1932

Abstract

Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-111119-021700
2020-04-29
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-111119-021700.html?itemId=/content/journals/10.1146/annurev-arplant-111119-021700&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alioto T, Alexiou KG, Bardil A, Barteri F, Castanera R et al. 2019. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J 101:2455–72
    [Google Scholar]
  2. 2. 
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. 2000. Gene ontology: tool for the unification of biology. Nat. Genet. 25:125–29
    [Google Scholar]
  3. 3. 
    Baek S, Choi K, Kim G-B, Yu H-J, Cho A et al. 2018. Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries. Genome Biol 19:1127
    [Google Scholar]
  4. 4. 
    Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M et al. 2016. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66
    [Google Scholar]
  5. 5. 
    Buti M, Moretto M, Barghini E, Mascagni F, Natali L et al. 2018. The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience 7:4giy010
    [Google Scholar]
  6. 6. 
    Callahan A, Zhebentyayeva T, Humann J, Saski C, Galimba K et al. 2020. Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and a de novo genome assembly of plum (Prunus domestica). Hortic. Res. In press
    [Google Scholar]
  7. 7. 
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. 2009. BLAST+: architecture and applications. BMC Bioinform 10:421
    [Google Scholar]
  8. 8. 
    Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, Garcia-Martinez JL 2012. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160:31581–96
    [Google Scholar]
  9. 9. 
    Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C et al. 2014. The draft genome sequence of European pear (Pyrus communis L. ’Bartlett’). PLOS ONE 9:4e92644
    [Google Scholar]
  10. 10. 
    Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ 1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS 94:84223–28
    [Google Scholar]
  11. 11. 
    Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:56662022–25
    [Google Scholar]
  12. 12. 
    Cong L, Yue R, Wang H, Liu J, Zhai R et al. 2019. 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis. Physiol. Plant. 166:3812–20
    [Google Scholar]
  13. 13. 
    Coombe BG. 1960. Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol 35:2241–50
    [Google Scholar]
  14. 14. 
    Crane JC, Primer PE, Campbell RC 1960. Gibberellin induced parthenocarpy in Prunus. Proc. Am. Soc. Hortic. Sci 75:129–37
    [Google Scholar]
  15. 15. 
    Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49:71099–106
    [Google Scholar]
  16. 16. 
    Darwish O, Shahan R, Liu Z, Slovin JP, Alkharouf NW 2015. Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC Genom 16:29
    [Google Scholar]
  17. 17. 
    Darwish O, Slovin JP, Kang C, Hollender CA, Geretz A et al. 2013. SGR: an online genomic resource for the woodland strawberry. BMC Plant Biol 13:223
    [Google Scholar]
  18. 18. 
    de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH 2009. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:1160–70
    [Google Scholar]
  19. 19. 
    Dinneny JR, Weigel D, Yanofsky MF 2005. A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132:214687–96
    [Google Scholar]
  20. 20. 
    Dreni L, Zhang D. 2016. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J. Exp. Bot. 67:61625–38
    [Google Scholar]
  21. 21. 
    Drews GN, Bowman JL, Meyerowitz EM 1991. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:6991–1002
    [Google Scholar]
  22. 22. 
    Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M et al. 2019. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51:3541–47
    [Google Scholar]
  23. 23. 
    Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM et al. 2018. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience 7:2gix124
    [Google Scholar]
  24. 24. 
    El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z et al. 2016. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56
    [Google Scholar]
  25. 25. 
    Feng J, Dai C, Luo H, Han Y, Liu Z, Kang C 2019. Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J. Exp. Bot. 70:2563–74
    [Google Scholar]
  26. 26. 
    Fernandez L, Chaïb J, Martinez-Zapater J-M, Thomas MR, Torregrosa L 2013. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J 73:6918–28
    [Google Scholar]
  27. 27. 
    Fernandez-Pozo N, Zheng Y, Snyder SI, Nicolas P, Shinozaki Y et al. 2017. The Tomato Expression Atlas. Bioinformatics 33:152397–98
    [Google Scholar]
  28. 28. 
    Ferrandiz C. 2011. Fruit structure and diversity. eLS https://doi.org/10.1002/9780470015902.a0002044.pub2
    [Crossref] [Google Scholar]
  29. 29. 
    Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C 2016. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 5:e20542
    [Google Scholar]
  30. 30. 
    Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L 2012. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24:103982–96
    [Google Scholar]
  31. 31. 
    Galimba KD, Bullock DG, Dardick C, Liu Z, Callahan AM 2019. Gibberellic acid induced parthenocarpic “Honeycrisp” apples (Malus domestica) exhibit reduced ovary width and lower acidity. Hortic. Res. 6:41
    [Google Scholar]
  32. 32. 
    García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P et al. 2012. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J. Exp. Bot. 63:165803–13
    [Google Scholar]
  33. 33. 
