1932

Abstract

The binding affinity and kinetics of target engagement are fundamental to establishing structure–activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011420-092302
2020-06-20
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011420-092302.html?itemId=/content/journals/10.1146/annurev-biochem-011420-092302&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schürmann M, Janning P, Ziegler S, Waldmann H 2016. Small-molecule target engagement in cells. Cell Chem. Biol. 23:435–41
    [Google Scholar]
  2. 2. 
    Copeland RA, Boriack-Sjodin PA. 2018. The elements of translational chemical biology. Cell Chem. Biol. 25:128–34
    [Google Scholar]
  3. 3. 
    Schwaid AG, Cornella-Taracido I. 2018. Causes and significance of increased compound potency in cellular or physiological contexts. J. Med. Chem. 61:1767–73
    [Google Scholar]
  4. 4. 
    Simon GM, Niphakis MJ, Cravatt BF 2013. Determining target engagement in living systems. Nat. Chem. Biol. 9:200–5
    [Google Scholar]
  5. 5. 
    Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J et al. 2015. The promise and peril of chemical probes. Nat. Chem. Biol. 11:536–41
    [Google Scholar]
  6. 6. 
    Bunnage ME, Chekler EL, Jones LH 2013. Target validation using chemical probes. Nat. Chem. Biol. 9:195–99
    [Google Scholar]
  7. 7. 
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J 2014. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32:40–51
    [Google Scholar]
  8. 8. 
    Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS et al. 2012. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17:419–24
    [Google Scholar]
  9. 9. 
    Smietana K, Siatkowski M, Møller M 2016. Trends in clinical success rates. Nat. Rev. Drug Discov. 15:379–80
    [Google Scholar]
  10. 10. 
    Copeland RA, Pompliano DL, Meek TD 2006. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5:730–39
    [Google Scholar]
  11. 11. 
    Georgi V, Schiele F, Berger BT, Steffen A, Marin Zapata PA et al. 2018. Binding kinetics survey of the drugged kinome. J. Am. Chem. Soc. 140:15774–82
    [Google Scholar]
  12. 12. 
    Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M et al. 2016. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15:679–98
    [Google Scholar]
  13. 13. 
    Bantscheff M. 2012. Mass spectrometry-based chemoproteomic approaches. Methods Mol. Biol. 803:3–13
    [Google Scholar]
  14. 14. 
    Bantscheff M, Drewes G. 2012. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg. Med. Chem. 20:1973–78
    [Google Scholar]
  15. 15. 
    Moellering RE, Cravatt BF. 2012. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19:11–22
    [Google Scholar]
  16. 16. 
    Schirle M, Bantscheff M, Kuster B 2012. Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol. 19:72–84
    [Google Scholar]
  17. 17. 
    Bantscheff M, Kuster B. 2012. Quantitative mass spectrometry in proteomics. Anal. Bioanal. Chem. 404:937–38
    [Google Scholar]
  18. 18. 
    Daub H. 2015. Quantitative proteomics of kinase inhibitor targets and mechanisms. ACS Chem. Biol. 10:201–12
    [Google Scholar]
  19. 19. 
    Drewes G, Knapp S. 2018. Chemoproteomics and chemical probes for target discovery. Trends Biotechnol 36:1275–86
    [Google Scholar]
  20. 20. 
    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25:1035–44
    [Google Scholar]
  21. 21. 
    Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P et al. 2011. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29:255–65
    [Google Scholar]
  22. 22. 
    Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B et al. 2017. The target landscape of clinical kinase drugs. Science 358:eaan4368
    [Google Scholar]
  23. 23. 
    Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L et al. 2011. Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells. Leukemia 25:89–100
    [Google Scholar]
  24. 24. 
    Bachovchin DA, Ji T, Li W, Simon GM, Blankman JL et al. 2010. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. PNAS 107:20941–46
    [Google Scholar]
  25. 25. 
    Cravatt BF, Wright AT, Kozarich JW 2008. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77:383–414
    [Google Scholar]
  26. 26. 
    Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D et al. 2011. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18:699–710
    [Google Scholar]
  27. 27. 
    Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M et al. 2007. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46:350–58
    [Google Scholar]
  28. 28. 
    Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM et al. 2011. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29:1046–51
    [Google Scholar]
  29. 29. 
    Rutkowska A, Thomson DW, Vappiani J, Werner T, Mueller KM et al. 2016. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11:2541–50
    [Google Scholar]
  30. 30. 
    Smith E, Collins I. 2015. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem. 7:159–83
    [Google Scholar]
  31. 31. 
    Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC et al. 2017. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139:680–85
    [Google Scholar]
  32. 32. 
    Herner A, Marjanovic J, Lewandowski TM, Marin V, Patterson M et al. 2016. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J. Am. Chem. Soc. 138:14609–15
    [Google Scholar]
  33. 33. 
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T et al. 2014. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9:2100–22
    [Google Scholar]
  34. 34. 
    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA et al. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87
    [Google Scholar]
  35. 35. 
    Fedorov O, Niesen FH, Knapp S 2012. Kinase inhibitor selectivity profiling using differential scanning fluorimetry. Kinase Inhibitors: Methods and Protocols, Vol. 795 B Kuster 109–18 Totowa, NJ: Humana Press
    [Google Scholar]
  36. 36. 
    Niesen FH, Berglund H, Vedadi M 2007. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2:2212–21
    [Google Scholar]
  37. 37. 
    Dart ML, Machleidt T, Jost E, Schwinn MK, Robers MB et al. 2018. Homogeneous assay for target engagement utilizing bioluminescent thermal shift. ACS Med. Chem. Lett. 9:546–51
    [Google Scholar]
  38. 38. 
    Martinez NJ, Asawa RR, Cyr MG, Zakharov A, Urban DJ et al. 2018. A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Sci. Rep. 8:9472
    [Google Scholar]
  39. 39. 
    McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF et al. 2018. A high-throughput dose-response cellular thermal shift assay for rapid screening of drug target engagement in living cells, exemplified using SMYD3 and IDO1. SLAS Discov 23:34–46
    [Google Scholar]
  40. 40. 
    Shaw J, Dale I, Hemsley P, Leach L, Dekki N et al. 2019. Positioning high-throughput CETSA in early drug discovery through screening against B-Raf and PARP1. SLAS Discov 24:121–32
    [Google Scholar]
  41. 41. 
    Huber KV, Olek KM, Müller AC, Tan CS, Bennett KL et al. 2015. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12:1055–57
    [Google Scholar]
  42. 42. 
    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  43. 43. 
    Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M et al. 2009. Target identification using drug affinity responsive target stability (DARTS). PNAS 106:21984–89
    [Google Scholar]
  44. 44. 
    Tang W, Zhu L, Smith LM 1997. Controlling DNA fragmentation in MALDI-MS by chemical modification. Anal. Chem. 69:302–12
    [Google Scholar]
  45. 45. 
    Hashimoto M, Girardi E, Eichner R, Superti-Furga G 2018. Detection of chemical engagement of solute carrier proteins by a cellular thermal shift assay. ACS Chem. Biol. 13:1480–86
    [Google Scholar]
  46. 46. 
    Becher I, Werner T, Doce C, Zaal EA, Tögel I et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12:908–10
    [Google Scholar]
  47. 47. 
    Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME 2014. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim. Biophys. Acta Biomembr. 1838:15–33
    [Google Scholar]
  48. 48. 
    Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ 2015. Probing the pharmacology of G protein–coupled receptors with fluorescent ligands. Neuropharmacology 98:48–57
    [Google Scholar]
  49. 49. 
    Peach CJ, Kilpatrick LE, Friedman-Ohana R, Zimmerman K, Robers MB et al. 2018. Real-time ligand binding of fluorescent VEGF-A isoforms that discriminate between VEGFR2 and NRP1 in living cells. Cell Chem. Biol. 25:1208–18.e5
    [Google Scholar]
  50. 50. 
    Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB et al. 2015. Application of BRET to monitor ligand binding to GPCRs. Nat. Methods 12:661–63
    [Google Scholar]
  51. 51. 
