1932

Abstract

Bacterial cytoplasmic membrane vesicles provide a unique experimental system for studying active transport. Vesicles are prepared by lysis of osmotically sensitized cells (i.e., protoplasts or spheroplasts) and comprise osmotically intact, unit-membrane-bound sacs that are approximately 0.5–1.0 μm in diameter and devoid of internal structure. Their metabolic activities are restricted to those provided by the enzymes of the membrane itself, and each vesicle is functional. The energy source for accumulation of a particular substrate can be determined by studying which compounds or experimental conditions drive solute accumulation, and metabolic conversion of the transported substrate or the energy source is minimal. These properties of the vesicle system constitute a considerable advantage over intact cells, as the system provides clear definition of the reactions involved in the transport process.

This discussion is not intended as a general review but is concerned with respiration-dependent active transport in membrane vesicles from . Emphasis is placed on experimental observations demonstrating that respiratory energy is converted primarily into work in the form of a solute concentration gradient that is driven by a proton electrochemical gradient, as postulated by the chemiosmotic theory of Peter Mitchell.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011520-105008
2021-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-011520-105008.html?itemId=/content/journals/10.1146/annurev-biochem-011520-105008&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Santer M, Margulies M, Klineman N, Kaback HR. 1960. Role of inorganic phosphate in thiosulfate metabolism by Thiobacillus thioparus. . J. Bact. 79:31320
    [Google Scholar]
  2. 2. 
    Kaback HR, Stadtman ER 1966. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. PNAS 55:4920–27
    [Google Scholar]
  3. 3. 
    Kaback HR, Kostellow AB. 1968. Glycine uptake in Escherichia coli. I. Glycine uptake by whole cells of Escherichia coli W+ and a d-serine-resistant mutant. J. Biol. Chem. 243:71384–89
    [Google Scholar]
  4. 4. 
    Kaback HR, Stadtman ER. 1968. Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation. J. Biol. Chem. 243:71390–400
    [Google Scholar]
  5. 5. 
    Kundig W, Kundig FD, Anderson B, Roseman S. 1966. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system. J. Biol. Chem. 241:133243–46
    [Google Scholar]
  6. 6. 
    Kaback HR. 1968. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J. Biol. Chem. 243:133711–24
    [Google Scholar]
  7. 7. 
    Fox CF, Kennedy EP 1965. Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. PNAS 54:891–99
    [Google Scholar]
  8. 8. 
    Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Taimoto K, Adachi O. 1986. Purification and characterization of the quinoprotein d-glucose dehydrogenase apoenzyme from Escherichia coli. Agric. Biol. Chem. 50:49–57
    [Google Scholar]
  9. 9. 
    Yamada M, Sumi K, Matsushita K, Adachi O, Yamada Y. 1993. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem. 268:12812–17
    [Google Scholar]
  10. 10. 
    Matsushita K, Arents JC, Bader R, Yamada M, Adachi O, Posta PW 1997. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143:3149–56
    [Google Scholar]
  11. 11. 
    Matsushita K, Nonobe M, Shinagawa E, Adachi O, Ameyama M. 1987. Reconstitution of pyrroloquinoline quinone-dependent d-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J. Bacteriol. 169:205–9
    [Google Scholar]
  12. 12. 
    Kaback HR, Milner LS 1970. Relationship of a membrane-bound d-(—)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations. PNAS 66:31008–15
    [Google Scholar]
  13. 13. 
    Müller-Hill B. 1996. The Lac Operon: A Short History Of A Genetic Paradigm Berlin: Walter de Gruyter
    [Google Scholar]
  14. 14. 
    Cohen GN, Rickenberg HV. 1955. Etude directe de la fixation d'un inducteur de la b-galactosidase par les cellules d’Escherichia coli. C. R. Hebd. Séances Acad. Sci. 240:466–68
    [Google Scholar]
  15. 15. 
    Ling GN. 1962. A Physical Theory of the Living State: The Association-Induction Hypothesis London: Blaisdell
  16. 16. 
    Barnes EM Jr., Kaback HR. 1970. β-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase. PNAS 66:41190–98
    [Google Scholar]
  17. 17. 