    Gene Ontol. Consort. 2019. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47:D1D330–38
    [Google Scholar]
  34. 34. 
    Gillaspy G, Ben-David H, Gruissem W 1993. Fruits: a developmental perspective. Plant Cell 5:101439–51
    [Google Scholar]
  35. 35. 
    Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM 2007. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:2351–66
    [Google Scholar]
  36. 36. 
    Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:81873–86
    [Google Scholar]
  37. 37. 
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1D1178–86
    [Google Scholar]
  38. 38. 
    Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB 1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:5362446–50
    [Google Scholar]
  39. 39. 
    Harrison PW, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I et al. 2019. The European Nucleotide Archive in 2018. Nucleic Acids Res 47:D1D84–88
    [Google Scholar]
  40. 40. 
    Hawkins C, Caruana J, Li J, Zawora C, Darwish O et al. 2017. An eFP browser for visualizing strawberry fruit and flower transcriptomes. Hortic. Res. 4:17029
    [Google Scholar]
  41. 41. 
    Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D et al. 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 4:7473–84
    [Google Scholar]
  42. 42. 
    Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S et al. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res 21:2169–81
    [Google Scholar]
  43. 43. 
    Huang C-H, Sun R, Hu Y, Zeng L, Zhang N et al. 2016. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 33:2394–412
    [Google Scholar]
  44. 44. 
    Hummer KE, Janick J. 2009. Rosaceae: taxonomy, economic importance, genomics. Genetics and Genomics of Rosaceae KM Folta, SE Gardiner 1–17 New York: Springer
    [Google Scholar]
  45. 45. 
    Ireland HS, Yao J-L, Tomes S, Sutherland PW, Nieuwenhuizen N et al. 2013. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73:61044–56
    [Google Scholar]
  46. 46. 
    Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L et al. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:116
    [Google Scholar]
  47. 47. 
    Jiang F, Zhang J, Wang S, Yang L, Luo Y et al. 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 6:128
    [Google Scholar]
  48. 48. 
    Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP et al. 2018. Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hortic. Res. 5:8
    [Google Scholar]
  49. 49. 
    Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:91211–25
    [Google Scholar]
  50. 50. 
    Joldersma D, Liu Z. 2018. The making of virgin fruit: the molecular and genetic basis of parthenocarpy. J. Exp. Bot. 69:5955–62
    [Google Scholar]
  51. 51. 
    Jung S, Lee T, Cheng C-H, Buble K, Zheng P et al. 2019. 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res 47:D1D1137–45
    [Google Scholar]
  52. 52. 
    Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25:61960–78
    [Google Scholar]
  53. 53. 
    Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK et al. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 15:5634–47
    [Google Scholar]
  54. 54. 
    Kodama Y, Mashima J, Kosuge T, Kaminuma E, Ogasawara O et al. 2018. DNA Data Bank of Japan: 30th anniversary. Nucleic Acids Res 46:D1D30–35
    [Google Scholar]
  55. 55. 
    Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:184804–14
    [Google Scholar]
  56. 56. 
    Li H, Huang C-H, Ma H 2019. Whole-genome duplications in pear and apple. The Pear Genome SS Korban 279–99 Cham, Switz: Springer
    [Google Scholar]
  57. 57. 
    Li T, Yang X, Yu Y, Si X, Zhai X et al. 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36:1160–63
    [Google Scholar]
  58. 58. 
    Li Y, Pi M, Gao Q, Liu Z, Kang C 2019. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic. Res. 6:161
    [Google Scholar]
  59. 59. 
    Li Y, Wei W, Feng J, Luo H, Pi M et al. 2017. Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina- and SMRT-based RNA-seq datasets. DNA Res 25:161–70
    [Google Scholar]
  60. 60. 
    Liao X, Li M, Liu B, Yan M, Yu X et al. 2018. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. PNAS 115:49E11542–50
    [Google Scholar]
  61. 61. 
    Linsmith G, Rombauts S, Montanari S, Deng CH, Celton J-M et al. 2019. Pseudo-chromosome length genome assembly of a double haploid ‘Bartlett’ pear (Pyrus communis L.). bioRxiv 651778. https://doi.org/10.1101/651778
    [Crossref]
  62. 62. 
    Lyons E, Freeling M. 2008. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:4661–73
    [Google Scholar]
  63. 63. 
    Mara CD, Irish VF. 2008. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol 147:2707–18
    [Google Scholar]
  64. 64. 
    Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A 2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:5865–76
    [Google Scholar]
  65. 65. 
    Masiero S, Li M-A, Will I, Hartmann U, Saedler H et al. 2004. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:235981–90
    [Google Scholar]
  66. 66. 