    Conroy S, Kindon ND, Glenn J, Stoddart LA, Lewis RJ et al. 2018. Synthesis and evaluation of the first fluorescent antagonists of the human P2Y2 receptor based on AR-C118925. J. Med. Chem. 61:3089–113
    [Google Scholar]
  52. 52. 
    Stoddart LA, Vernall AJ, Denman JL, Briddon SJ, Kellam B, Hill SJ 2012. Fragment screening at adenosine-A(3) receptors in living cells using a fluorescence-based binding assay. Chem. Biol. 19:1105–15
    [Google Scholar]
  53. 53. 
    Arruda MA, Stoddart LA, Gherbi K, Briddon SJ, Kellam B, Hill SJ 2017. A non-imaging high throughput approach to chemical library screening at the unmodified adenosine-A3 receptor in living cells. Front. Pharmacol. 8:908
    [Google Scholar]
  54. 54. 
    Vauquelin G, Charlton SJ. 2010. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br. J. Pharmacol. 161:488–508
    [Google Scholar]
  55. 55. 
    Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ 2019. Binding kinetics of ligands acting at GPCRs. Mol. Cell Endocrinol. 485:9–19
    [Google Scholar]
  56. 56. 
    May LT, Self TJ, Briddon SJ, Hill SJ 2010. The effect of allosteric modulators on the kinetics of agonist-G protein-coupled receptor interactions in single living cells. Mol. Pharmacol. 78:511–23
    [Google Scholar]
  57. 57. 
    Gherbi K, May LT, Baker JG, Briddon SJ, Hill SJ 2015. Negative cooperativity across β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 β1-adrenoceptor binding conformation. FASEB J 29:2859–71
    [Google Scholar]
  58. 58. 
    May LT, Bridge LJ, Stoddart LA, Briddon SJ, Hill SJ 2011. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J 25:3465–76
    [Google Scholar]
  59. 59. 
    Gherbi K, Briddon SJ, Hill SJ 2014. Detection of the secondary, low-affinity β1-adrenoceptor site in living cells using the fluorescent CGP 12177 derivative BODIPY-TMR-CGP. Br. J. Pharmacol. 171:5431–45
    [Google Scholar]
  60. 60. 
    Ries J, Schwille P. 2012. Fluorescence correlation spectroscopy. BioEssays 34:361–68
    [Google Scholar]
  61. 61. 
    Briddon SJ, Kilpatrick LE, Hill SJ 2018. Studying GPCR pharmacology in membrane microdomains: fluorescence correlation spectroscopy comes of age. Trends Pharmacol. Sci. 39:158–74
    [Google Scholar]
  62. 62. 
    Cordeaux Y, Briddon SJ, Alexander SP, Kellam B, Hill SJ 2008. Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22:850–60
    [Google Scholar]
  63. 63. 
    Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salomé L 2003. Confined diffusion without fences of a G-protein-coupled receptor as revealed by single particle tracking. Biophys. J. 84:356–66
    [Google Scholar]
  64. 64. 
    Gherbi K, Briddon SJ, Charlton SJ 2018. Micro-pharmacokinetics: quantifying local drug concentration at live cell membranes. Sci. Rep. 8:3479
    [Google Scholar]
  65. 65. 
    Rose RH, Briddon SJ, Hill SJ 2012. A novel fluorescent histamine H1 receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br. J. Pharmacol. 165:1789–800
    [Google Scholar]
  66. 66. 
    Corriden R, Kilpatrick LE, Kellam B, Briddon SJ, Hill SJ 2014. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB J 28:4211–22
    [Google Scholar]
  67. 67. 
    Seifert R. 2013. Functional selectivity of G-protein-coupled receptors: from recombinant systems to native human cells. Biochem. Pharmacol. 86:853–61
    [Google Scholar]
  68. 68. 
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE et al. 2010. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. PNAS 107:2693–98
    [Google Scholar]
  69. 69. 
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C et al. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:463–80
    [Google Scholar]
  70. 70. 
    Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM et al. 2016. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci. Rep. 6:33233
    [Google Scholar]
  71. 71. 
