- Home
- A-Z Publications
- Annual Review of Biochemistry
- Previous Issues
- Volume 90, 2021
Annual Review of Biochemistry - Volume 90, 2021
Volume 90, 2021
-
-
It's Better To Be Lucky Than Smart
Vol. 90 (2021), pp. 1–29More LessBacterial cytoplasmic membrane vesicles provide a unique experimental system for studying active transport. Vesicles are prepared by lysis of osmotically sensitized cells (i.e., protoplasts or spheroplasts) and comprise osmotically intact, unit-membrane-bound sacs that are approximately 0.5–1.0 μm in diameter and devoid of internal structure. Their metabolic activities are restricted to those provided by the enzymes of the membrane itself, and each vesicle is functional. The energy source for accumulation of a particular substrate can be determined by studying which compounds or experimental conditions drive solute accumulation, and metabolic conversion of the transported substrate or the energy source is minimal. These properties of the vesicle system constitute a considerable advantage over intact cells, as the system provides clear definition of the reactions involved in the transport process.
This discussion is not intended as a general review but is concerned with respiration-dependent active transport in membrane vesicles from Escherichia coli. Emphasis is placed on experimental observations demonstrating that respiratory energy is converted primarily into work in the form of a solute concentration gradient that is driven by a proton electrochemical gradient, as postulated by the chemiosmotic theory of Peter Mitchell.
-
-
-
Short- and Long-Term Adaptation to Altered Levels of Glucose: Fifty Years of Scientific Adventure
Vol. 90 (2021), pp. 31–55More LessMy graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.
-
-
-
From Bioorganic Models to Cells
Vol. 90 (2021), pp. 57–76More LessI endeavor to share how various choices—some deliberate, some unconscious—and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.
-
-
-
Structural Mechanisms for Replicating DNA in Eukaryotes
Vol. 90 (2021), pp. 77–106More LessThe faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein–nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
-
-
-
Mechanisms of Vertebrate DNA Interstrand Cross-Link Repair
Vol. 90 (2021), pp. 107–135More LessDNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
-
-
-
Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway
Vol. 90 (2021), pp. 137–164More LessDNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
-
-
-
Repair of DNA Breaks by Break-Induced Replication
Z.W. Kockler, B. Osia, R. Lee, K. Musmaker, and A. MalkovaVol. 90 (2021), pp. 165–191More LessDouble-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.
-
-
-
The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes
Vol. 90 (2021), pp. 193–219More LessIn eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
-
-
-
Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond
Vol. 90 (2021), pp. 221–244More LessIn 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model—namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation—are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits.
-
-
-
Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation
Miao Wang, and Hening LinVol. 90 (2021), pp. 245–285More LessProtein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
-
-
-
Molecular Epigenetics: Chemical Biology Tools Come of Age
Vol. 90 (2021), pp. 287–320More LessThe field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field. In an effort to make these contributions more accessible to the nonspecialist, we group available chemical approaches into those that allow the covalent structure of the protein and DNA components of chromatin to be manipulated, those that allow the activity of myriad factors that act on chromatin to be controlled, and those that allow the covalent structure and folding of chromatin to be characterized. The application of these tools is illustrated through a series of case studies that highlight how the molecular precision afforded by chemistry is being used to establish causal biochemical relationships at the heart of epigenetic regulation.
-
-
-
Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus
Vol. 90 (2021), pp. 321–348More LessInfluenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.
-
-
-
The Roots of Genetic Coding in Aminoacyl-tRNA Synthetase Duality
Vol. 90 (2021), pp. 349–373More LessCodon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS–tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.
-
-
-
Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding
Yi Liu, Qian Yang, and Fangzhou ZhaoVol. 90 (2021), pp. 375–401More LessCodon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
-
-
-
Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis
Vol. 90 (2021), pp. 403–429More LessCullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
-
-
-
An Overview of Microcrystal Electron Diffraction (MicroED)
Vol. 90 (2021), pp. 431–450More LessThe bedrock of drug discovery and a key tool for understanding cellular function and drug mechanisms of action is the structure determination of chemical compounds, peptides, and proteins. The development of new structure characterization tools, particularly those that fill critical gaps in existing methods, presents important steps forward for structural biology and drug discovery. The emergence of microcrystal electron diffraction (MicroED) expands the application of cryo–electron microscopy to include samples ranging from small molecules and membrane proteins to even large protein complexes using crystals that are one-billionth the size of those required for X-ray crystallography. This review outlines the conception, achievements, and exciting future trajectories for MicroED, an important addition to the existing biophysical toolkit.