    Mesejo C, Reig C, Martínez-Fuentes A, Agustí M 2010. Parthenocarpic fruit production in loquat (Eriobotrya japonica Lindl.) by using gibberellic acid. Sci. Hortic. 126:137–41
    [Google Scholar]
  67. 67. 
    Mezzetti B, Landi L, Pandolfini T, Spena A 2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4
    [Google Scholar]
  68. 68. 
    Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P et al. 2019. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D1D351–60
    [Google Scholar]
  69. 69. 
    Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S et al. 2018. Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res 25:2113–21
    [Google Scholar]
  70. 70. 
    Ng M, Yanofsky MF. 2001. Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2:3186–95
    [Google Scholar]
  71. 71. 
    Nitsch JP. 1950. Growth and morphogenesis of the strawberry as related to auxin. Am. J. Bot. 37:3211–15
    [Google Scholar]
  72. 72. 
    Nitsch JP. 1955. Free auxins and free tryptophane in the strawberry. Plant Physiol 30:133–39
    [Google Scholar]
  73. 73. 
    Niu Q, Wang T, Li J, Yang Q, Qian M, Teng Y 2015. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N′-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan. .’ Plant Growth Regul 76:3251–58
    [Google Scholar]
  74. 74. 
    Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL 1996. A mutation that allows endosperm development without fertilization. PNAS 93:115319–24
    [Google Scholar]
  75. 75. 
    Pan IL, McQuinn R, Giovannoni JJ, Irish VF 2010. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J. Exp. Bot. 61:61795–806
    [Google Scholar]
  76. 76. 
    Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:71538–51
    [Google Scholar]
  77. 77. 
    Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C 2015. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168:41684–701
    [Google Scholar]
  78. 78. 
    Pineda B, Giménez-Caminero E, García-Sogo B, Antón MT, Atarés A et al. 2010. Genetic and physiological characterization of the Arlequin insertional mutant reveals a key regulator of reproductive development in tomato. Plant Cell Physiol 51:3435–47
    [Google Scholar]
  79. 79. 
    Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE et al. 2007. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266:1–25–43
    [Google Scholar]
  80. 80. 
    Pratt C. 1988. Apple flower and fruit: morphology and anatomy. Horticultural Reviews 10 J Janick 273–308 New York: Wiley
    [Google Scholar]
  81. 81. 
    Prosser MV, Jackson GAD. 1959. Induction of parthenocarpy in Rosa arvensis Huds. with gibberellic acid. Nature 184:4680108
    [Google Scholar]
  82. 82. 
    Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50:6772–77
    [Google Scholar]
  83. 83. 
    Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y 2011. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J. Exp. Bot. 62:82815–26
    [Google Scholar]
  84. 84. 
    Rodríguez GR, Muños S, Anderson C, Sim S-C, Michel A et al. 2011. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:1275–85
    [Google Scholar]
  85. 85. 
    Roszak P, Köhler C. 2011. Polycomb group proteins are required to couple seed coat initiation to fertilization. PNAS 108:5120826–31
    [Google Scholar]
  86. 86. 
    Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR 2012. Molecular regulation of seed and fruit set. Trends Plant Sci 17:11656–65
    [Google Scholar]
  87. 87. 
    Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R et al. 2019. Mutation of a bHLH transcription factor allowed almond domestication. Science 364:64451095–98
    [Google Scholar]
  88. 88. 
    Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I 2019. GenBank. Nucleic Acids Res 47:D1D94–99
    [Google Scholar]
  89. 89. 
    Schultz JC, Edger PP, Body MJA, Appel HM 2019. A galling insect activates plant reproductive programs during gall development. Sci Rep 9:11833
    [Google Scholar]
  90. 90. 
    Schulze-Menz GK. 1964. Rosaceae. Engler's Syllabus der Pflanzenfamilien 2 H Melchior 209–18 Berlin: Gerbrüder Borntraeger
    [Google Scholar]
  91. 91. 
    Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL 2008. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:6922–34
    [Google Scholar]
  92. 92. 
    Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A et al. 2011. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. J. Exp. Bot. 62:31179–88
    [Google Scholar]
  93. 93. 
    Shahan R, Zawora C, Wight H, Sittmann J, Wang W et al. 2018. Consensus coexpression network analysis identifies key regulators of flower and fruit development in wild strawberry. Plant Physiol 178:1202–16
    [Google Scholar]
  94. 94. 
    Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ et al. 2018. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. 9:1364
    [Google Scholar]
  95. 95. 
    Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T et al. 2017. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:5499–508
    [Google Scholar]
  96. 96. 
    Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43:2109–16
    [Google Scholar]
  97. 97. 
    Sjut V, Bangerth F. 1982. Induced parthenocarpy—a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.) 1. Extractable hormones. Plant Growth Regul 1:4243–51
    [Google Scholar]
  98. 98. 
    Soltis PS, Soltis DE. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30:159–65
    [Google Scholar]
  99. 99. 