    Wilson K, Webster SP, Iredale JP, Zheng X, Homer NZ et al. 2017. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis. Methods Appl. Fluoresc. 6:015002
    [Google Scholar]
  72. 72. 
    Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R 2019. Fluorescence anisotropy imaging in drug discovery. Adv. Drug Deliv. Rev. 151–152:262–88
    [Google Scholar]
  73. 73. 
    Dubach JM, Vinegoni C, Mazitschek R, Fumene Feruglio P, Cameron LA, Weissleder R 2014. In vivo imaging of specific drug-target binding at subcellular resolution. Nat. Commun. 5:3946
    [Google Scholar]
  74. 74. 
    Dubach JM, Kim E, Yang K, Cuccarese M, Giedt RJ et al. 2017. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat. Chem. Biol. 13:168–73
    [Google Scholar]
  75. 75. 
    Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA et al. 2015. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 6:10091
    [Google Scholar]
  76. 76. 
    Emami-Nemini A, Roux T, Leblay M, Bourrier E, Lamarque L et al. 2013. Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat. Protoc. 8:1307–20
    [Google Scholar]
  77. 77. 
    Ergin E, Dogan A, Parmaksiz M, Elçin AE, Elçin YM 2016. Time-resolved fluorescence resonance energy transfer [TR-FRET] assays for biochemical processes. Curr. Pharm. Biotechnol. 17:1222–30
    [Google Scholar]
  78. 78. 
    Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR et al. 2018. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25:206–14.e11
    [Google Scholar]
  79. 79. 
    Hu LA, Zhou T, Hamman BD, Liu Q 2008. A homogeneous G protein-coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer. Assay Drug Dev. Technol. 6:543–50
    [Google Scholar]
  80. 80. 
    Mitronova GY, Lukinavicius G, Butkevich AN, Kohl T, Belov VN et al. 2017. High-affinity functional fluorescent ligands for human β-adrenoceptors. Sci. Rep. 7:12319
    [Google Scholar]
  81. 81. 
    Robers MB, Vasta JD, Corona CR, Ohana RF, Hurst R et al. 2019. Quantitative, real-time measurements of intracellular target engagement using energy transfer. Methods Mol. Biol. 1888:45–71
    [Google Scholar]
  82. 82. 
    Wu P, Nielsen TE, Clausen MH 2016. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today 21:5–10
    [Google Scholar]
  83. 83. 
    Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP et al. 2011. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54:6342–63
    [Google Scholar]
  84. 84. 
    Asquith CRM, Berger BT, Wan J, Bennett JM, Capuzzi SJ et al. 2019. SGC-GAK-1: a chemical probe for cyclin G associated kinase (GAK). J. Med. Chem. 62:2830–36
    [Google Scholar]
  85. 85. 
    SGC (Struct. Genomic Consort.) Frankfurt 2019. Overview for PF-04554878 an inhibitor (orthosteric, non-covalent reversible type 1) of PTK2, PTK2B. Donated Chemical Probes https://www.sgc-ffm.uni-frankfurt.de/#!specificprobeoverview/PF-04554878
    [Google Scholar]
  86. 86. 
    SGC (Struct. Genomic Consort.) Frankfurt 2019. Chemical probes. SGC https://www.thesgc.org/chemical-probes
    [Google Scholar]
  87. 87. 
    Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E et al. 2016. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol 34:95–103
    [Google Scholar]
  88. 88. 
    Forster M, Chaikuad A, Bauer SM, Holstein J, Robers MB et al. 2016. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol. 23:1335–40
    [Google Scholar]
  89. 89. 
    Waring MJ, Chen H, Rabow AA, Walker G, Bobby R et al. 2016. Potent and selective bivalent inhibitors of BET bromodomains. Nat. Chem. Biol. 12:1097–104
    [Google Scholar]
  90. 90. 
    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  91. 91. 
    Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS et al. 2018. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 13:467–74
    [Google Scholar]
  92. 92. 
    Hulme EC, Trevethick MA. 2010. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 161:1219–37
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011420-092302
Loading
/content/journals/10.1146/annurev-biochem-011420-092302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error