    Barnes EM Jr., Kaback HR. 1971. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between d-lactic dehydrogenase and β-galactoside transport in Escherichia coli membrane vesicles. J. Biol. Chem. 246:175518–22
    [Google Scholar]
  18. 18. 
    Kaback HR. 2016. Adventures in Serendipity Bloomington, IN: Xlibris
  19. 19. 
    Kaback HR 1971. Bacterial membranes. Methods in Enzymology NP Kaplan, WB Jakoby, NP Colowick XXII99–120 New York: Elsevier
    [Google Scholar]
  20. 20. 
    Short SA, Kaback HR, Kohn LD. 1975. Localization of d-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J. Biol. Chem. 250:114291–96
    [Google Scholar]
  21. 21. 
    Owen P, Kaback HR 1978. Molecular structure of membrane vesicles from Escherichia coli. PNAS 75:73148–52
    [Google Scholar]
  22. 22. 
    Owen P, Kaback HR. 1979. Antigenic architecture of membrane vesicles from Escherichia coli. Biochemistry 18:81422–26
    [Google Scholar]
  23. 23. 
    Owen P, Kaback HR. 1979. Immunochemical analysis of membrane vesicles from Escherichia coli. Biochemistry 18:81413–22
    [Google Scholar]
  24. 24. 
    Walsh CT, Abeles RH, Kaback HR. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of d-lactate dehydrogenase and d-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate. J. Biol. Chem. 247:247858–63
    [Google Scholar]
  25. 25. 
    Schonbrunn A, Abeles RH, Walsh CT, Ghisla S, Ogata H, Massey V. 1976. The structure of the covalent flavin adduct formed between lactate oxidase and the suicide substrate 2-hydroxy-3-butynoate. Biochemistry 15:91798–807
    [Google Scholar]
  26. 26. 
    Walsh CT, Kaback HR. 1973. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli. J. Biol. Chem. 248:155456–62
    [Google Scholar]
  27. 27. 
    Short SA, Kaback HR, Kaczorowski G, Fisher J, Walsh CT, Silverstein SC 1974. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport. PNAS 71:125032–36
    [Google Scholar]
  28. 28. 
    Konings WN, Barnes EM Jr., Kaback HR. 1971. Mechanisms of active transport in isolated membrane vesicles. J. Biol. Chem. 246:5857–61
    [Google Scholar]
  29. 29. 
    Kaback HR, Barnes EM Jr. 1971. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between d-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J. Biol. Chem. 246:175523–31
    [Google Scholar]
  30. 30. 
    Ting HP, Wilson DF, Chance B. 1970. Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes. Arch. Biochem. Biophys. 141:1141–46
    [Google Scholar]
  31. 31. 
    Kaback HR, Reeves JP, Short SA, Lombardi FJ. 1974. Mechanisms of active transport in isolated bacterial membrane vesicles. XVIII. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Arch. Biochem. Biophys. 160:1215–22
    [Google Scholar]
  32. 32. 
    Mitchell P. 1963. Molecule, group and electron transport through natural membranes. Biochem. Soc. Symp. 22:142–68
    [Google Scholar]
  33. 33. 
    Mitchell P. 1967. Translocations through natural membranes. Adv. Enzymol. 29:33–87
    [Google Scholar]
  34. 34. 
    Mitchell P. 1968. Chemiosmotic Coupling and Energy Transduction Bodmin, UK: Glynn Research Ltd.
  35. 35. 
    Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–48
    [Google Scholar]
  36. 36. 
    Jagendorf AT, Uribe E 1966. ATP formation caused by acid-base transition of spinach chloroplasts. PNAS 55:1170–77
    [Google Scholar]
  37. 37. 
    Greville GD. 1969. A scrutiny of Mitchell's chemiosmotic hypothesis. Curr. Top. Bioenerg. 3:1–78
    [Google Scholar]
  38. 38. 
    Harold FM. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36:2172–230
    [Google Scholar]
  39. 39. 
    Reeves JP. 1971. Transient pH changes during d-lactate oxidation by membrane vesicles. Biochem. Biophys. Res. Commun. 45:4931–36
    [Google Scholar]
  40. 40. 
    West IC. 1970. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 41:655–61
    [Google Scholar]
  41. 41. 
    West IC, Mitchell P. 1972. Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli. . J. Bioenerg. 3:445–62
    [Google Scholar]
  42. 42. 
