- Home
- A-Z Publications
- Annual Review of Biochemistry
- Previous Issues
- Volume 80, 2011
Annual Review of Biochemistry - Volume 80, 2011
Volume 80, 2011
- Preface
-
-
-
From Serendipity to Therapy
Vol. 80 (2011), pp. 1–15More LessMy postdoctoral training in the biosynthesis of plant polysaccharides at the University of California, Berkeley, led me, rather improbably, to study mucopolysaccharide storage disorders in the intramural program of the National Institutes of Health (NIH). I have traced the path from studies of mucopolysaccharide turnover in cultured cells to the development of therapy for patients. The key experiment started as an accident, i.e., the mixing of cells of different genotypes, resulting in correction of their biochemical defect. This serendipitous experiment led to identification of the enzyme deficiencies in the Hurler and Hunter syndromes, to an understanding of the biochemistry of lysosomal enzymes in general, and to the cell biology of receptor-mediated endocytosis and targeting to lysosomes. It paved the way for the development of enzyme replacement therapy with recombinant enzymes. I have also included studies performed after I moved to the University of California, Los Angeles (UCLA), including a recent unexpected finding in a neurodegenerative mucopolysaccharide storage disease, the Sanfilippo syndrome, with implications for therapy.
-
-
-
Journey of a Molecular Biologist
Vol. 80 (2011), pp. 16–40More LessMy journey into a research career began in fermentation biochemistry in an applied science department during the difficult post-World War II time in Japan. Subsequently, my desire to do research in basic science developed. I was fortunate to be a postdoctoral fellow in the United States during the early days of molecular biology. From 1957 to 1960, I worked with three pioneers of molecular biology, Sol Spiegelman, James Watson, and Seymour Benzer. These experiences helped me develop into a basic research scientist. My initial research projects at Osaka University, and subsequently at the University of Wisconsin, Madison, were on the mode of action of colicins as well as on mRNA and ribosomes. Following success in the reconstitution of ribosomal subunits, my efforts focused more on ribosomes, initially on the aspects of structure, function, and in vitro assembly, such as the construction of the 30S subunit assembly map. After this, my laboratory studied the regulation of the synthesis of ribosomes and ribosomal components in Escherichia coli. Our achievements included the discovery of translational feedback regulation of ribosomal protein synthesis and the identification of several repressor ribosomal proteins used in this regulation. In 1984, I moved to the University of California, Irvine, and initiated research on rRNA transcription by RNA polymerase I in the yeast Saccharomyces cerevisiae. The use of yeast genetics combined with biochemistry allowed us to identify genes uniquely involved in rRNA synthesis and to elucidate the mechanism of initiation of transcription. This essay is a reflection on my life as a research scientist.
-
-
-
My Life with Nature
Vol. 80 (2011), pp. 42–70More LessAfter a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
-
-
-
Protein Folding and Modification in the Mammalian Endoplasmic Reticulum
Vol. 80 (2011), pp. 71–99More LessAnalysis of the human genome reveals that approximately a third of all open reading frames code for proteins that enter the endoplasmic reticulum (ER), demonstrating the importance of this organelle for global protein maturation. The path taken by a polypeptide through the secretory pathway starts with its translocation across or into the ER membrane. It then must fold and be modified correctly in the ER before being transported via the Golgi apparatus to the cell surface or another destination. Being physically segregated from the cytosol means that the ER lumen has a distinct folding environment. It contains much of the machinery for fulfilling the task of protein production, including complex pathways for folding, assembly, modification, quality control, and recycling. Importantly, the compartmentalization means that several modifications that do not occur in the cytosol, such as glycosylation and extensive disulfide bond formation, can occur to secreted proteins to enhance their stability before their exposure to the extracellular milieu. How these various machineries interact during the normal pathway of folding and protein secretion is the subject of this review.
-
-
-
Mechanisms of Membrane Curvature Sensing
Vol. 80 (2011), pp. 101–123More LessBacteria and eukaryotic cells contain geometry-sensing tools in their cytosol: protein motifs or domains that recognize the curvature, concave or convex, deep or shallow, of lipid membranes. These sensors contrast with classical lipid-binding domains by their extended structure and, sometimes, counterintuitive chemistry. Among the sensors are long amphipathic helices, such as the ALPS motif and the N-terminal region of α-synuclein, whose apparent “design defects” translate into a remarkable ability to specifically adsorb to the surface of small vesicles. Fundamental differences in the lipid composition of membranes of the early and late secretory pathways probably explain why some sensors use mostly electrostatics whereas others take advantage of the hydrophobic effect. Membrane curvature sensors help to organize very diverse reactions, such as lipid transfer between membranes, the tethering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats.
