar]
  103. 103.
    Montesinos-Navarro A, Valiente-Banuet A, Verdú M. 2018. Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. Fungal Ecol 40:98–106
    [Google Scholar]
  104. 104.
    Mostofa MG, Li W, Nguyen KH, Fujita M, Tran L-SP. 2018. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41:2227–43
    [Google Scholar]
  105. 105.
    Müller LM, Flokova K, Schnabel E, Sun X, Fei Z et al. 2019. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nat. Plants 5:933–39
    [Google Scholar]
  106. 106.
    Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C et al. 2017. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat. Plants 3:17073
    [Google Scholar]
  107. 107.
    Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T et al. 2015. Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant Cell Physiol 56:2100–9
    [Google Scholar]
  108. 108.
    Noë R, Hammerstein P. 1994. Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35:1–11
    [Google Scholar]
  109. 109.
    Noë R, Kiers ET. 2018. Mycorrhizal markets, firms, and co-ops. Trends Ecol. Evol. 33:777–89
    [Google Scholar]
  110. 110.
    Oelmüller R. 2019. Interplant communication via hyphal networks. Plant Physiol. Rep. 24:463–73
    [Google Scholar]
  111. 111.
    Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA. 2013. Two-way plant-mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front. Plant Sci. 4:414
    [Google Scholar]
  112. 112.
    Pawlowska TE, Gaspar ML, Lastovetsky OA, Mondo SJ, Real-Ramirez I et al. 2018. Biology of fungi and their bacterial endosymbionts. Annu. Rev. Phytopathol. 56:289–309
    [Google Scholar]
  113. 113.
    Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker P. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75
    [Google Scholar]
  114. 114.
    Pimprikar P, Gutjahr C. 2018. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol 59:678–95
    [Google Scholar]
  115. 115.
    Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B 276:4237–45
    [Google Scholar]
  116. 116.
    Pozo MJ, Lopez-Raez JA, Azcon-Aguilar C, Garcia-Garrido JM. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–36
    [Google Scholar]
  117. 117.
    Ramírez-Flores MR, Perez-Limon S, Li M, Barrales-Gamez B, Albinsky D et al. 2020. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. eLife 9:e61701Presents a field study with a population of AM fungal–resistant and –susceptible maize for QTL mapping.
    [Google Scholar]
  118. 118.
    Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. 2017. Root symbionts: powerful drivers of plant above- and belowground indirect defenses. Insect Sci 24:947–60
    [Google Scholar]
  119. 119.
    Reinhart KO, Bauer JT, McCarthy-Neumann S, MacDougall AS, Hierro JL et al. 2021. Globally, plant-soil feedbacks are weak predictors of plant abundance. Ecol. Evol. 11:1756–68
    [Google Scholar]
  120. 120.
    Riley RC, Cavagnaro TR, Brien C, Smith FA, Smith SE et al. 2019. Resource allocation to growth or luxury consumption drives mycorrhizal responses. Ecol. Lett. 22:1757–66
    [Google Scholar]
  121. 121.
    Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. 2018. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol 220:1322–36Shows that AM fungi increase tomato tolerance to drought or salt stress by metabolism reprogramming.
    [Google Scholar]
  122. 122.
    Roger A, Colard A, Angelard C, Sanders IR. 2013. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7:2137–46
    [Google Scholar]
  123. 123.
    Sachs JL, Mueller UG, Wilcox TP, Bull JJ. 2004. The evolution of cooperation. Q. Rev. Biol. 79:135–60
    [Google Scholar]
  124. 124.
    Sanmartin N, Sanchez-Bel P, Pastor V, Pastor-Fernandez J, Mateu D et al. 2020. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Sci 298:110595
    [Google Scholar]
  125. 125.
    Santander C, Aroca R, Cartes P, Vidal G, Cornejo P. 2021. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol. Biochem. 158:396–409
    [Google Scholar]
  126. 126.
    Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P et al. 2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–57
    [Google Scholar]
  127. 127.
    Savary R, Dupuis C, Masclaux FG, Mateus ID, Rojas EC, Sanders IR. 2020. Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava. ISME J. 14:1333–44Demonstrates that AM fungal genetic variation reprograms the cassava fatty acid pathway.
    [Google Scholar]
  128. 128.
    Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U 2010. Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor. Appl. Genet. 120:1029–39
    [Google Scholar]
  129. 129.
    Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B et al. 2017. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214:632–43
    [Google Scholar]
  130. 130.
    Schuman M, Barthel K, Baldwin IT 2012. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. eLife 1:e00007
    [Google Scholar]
  131. 131.
    Schwartz MW, Hoeksema JD. 1998. Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–38
    [Google Scholar]
  132. 132.
    Schweiger R, Baier MC, Muller C. 2014. Arbuscular mycorrhiza–induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Mol. Plant-Microbe Interact. 27:1403–12
    [Google Scholar]
  133. 133.
    Šmilauer P, Košnar J, Kotilínek M, Pecháčková S, Šmilauerová M. 2021. Host age and surrounding vegetation affect the community and colonisation rates of arbuscular mycorrhizal fungi in a temperate grassland. New Phytol 232:290–302
    [Google Scholar]
  134. 134.