    Bhattacharyya P, Epstein W, Silver S 1971. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli. PNAS 68:71488–92
    [Google Scholar]
  43. 43. 
    Lombardi FJ, Reeves JP, Kaback HR. 1973. Mechanisms of active transport in isolated bacterial membrane vesicles. XIII. Valinomycin-induced rubidium transport. J. Biol. Chem. 248:103551–65
    [Google Scholar]
  44. 44. 
    Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO et al. 1970. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim. Biophys. Acta Bioenerg. 216:113–21
    [Google Scholar]
  45. 45. 
    Harold FM. 1974. Chemiosmotic interpretation of active transport in bacteria. Ann. NY Acad. Sci. 227:297–311
    [Google Scholar]
  46. 46. 
    Lombardi FJ, Reeves JP, Short SA, Kaback HR. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Ann. NY Acad. Sci. 227:312–27
    [Google Scholar]
  47. 47. 
    Schuldiner S, Kaback HR. 1975. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14:255451–61
    [Google Scholar]
  48. 48. 
    Heinz E, Geck P, Pietrzyk C. 1975. Driving forces of amino acid transport in animal cells. Ann. NY Acad. Sci. 264:428–41
    [Google Scholar]
  49. 49. 
    Kiefer H, Blume AJ, Kaback HR 1980. Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. PNAS 77:42200–204
    [Google Scholar]
  50. 50. 
    Lichtshtein D, Dunlop K, Kaback HR, Blume AJ 1979. Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15. PNAS 76:62580–84
    [Google Scholar]
  51. 51. 
    Lichtshtein D, Kaback HR, Blume AJ. 1979. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. PNAS 76:2650–54
    [Google Scholar]
  52. 52. 
    Padan E, Zilberstein D, Rottenberg H. 1976. The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63:2533–41
    [Google Scholar]
  53. 53. 
    Zilberstein D, Schuldiner S, Padan E. 1979. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18:4669–73
    [Google Scholar]
  54. 54. 
    Rottenberg H. 1975. The measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7:261–74
    [Google Scholar]
  55. 55. 
    Colowick SP, Womack FC. 1969. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J. Biol. Chem. 244:4774–77
    [Google Scholar]
  56. 56. 
    Rudnick G, Schuldiner S, Kaback HR. 1976. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli. Biochemistry 15:235126–31
    [Google Scholar]
  57. 57. 
    Schuldiner S, Weil R, Kaback HR 1976. Energy-dependent binding of dansylgalactoside to the lac carrier protein: direct binding measurements. PNAS 73:1109–12
    [Google Scholar]
  58. 58. 
    Ramos S, Schuldiner S, Kaback HR 1976. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. PNAS 73:61892–96
    [Google Scholar]
  59. 59. 
    Ramos S, Kaback HR. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16:5848–54
    [Google Scholar]
  60. 60. 
    Ramos S, Kaback HR. 1977. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry 16:5854–59
    [Google Scholar]
  61. 61. 
    Navon G, Ogawa S, Shulman RG, Yamane T 1977. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. PNAS 74:3888–91
    [Google Scholar]
  62. 62. 
    Ogawa S, Shulman RG, Glynn P, Yamane T, Navon G. 1978. On the measurement of pH in Escherichia coli by 31P nuclear magnetic resonance. Biochim. Biophys. Acta Bioenerg. 502:145–50
    [Google Scholar]
  63. 63. 
    Felle H, Porter JS, Slayman CL, Kaback HR. 1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19:153585–90
    [Google Scholar]
  64. 64. 
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. 2005. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:70461197–202
    [Google Scholar]
  65. 65. 
    Reenstra WW, Patel L, Rottenberg H, Kaback HR. 1980. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli. Biochemistry 19:11–9
    [Google Scholar]
  66. 66. 
    Matsushita K, Patel L, Gennis RB, Kaback HR 1983. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. PNAS 80:164889–93
    [Google Scholar]
  67. 67. 
    Hugenholtz J, Hong JS, Kaback HR 1981. ATP-driven active transport in right-side-out bacterial membrane vesicles. PNAS 78:63446–49
    [Google Scholar]
  68. 68. 