    Sun T-P. 2010. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:2567–70
    [Google Scholar]
  100. 100. 
    Tennessen JA, Govindarajulu R, Ashman T-L, Liston A 2014. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6:123295–313
    [Google Scholar]
  101. 101. 
    Theißen G, Melzer R, Rümpler F 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:183259–71
    [Google Scholar]
  102. 102. 
    Thompson PA. 1969. The effect of applied growth substances on development of the strawberry fruit. II. Interactions of auxins and gibberellins. J. Exp. Bot. 20:3629–47
    [Google Scholar]
  103. 103. 
    Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A et al. 2018. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46:D1D1190–96
    [Google Scholar]
  104. 104. 
    Van de Peer Y, Maere S, Meyer A 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10:10725–32
    [Google Scholar]
  105. 105. 
    VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP et al. 2016. The genome of black raspberry (Rubus occidentalis). Plant J 87:6535–47
    [Google Scholar]
  106. 106. 
    VanBuren R, Wai CM, Colle M, Wang J, Sullivan S et al. 2018. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience 7:8giy094
    [Google Scholar]
  107. 107. 
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 42:10833–39
    [Google Scholar]
  108. 108. 
    Verde I, Abbott AG, Scalabrin S, Jung S, Shu S et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45:5487–94
    [Google Scholar]
  109. 109. 
    Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G et al. 2017. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genom 18:1225
    [Google Scholar]
  110. 110. 
    Vivian-Smith A, Koltunow AM. 1999. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121:2437–51
    [Google Scholar]
  111. 111. 
    Vivian-Smith A, Luo M, Chaudhury A, Koltunow A 2001. Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128:122321–31
    [Google Scholar]
  112. 112. 
    Wang H, Jones B, Li Z, Frasse P, Delalande C et al. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:102676–92
    [Google Scholar]
  113. 113. 
    Wang H, Schauer N, Usadel B, Frasse P, Zouine M et al. 2009. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:51428–52
    [Google Scholar]
  114. 114. 
    Wang Y, Tang H, Debarry JD, Tan X, Li J et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:7e49
    [Google Scholar]
  115. 115. 
    Wight H, Zhou J, Li M, Hannenhalli S, Mount S, Liu Z 2019. Draft genome assembly and annotation of red raspberry Rubus idaeus. bioRxiv 546135. https://doi.org/10.1101/546135
    [Crossref]
  116. 116. 
    Wu J, Wang Y, Xu J, Korban SS, Fei Z et al. 2018. Diversification and independent domestication of Asian and European pears. Genome Biol 19:177
    [Google Scholar]
  117. 117. 
    Wu J, Wang Z, Shi Z, Zhang S, Ming R et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:2396–408
    [Google Scholar]
  118. 118. 
    Xiang Y, Huang C-H, Hu Y, Wen J, Li S et al. 2017. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34:2262–81
    [Google Scholar]
  119. 119. 
    Xue H, Wang S, Yao J-L, Deng CH, Wang L et al. 2018. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri “DangshanSuli” v1.0 genome. BMC Genom 19:1833
    [Google Scholar]
  120. 120. 
    Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol. Biol. Evol. 32:82001–14
    [Google Scholar]
  121. 121. 
    Yant L, Mathieu J, Dinh TT, Ott F, Lanz C et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:72156–70
    [Google Scholar]
  122. 122. 
    Yao J-L, Dong Y-H, Kvarnheden A, Morris B 1999. Seven MADS-box genes in apple are expressed in different parts of the fruit. J. Am. Soc. Hortic. Sci. 124:18–13
    [Google Scholar]
  123. 123. 
    Yao J-L, Dong Y-H, Morris BAM 2001. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. PNAS 98:31306–11
    [Google Scholar]
  124. 124. 
    Yao J-L, Tomes S, Xu J, Gleave AP 2016. How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signal Behav 11:4e1156833
    [Google Scholar]
  125. 125. 
    Yao J-L, Xu J, Cornille A, Tomes S, Karunairetnam S et al. 2015. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J 84:2417–27
    [Google Scholar]
  126. 126. 
    Yao J-L, Xu J, Tomes S, Cui W, Luo Z et al. 2018. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple. Plant Direct 2:4e00051
    [Google Scholar]
  127. 127. 
    Zeng L, Zhang N, Zhang Q, Endress PK, Huang J, Ma H 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol 214:31338–54
    [Google Scholar]
  128. 128. 
    Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5:4956
    [Google Scholar]
  129. 129. 
    Zhang L, Hu J, Han X, Li J, Gao Y et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10:11494
    [Google Scholar]
  130. 130. 
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH et al. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36:1211–16
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-111119-021700
Loading
/content/journals/10.1146/annurev-arplant-111119-021700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error