-
-
-
Preparing Better Samples for Cryo–Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification
Vol. 90 (2021), pp. 451–474More LessThe preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.
-
-
-
Optobiochemistry: Genetically Encoded Control of Protein Activity by Light
Vol. 90 (2021), pp. 475–501More LessOptobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
-
-
-
Introduction to the Theme on Membrane Channels
Vol. 90 (2021), pp. 503–505More LessThis volume of the Annual Review of Biochemistry contains three reviews on membrane channel proteins: the first by Szczot et al., titled The Form and Function of PIEZO2; the second by Ruprecht & Kunji, titled Structural Mechanism of Transport of Mitochondrial Carriers; and the third by McIlwain et al., titled Membrane Exporters of Fluoride Ion. These reviews provide nice illustrations of just how far evolution has been able to play with the basic helix-bundle architecture of integral membrane proteins to produce membrane channels and transporters of widely different functions.
-
-
-
The Form and Function of PIEZO2
Vol. 90 (2021), pp. 507–534More LessMechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
-
Previous Volumes
-
Volume 93 (2024)
-
Volume 92 (2023)
-
Volume 91 (2022)
-
Volume 90 (2021)
-
Volume 89 (2020)
-
Volume 88 (2019)
-
Volume 87 (2018)
-
Volume 86 (2017)
-
Volume 85 (2016)
-
Volume 84 (2015)
-
Volume 83 (2014)
-
Volume 82 (2013)
-
Volume 81 (2012)
-
Volume 80 (2011)
-
Volume 79 (2010)
-
Volume 78 (2009)
-
Volume 77 (2008)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2005)
-
Volume 73 (2004)
-
Volume 72 (2003)
-
Volume 71 (2002)
-
Volume 70 (2001)
-
Volume 69 (2000)
-
Volume 68 (1999)
-
Volume 67 (1998)
-
Volume 66 (1997)
-
Volume 65 (1996)
-
Volume 64 (1995)
-
Volume 63 (1994)
-
Volume 62 (1993)
-
Volume 61 (1992)
-
Volume 60 (1991)
-
Volume 59 (1990)
-
Volume 58 (1989)
-
Volume 57 (1988)
-
Volume 56 (1987)
-
Volume 55 (1986)
-
Volume 54 (1985)
-
Volume 53 (1984)
-
Volume 52 (1983)
-
Volume 51 (1982)
-
Volume 50 (1981)
-
Volume 49 (1980)
-
Volume 48 (1979)
-
Volume 47 (1978)
-
Volume 46 (1977)
-
Volume 45 (1976)
-
Volume 44 (1975)
-
Volume 43 (1974)
-
Volume 42 (1973)
-
Volume 41 (1972)
-
Volume 40 (1971)
-
Volume 39 (1970)
-
Volume 38 (1969)
-
Volume 37 (1968)
-
Volume 36 (1967)
-
Volume 35 (1966)
-
Volume 34 (1965)
-
Volume 33 (1964)
-
Volume 32 (1963)
-
Volume 31 (1962)
-
Volume 30 (1961)
-
Volume 29 (1960)
-
Volume 28 (1959)
-
Volume 27 (1958)
-
Volume 26 (1957)
-
Volume 25 (1956)
-
Volume 24 (1955)
-
Volume 23 (1954)
-
Volume 22 (1953)
-
Volume 21 (1952)
-
Volume 20 (1951)
-
Volume 19 (1950)
-
Volume 18 (1949)
-
Volume 17 (1948)
-
Volume 16 (1947)
-
Volume 15 (1946)
-
Volume 14 (1945)
-
Volume 13 (1944)
-
Volume 12 (1943)
-
Volume 11 (1942)
-
Volume 10 (1941)
-
Volume 9 (1940)
-
Volume 8 (1939)
-
Volume 7 (1938)
-
Volume 6 (1937)
-
Volume 5 (1936)
-
Volume 4 (1935)
-
Volume 3 (1934)
-
Volume 2 (1933)
-
Volume 1 (1932)
-
Volume 0 (1932)