    Tokuda H, Kaback HR. 1977. Sodium-dependent methyl 1-thio-β-d-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. Biochemistry 16:102130–36
    [Google Scholar]
  69. 69. 
    Tokuda H, Kaback HR. 1978. Sodium-dependent binding of p-nitrophenyl α-d-galactopyranoside to membrane vesicles isolated from Salmonella typhimurium. Biochemistry 17:4698–705
    [Google Scholar]
  70. 70. 
    Büchel DE, Gronenborn B, Müller-Hill B. 1980. Sequence of the lactose permease gene. Nature 283:5747541–45
    [Google Scholar]
  71. 71. 
    Teather RM, Müller-Hill B, Abrutsch U, Aichele G, Overath P. 1978. Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol. Gen. Genet. 159:239–48
    [Google Scholar]
  72. 72. 
    Newman MJ, Wilson TH. 1980. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255:2210583–86
    [Google Scholar]
  73. 73. 
    Zoller MJ, Smith M. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol 100:468–500
    [Google Scholar]
  74. 74. 
    Beyreuther K, Bieseler B, Ehring R, Müller-Hill B 1982. Identification of internal residues of lactose permease of Escherichia coli by radiolabel sequences of peptide mixtures. Methods in Protein Sequence Analysis M Elzinga 139–48 Experimental Biology and Medicine 3: Clifton, NY: Humana
    [Google Scholar]
  75. 75. 
    Trumble WR, Viitanen PV, Sarkar HK, Poonian MS, Kaback HR. 1984. Site-directed mutagenesis of cys148 in the lac carrier protein of Escherichia coli. Biochem. Biophys. Res. Commun. 119:3860–67
    [Google Scholar]
  76. 76. 
    van Iwaarden PR, Driessen AJ, Menick DR, Kaback HR, Konings WN. 1991. Characterization of purified, reconstituted site-directed cysteine mutants of the lactose permease of Escherichia coli. J. Biol. Chem. 266:15688–92
    [Google Scholar]
  77. 77. 
    van Iwaarden PR, Pastore JC, Konings WN, Kaback HR. 1991. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30:409595–600
    [Google Scholar]
  78. 78. 
    Frillingos S, Sahin-Tóth M, Wu J, Kaback HR. 1998. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12:131281–99
    [Google Scholar]
  79. 79. 
    McKenna E, Hardy D, Kaback HR. 1992. Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. J. Biol. Chem. 267:106471–74
    [Google Scholar]
  80. 80. 
    Sorgen PL, Hu Y, Guan L, Kaback HR, Girvin ME 2002. An approach to membrane protein structure without crystals. PNAS 99:2214037–40
    [Google Scholar]
  81. 81. 
    Karlin A, Akabas MH. 1998. Substituted-cysteine accessibility method. Methods Enzymol 293:123–45
    [Google Scholar]
  82. 82. 
    Kaback HR, Sahin-Tóth M, Weinglass AB. 2001. The kamikaze approach to membrane transport. Nat. Rev. Mol. Cell Biol. 2:8610–20
    [Google Scholar]
  83. 83. 
    Guan L, Hu Y, Kaback HR. 2003. Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42:61377–82
    [Google Scholar]
  84. 84. 
    Jiang X, Villafuerte MK, Andersson M, White SH, Kaback HR. 2014. Galactoside-binding site in LacY. Biochemistry 53:91536–43
    [Google Scholar]
  85. 85. 
    Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM 2014. Structure of sugar-bound LacY. PNAS 111:51784–88
    [Google Scholar]
  86. 86. 
    Kumar H, Finer-Moore JS, Kaback HR, Stroud RM 2015. Structure of LacY with an α-substituted galactoside: connecting the binding site to the protonation site. PNAS 112:299004–9
    [Google Scholar]
  87. 87. 
    Carrasco N, Antes LM, Poonian MS, Kaback HR. 1986. Lac permease of Escherichia coli: histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry 25:164486–88
    [Google Scholar]
  88. 88. 
    Carrasco N, Puttner IB, Antes LM, Lee JA, Larigan JD et al. 1989. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28:62533–39
    [Google Scholar]
  89. 89. 
    Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR. 1980. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19:255692–702
    [Google Scholar]
  90. 90. 