    Šmilauer P, Šmilauerová M, Kotilínek M, Košnar J 2021. Arbuscular mycorrhizal fungal communities of forbs and C3 grasses respond differently to cultivation and elevated nutrients. Mycorrhiza 31:455–70
    [Google Scholar]
  135. 135.
    Smith SE, Read D. 2008. Mycorrhizal Symbiosis Amsterdam: Elsevier. , 3rd ed..
  136. 136.
    Song Y, Wang M, Zeng R, Groten K, Baldwin IT 2019. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant Cell Environ 42:2945–61
    [Google Scholar]
  137. 137.
    Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S et al. 2020. FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–66
    [Google Scholar]
  138. 138.
    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–46
    [Google Scholar]
  139. 139.
    Strullu-Derrien C, Selosse M-A, Kenrick P, Martin FM 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–30
    [Google Scholar]
  140. 140.
    Svenningsen NB, Watts-Williams SJ, Joner EJ, Battini F, Efthymiou A et al. 2018. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J 12:1296–307
    [Google Scholar]
  141. 141.
    Sweeney CJ, de Vries FT, van Dongen BE, Bardgett RD. 2021. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytol 229:1492–507
    [Google Scholar]
  142. 142.
    Thirkell TJ, Campbell M, Driver J, Pastok D, Merry B, Field KJ 2020. Cultivar-dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 3:553–66
    [Google Scholar]
  143. 143.
    Trivers RL. 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46:35–57
    [Google Scholar]
  144. 144.
    van der Heijden MGA, Walder F. 2016. Reply to ‘Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. ’. Nat. Plants 2:16062
    [Google Scholar]
  145. 145.
    van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M et al. 2021. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J 15:435–49
    [Google Scholar]
  146. 146.
    Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M et al. 2016. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytol 211:265–75
    [Google Scholar]
  147. 147.
    Walder F, Niemann H, Natarajan M, Lehmann M, Boller T, Wiemken A. 2012. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789
    [Google Scholar]
  148. 148.
    Walder F, van der Heijden MGA. 2015. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1:15159
    [Google Scholar]
  149. 149.
    Wang M, Schäfer M, Li D, Halitschke R, Dong C et al. 2018. Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. eLife 7:e37093
    [Google Scholar]
  150. 150.
    Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10:1147–58
    [Google Scholar]
  151. 151.
    Watts-Williams SJ, Cavagnaro TR, Tyerman SD 2019. Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. Plant Cell Environ 42:285–94
    [Google Scholar]
  152. 152.
    Whiteside MD, Werner GDA, Caldas VEA, van't Padje A, Dupin SE et al. 2019. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr. Biol. 29:2043–50
    [Google Scholar]
  153. 153.
    Wilkinson TDJ, Miranda JP, Ferrari J, Hartley SE, Hodge A 2019. Aphids influence soil fungal communities in conventional agricultural systems. Front. Plant Sci. 10:895
    [Google Scholar]
  154. 154.
    Wilson GWT, Hartnett DC. 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am. J. Bot. 85:1732–38
    [Google Scholar]
  155. 155.
    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E. 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–42
    [Google Scholar]
  156. 156.
    Wooley SC, Paine TD. 2007. Can intra-specific genetic variation in arbuscular mycorrhizal fungi (Glomus etunicatum) affect a mesophyll-feeding herbivore (Tupiocoris notatus Distant). Ecol. Entomol. 32:428–34
    [Google Scholar]
  157. 157.
    Xu L, Li T, Wu Z, Feng H, Yu M et al. 2018. Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl. Soil Ecol. 125:213–21
    [Google Scholar]
  158. 158.
    Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. 2019. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. New Phytol 224:409–20
    [Google Scholar]
  159. 159.
    Xue L, Wang ET. 2020. Arbuscular mycorrhizal associations and the major regulators. Front. Agric. Sci. Eng. 7:296–306
    [Google Scholar]
  160. 160.
    Yang X, Chen JS, Shen Y, Dong FY, Chen J 2020. Global negative effects of livestock grazing on arbuscular mycorrhizas: a meta-analysis. Sci. Total Environ. 708:1345536
    [Google Scholar]
  161. 161.
    Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S et al. 2020. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95:409–33
    [Google Scholar]
  162. 162.
    Zhang C, He J, Dai H, Wang G, Zhang X et al. 2021. Discriminating symbiosis and immunity signals by receptor competition in rice. PNAS 118:e2023738118
    [Google Scholar]
  163. 163.
    Zhang L, Zhou J, George TS, Limpens E, Feng G 2021. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 27:40211
    [Google Scholar]
  164. 164.
    Zhang X, Dong W, Sun J, Feng F, Deng Y et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–67
    [Google Scholar]
  165. 165.
    Zhou J, Chai X, Zhang L, George TS, Wang F, Feng G 2020. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems 5:e00929
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-124504
Loading
/content/journals/10.1146/annurev-arplant-102820-124504
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error