1932

Abstract

In 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model—namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation—are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111914
2021-06-20
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-013118-111914.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111914&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Monod J, Jacob F 1961. General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26:389–401
    [Google Scholar]
  2. 2. 
    Jacob F, Monod J. 1961. On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 26:193–211
    [Google Scholar]
  3. 3. 
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  4. 4. 
    Tajbakhsh S, Cavalli G, Richet E. 2011. Integrated gene regulatory circuits: celebrating the 50th anniversary of the operon model. Mol. Cell 43:505–14
    [Google Scholar]
  5. 5. 
    Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nat. Rev. Microbiol. 12:381–90
    [Google Scholar]
  6. 6. 
    Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–42
    [Google Scholar]
  7. 7. 
    Elowitz MB, Leibler S. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  8. 8. 
    Bashor CJ, Collins JJ. 2018. Understanding biological regulation through synthetic biology. Annu. Rev. Biophys. 47:399–423
    [Google Scholar]
  9. 9. 
    Xie M, Fussenegger M. 2018. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19:507–25
    [Google Scholar]
  10. 10. 
    Brophy JAN, Voigt CA. 2014. Principles of genetic circuit design. Nat. Methods 11:508–20
    [Google Scholar]
  11. 11. 
    Chappell J, Watters KE, Takahashi MK, Lucks JB. 2015. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr. Opin. Chem. Biol. 28:47–56
    [Google Scholar]
  12. 12. 
    Berg P, Mertz JE. 2010. Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17
    [Google Scholar]
  13. 13. 
    Chen D, Arkin AP. 2012. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol. Sys. Biol. 8:620
    [Google Scholar]
  14. 14. 
    Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J 2008. A fast, robust and tunable synthetic gene oscillator. Nature 456:516–19
    [Google Scholar]
  15. 15. 
    Wall ME, Hlavacek WS, Savageau MA. 2004. Design of gene circuits: lessons from bacteria. Nat. Rev. Genet. 5:34–42
    [Google Scholar]
  16. 16. 
    Becskei A, Serrano L. 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–93
    [Google Scholar]
  17. 17. 
    Becskei A, Séraphin B, Serrano L. 2001. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–35
    [Google Scholar]
  18. 18. 
    Isaacs FJ, Hasty J, Cantor CR, Collins JJ 2003. Prediction and measurement of an autoregulatory genetic module. PNAS 100:7714–19
    [Google Scholar]
  19. 19. 
    Barkai N, Leibler S. 2000. Circadian clocks limited by noise. Nature 403:267–68
    [Google Scholar]
  20. 20. 
    Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–10
    [Google Scholar]
  21. 21. 
    Pedraza JM, van Oudenaarden A. 2005. Noise propagation in gene networks. Science 307:1965–69
    [Google Scholar]
  22. 22. 
    Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V et al. 2016. Genetic circuit design automation. Science 352:aac7341
    [Google Scholar]
  23. 23. 
    Bayer TS, Smolke CD. 2005. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23:337–43
    [Google Scholar]
  24. 24. 
    Kim J, Zhou Y, Carlson PD, Teichmann M, Chaudhary S et al. 2019. De novo–designed translation-repressing riboregulators for multi-input cellular logic. Nat. Chem. Biol. 15:1173–82
    [Google Scholar]
  25. 25. 
    Lee T, Hannett N, Harbison C, Thompson C, Simon I et al. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804
    [Google Scholar]
  26. 26. 
    Hooshangi S, Thiberge S, Weiss R 2005. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102:3581–86
    [Google Scholar]
  27. 27. 
    Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. 2005. Gene regulation at the single-cell level. Science 307:1962–65
    [Google Scholar]
  28. 28. 
    Weiss R, Basu S. 2002. The device physics of cellular logic gates Presented at the First Workshop on Non-Silicon Computation (NSC-1), Cambridge, MA, Feb. 3
    [Google Scholar]
  29. 29. 
    Guet C, Elowitz MB, Hsing W, Leibler S. 2002. Combinatorial synthesis of genetic networks. Science 296:1466–70
    [Google Scholar]
  30. 30. 
    Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J et al. 2006. A bottom-up approach to gene regulation. Nature 439:856–60
    [Google Scholar]
  31. 31. 
    Tamsir A, Tabor JJ, Voigt CA 2011. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires.. Nature 469:212–15
    [Google Scholar]
  32. 32. 
    Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA. 2012. Genetic programs constructed from layered logic gates in single cells. Nature 491:249–53
    [Google Scholar]
  33. 33. 