    Sahin-Tóth M, Kaback HR 2001. Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli. PNAS 98:116068–73
    [Google Scholar]
  91. 91. 
    Foster DL, Boublik M, Kaback HR. 1983. Structure of the lac carrier protein of Escherichia coli. J. Biol. Chem. 258:131–34
    [Google Scholar]
  92. 92. 
    Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:5633610–15
    [Google Scholar]
  93. 93. 
    Calamia J, Manoil C 1990. Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. PNAS 87:134937–41
    [Google Scholar]
  94. 94. 
    Kaczorowski GJ, Robertson DE, Kaback HR. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed ΔΨ, ΔpH, and ΔμH+. Biochemistry 18:173697–704
    [Google Scholar]
  95. 95. 
    Kaczorowski GJ, Kaback HR. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry 18:173691–97
    [Google Scholar]
  96. 96. 
    Garcia ML, Viitanen P, Foster DL, Kaback HR. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow. Biochemistry 22:102524–31
    [Google Scholar]
  97. 97. 
    Kaczorowski GJ, Leblanc G, Kaback HR 1980. Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. PNAS 77:116319–23
    [Google Scholar]
  98. 98. 
    Newman MJ, Foster DL, Wilson TH, Kaback HR. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. . J. Biol. Chem. 256:2211804–8
    [Google Scholar]
  99. 99. 
    Viitanen P, Garcia ML, Kaback HR 1984. Purified reconstituted lac carrier protein from Escherichia coli is fully functional. PNAS 81:61629–33
    [Google Scholar]
  100. 100. 
    Viitanen P, Newman MJ, Foster DL, Wilson TH, Kaback HR. 1986. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol 125:429–52
    [Google Scholar]
  101. 101. 
    Consler TG, Persson BL, Jung H, Zen KH, Jung K et al. 1993. Properties and purification of an active biotinylated lactose permease from Escherichia coli. PNAS 90:6934–38
    [Google Scholar]
  102. 102. 
    Pouny Y, Weitzman C, Kaback HR. 1998. In vitro biotinylation provides quantitative recovery of highly purified active lactose permease in a single step. Biochemistry 37:4515713–19
    [Google Scholar]
  103. 103. 
    Whitelegge JP, le Coutre J, Lee JC, Engel CK, Privé GG et al. 1999. Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. PNAS 96:1910695–98
    [Google Scholar]
  104. 104. 
    Bibi E, Kaback HR 1990. In vivo expression of the lacY gene in two segments leads to functional lac permease. PNAS 87:114325–29
    [Google Scholar]
  105. 105. 
    Zen KH, McKenna E, Bibi E, Hardy D, Kaback HR 1994. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry 33:278198–206
    [Google Scholar]
  106. 106. 
    Kaback HR, Guan L. 2019. It takes two to tango: the dance of the permease. J. Gen. Physiol. 151:7878–86
    [Google Scholar]
  107. 107. 
    Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J 2011. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. PNAS 108:9361–66
    [Google Scholar]
  108. 108. 
    Grytsyk N, Sugihara J, Kaback HR, Hellwig P 2017. pKa of Glu325 in LacY. PNAS 114:1530–35
    [Google Scholar]
  109. 109. 
    Guan L, Kaback HR 2004. Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. PNAS 101:3312148–52
    [Google Scholar]
  110. 110. 
    Kaback HR. 1972. Transport across isolated bacterial cytoplasmic membranes. Biochim. Biophys. Acta Rev. Biomembr. 265:367–416
    [Google Scholar]
  111. 111. 
    Kaback HR. 1971. Bacterial enzymes. Methods Enzymol. 22:99–120
    [Google Scholar]
  112. 112. 
    Kaback HR. 1974. Transport studies in bacterial membrane vesicles. Science 186:882–92
    [Google Scholar]
  113. 113. 
    Kaback HR. 1972. Bacterial transport mechanisms as studied in cytoplasmic membrane vesicles. Ann. N. Y. Acad. Sci. 195:407–11
    [Google Scholar]
  114. 114. 
    Kaback HR. 1986. Active transport in Escherichia coli: passage to permease. Annu. Rev. Biophys. Biophys. Chem. 15:279–319
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011520-105008
Loading
/content/journals/10.1146/annurev-biochem-011520-105008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error