    Shin J, Zhang S, Der BS, Nielsen AA, Voigt CA. 2020. Programming Escherichia coli to function as a digital display. Mol. Sys. Biol. 16:e9401
    [Google Scholar]
  34. 34. 
    Hallberg ZF, Su Y, Kitto RZ, Hammond MC. 2017. Engineering and in vivo applications of riboswitches. Annu. Rev. Biochem. 86:515–39
    [Google Scholar]
  35. 35. 
    Svenningsen SL, Waters CM, Bassler BL. 2008. A negative feedback loop involving small RNAs accelerates Vibrio cholerae’s transition out of quorum-sensing mode. Genes Dev. 22:226–38
    [Google Scholar]
  36. 36. 
    Borkowski O, Ceroni F, Stan GB, Ellis T. 2016. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol. 33:123–30
    [Google Scholar]
  37. 37. 
    Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91
    [Google Scholar]
  38. 38. 
    Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55
    [Google Scholar]
  39. 39. 
    Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. 2004. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22:841–47
    [Google Scholar]
  40. 40. 
    Green AA, Silver PA, Collins JJ, Yin P. 2014. Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–39
    [Google Scholar]
  41. 41. 
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G et al. 2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–66
    [Google Scholar]
  42. 42. 
    Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. 2004. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–86
    [Google Scholar]
  43. 43. 
    Win MN, Smolke CD. 2008. Higher-order cellular information processing with synthetic RNA devices. Science 322:456–60
    [Google Scholar]
  44. 44. 
    Schmidt CM, Smolke CD. 2019. RNA switches for synthetic biology. Cold Spring Harb. Perspect. Biol. 11:a032532
    [Google Scholar]
  45. 45. 
    Carothers JM, Goler JA, Juminaga D, Keasling JD. 2011. Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–19
    [Google Scholar]
  46. 46. 
    Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK 2003. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. PNAS 100:12271–76
    [Google Scholar]
  47. 47. 
    Khalil AS, Bashor CJ, Pyenson NC, Collins JJ, Lu TK et al. 2012. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150:647–58
    [Google Scholar]
  48. 48. 
    Bashor CJ, Patel N, Choubey S, Beyzavi A, Kondev J et al. 2019. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science 364:593–97
    [Google Scholar]
  49. 49. 
    Santos-Moreno J, Tasiudi E, Stelling J, Schaerli Y. 2020. Multistable and dynamic CRISPRi-based synthetic circuits. Nat. Commun. 11:2746
    [Google Scholar]
  50. 50. 
    Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. 2018. The biology of CRISPR-Cas: backward and forward. Cell 172:1239–59
    [Google Scholar]
  51. 51. 
    Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science 361:866–69
    [Google Scholar]
  52. 52. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–57
    [Google Scholar]
  53. 53. 
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–42
    [Google Scholar]
  54. 54. 
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Google Scholar]
  55. 55. 
    English MA, Soenksen LR, Gayet RV, Puig HD, Angenent-Mari NM et al. 2019. Programmable CRISPR-responsive smart materials. Science 365:780–85
    [Google Scholar]
  56. 56. 
    Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–96
    [Google Scholar]
  57. 57. 
    Nielsen AA, Voigt CA. 2014. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Sys. Biol. 10:763
    [Google Scholar]
  58. 58. 
    Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA et al. 2019. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10:194
    [Google Scholar]
  59. 59. 
    Fontana J, Dong C, Kiattisewee C, Chavali VP, Tickman BI et al. 2020. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat. Commun. 11:1618
    [Google Scholar]
  60. 60. 
    Clamons S, Murray R. 2019. Modeling predicts that CRISPR-based activators, unlike CRISPR-based repressors, scale well with increasing gRNA competition and dCas9 bottlenecking. bioRxiv 719278. https://doi.org/10.1101/719278
    [Crossref]
  61. 61. 
    Ho HI, Fang J, Cheung J, Wang HH. 2020. Programmable and portable CRISPR-Cas transcriptional activation in bacteria. bioRxiv 882431. https://doi.org/10.1101/2020.01.03.882431
    [Crossref]
  62. 62. 
    Wang B, Guo F, Dong SH, Zhao H. 2019. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15:111–14
    [Google Scholar]
  63. 63. 
    Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. 2018. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–76
    [Google Scholar]
  64. 64. 
    Du M, Jillette N, Zhu JJ, Li S, Cheng AW. 2020. CRISPR artificial splicing factors. Nat. Commun. 11:2973
    [Google Scholar]
  65. 65. 
    Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:487–500
    [Google Scholar]
  66. 66. 
    Keung AJ, Bashor CJ, Kiriakov S, Collins JJ, Khalil AS. 2014. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110–20
    [Google Scholar]
  67. 67. 
    Sánchez-Romero MA, Casadesús J. 2020. The bacterial epigenome. Nat. Rev. Microbiol. 18:7–20
    [Google Scholar]
  68. 68. 
    Maier JA, Möhrle R, Jeltsch A. 2017. Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation. Nat. Commun. 8:15336
    [Google Scholar]
  69. 69. 
    Park M, Patel N, Keung AJ, Khalil AS. 2019. Engineering epigenetic regulation using synthetic read-write modules. Cell 176:227–38
    [Google Scholar]
  70. 70. 
    Cameron DE, Collins JJ. 2014. Tunable protein degradation in bacteria. Nat. Biotechnol. 32:1276–81
    [Google Scholar]
  71. 71. 
    Hao N, Shearwin KE, Dodd IB. 2019. Positive and negative control of enhancer-promoter interactions by other DNA loops generates specificity and tunability. Cell Rep 26:2419–33
    [Google Scholar]
  72. 72. 
    Schoenfelder S, Fraser P. 2019. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20:437–55
    [Google Scholar]
  73. 73. 
    Brunwasser-Meirom M, Pollak Y, Goldberg S, Levy L, Atar O, Amit R. 2016. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression. Nat. Commun. 7:10407
    [Google Scholar]
  74. 74. 
    Hao N, Shearwin KE, Dodd IB. 2017. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat. Commun. 8:1628
    [Google Scholar]
  75. 75. 
    Gordley RM, Bugaj LJ, Lim WA. 2016. Modular engineering of cellular signaling proteins and networks. Curr. Opin. Struct. Biol. 39:106–14
    [Google Scholar]
  76. 76. 
    Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M et al. 2017. Combinatorial signal perception in the BMP pathway. Cell 170:1184–96
    [Google Scholar]
  77. 77. 
    Capra EJ, Laub MT. 2012. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66:325–47
    [Google Scholar]
  78. 78. 
    McClune CJ, Alvarez-Buylla A, Voigt CA, Laub MT. 2019. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature 574:702–6
    [Google Scholar]
  79. 79. 
    Scheller L, Schmollack M, Bertschi A, Mansouri M, Saxena P, Fussenegger M. 2020. Phosphoregulated orthogonal signal transduction in mammalian cells. Nat. Commun. 11:3085
    [Google Scholar]
  80. 80. 
    Scheller L, Strittmatter T, Fuchs D, Bojar D, Fussenegger M. 2018. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat. Chem. Biol. 14:723–29
    [Google Scholar]
  81. 81. 
    Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM et al. 2016. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164:780–91
    [Google Scholar]
  82. 82. 
    Ng AH, Nguyen TH, Gómez-Schiavon M, Dods G, Langan RA et al. 2019. Modular and tunable biological feedback control using a de novo protein switch. Nature 572:265–69
    [Google Scholar]
  83. 83. 
    Toda S, Frankel NW, Lim WA. 2019. Engineering cell-cell communication networks: programming multicellular behaviors. Curr. Opin. Chem. Biol. 52:31–38
    [Google Scholar]
  84. 84. 
    Kipniss NH, Dingal PCP, Abbott TR, Gao Y, Wang H et al. 2017. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 8:2212
    [Google Scholar]
  85. 85. 
    Huang CYF, Ferrell JE 1996. Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93:10078–83
    [Google Scholar]
  86. 86. 
    Bashor CJ, Helman NC, Yan S, Lim WA 2008. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319:1539–43
    [Google Scholar]
  87. 87. 
    Mitchell A, Wei P, Lim WA. 2015. Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast MAPK signaling network. Science 350:1379–83
    [Google Scholar]
  88. 88. 
    Gao XJ, Chong LS, Kim MS, Elowitz MB. 2018. Programmable protein circuits in living cells. Science 361:1252–58
    [Google Scholar]
  89. 89. 
    Chen Z, Kibler RD, Hunt A, Busch F, Pearl J et al. 2020. De novo design of protein logic gates. Science 368:78–84
    [Google Scholar]
  90. 90. 
    Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. 2018. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10:eaao2586
    [Google Scholar]
  91. 91. 
    Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36:857–64
    [Google Scholar]
  92. 92. 
    Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S et al. 2018. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360:915–18
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111914
Loading
/content/journals/10.1146/annurev-biochem-013118-111914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error