-
-
-
Biogenesis and Cargo Selectivity of Autophagosomes
Vol. 80 (2011), pp. 125–156More LessAutophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
-
-
-
Introduction to Theme “Membrane Protein Folding and Insertion”
Vol. 80 (2011), pp. 157–160More LessThis volume of the Annual Review of Biochemistry contains three reviews on current developments in membrane protein research: Grigoryan et al. “Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K+ Channels, and Integrin Receptors,” Hagan et al. “β-Barrel Membrane Protein Assembly by the Bam Complex,” and Dalbey et al. “Assembly of Bacterial Inner Membrane Proteins.” In this short introduction, I discuss these reviews in the larger context of where the field of membrane protein biochemistry is heading.
-
-
-
Assembly of Bacterial Inner Membrane Proteins
Vol. 80 (2011), pp. 161–187More LessNumerous membrane proteins form multisubunit protein complexes, which contain both integral and peripheral subunits, in addition to prosthetic groups. Bacterial membrane proteins are inserted into the inner membrane by the Sec translocase and YidC insertase. Their folding can be facilitated by YidC and the phospholipid phosphatidylethanolamine (PE). Glycine zippers and other motifs promote transmembrane-transmembrane (TM-TM) helix interactions that may lead to the formation of α-helical bundles of membrane proteins. During or after membrane insertion, the subunits of oligomeric membrane proteins must find each other to build the homo-oligomeric and the hetero-oligomeric membrane complexes. Although chaperones may function as assembly factors in the formation of the oligomer, many protein oligomers appear to fold and oligomerize spontaneously. Current studies show that most subunits of hetero-oligomers follow a sequential and ordered pathway to form the membrane protein complex. If the inserted protein is misfolded or the membrane protein is misassembled, quality control mechanisms exist that can degrade the proteins.
-
-
-
β-Barrel Membrane Protein Assembly by the Bam Complex
Vol. 80 (2011), pp. 189–210More Lessβ-barrel membrane proteins perform important functions in the outer membranes (OMs) of Gram-negative bacteria and of the mitochondria and chloroplasts of eukaryotes. The protein complexes that assemble these proteins in their respective membranes have been identified and shown to contain a component that has been conserved from bacteria to humans. β-barrel proteins are handled differently from α-helical membrane proteins in the cell in order to efficiently transport them to their final locations in unfolded but folding-competent states. The mechanism by which the assembly complex then binds, folds, and inserts β-barrels into the membrane is not well understood, but recent structural, biochemical, and genetic studies have begun to elucidate elements of how the complex provides a facilitated pathway for β-barrel assembly. Ultimately, studies of the mechanism of β-barrel assembly and comparison to the better-understood process of α-helical membrane protein assembly will reveal whether there are general principles that guide the folding and insertion of all membrane proteins.
-
-
-
Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K+ Channels, and Integrin Receptors
Vol. 80 (2011), pp. 211–237More LessSignal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.
-
-
-
Mass Spectrometry in the Postgenomic Era
Vol. 80 (2011), pp. 239–246More LessMass spectrometry (MS) is rapidly becoming an essential tool for biologists and biochemists in their efforts to throw light on molecular mechanisms within cellular systems. Used in unison with genome sequence data, MS has developed into the method of choice for identifying proteins, elucidating their posttranslational modifications, and reading out their functional interactions. Variations of the method have even begun to enable accurate mass determination of intact protein complexes, allowing for direct determination of subunit stoichiometry and the interactions between the subunits. Advances in mass spectrometric technologies have also led to great improvements in our ability to probe and define many of the other key molecular players in cells, including the all important lipid components. We provide here some perspectives on the explosion of applications of MS to protein science, systems biology, proteomics, lipidomics, and cell biology in general.
-
-
-
Advances in the Mass Spectrometry of Membrane Proteins: From Individual Proteins to Intact Complexes
Vol. 80 (2011), pp. 247–271More LessRapid advances in structural genomics and in large-scale proteomic projects have yielded vast amounts of data on soluble proteins and their complexes. Despite these advances, progress in studying membrane proteins using mass spectrometry (MS) has been slow. This is due in part to the inherent solubility and dynamic properties of these proteins, but also to their low abundance and the absence of polar side chains in amino acid residues. Considerable progress in overcoming these challenges is, however, now being made for all levels of structural characterization. This progress includes MS studies of the primary structure of membrane proteins, wherein sophisticated enrichment and trapping procedures are allowing multiple posttranslational modifications to be defined through to the secondary structure level in which proteins and peptides have been probed using hydrogen exchange, covalent, or radiolytic labeling methods. Exciting possibilities now exist to go beyond primary and secondary structure to reveal the tertiary and quaternary interactions of soluble and membrane subunits within intact assemblies of more than 700 kDa.
-
-
-
Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology
Jürgen Cox, and Matthias MannVol. 80 (2011), pp. 273–299More LessSystems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem mass spectrometry (MS/MS) to identify and quantify peptides at a large scale. This peptide intensity information is the basic quantitative proteomic data type. It is used to quantify proteins between different proteome states, including the temporal variation of the proteome, to determine the complete primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far.
-
-
-
Applications of Mass Spectrometry to Lipids and Membranes
Vol. 80 (2011), pp. 301–325More LessLipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry–based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the “comprehensive lipidomics analysis by separation simplification” (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues.
-
-
-
Emerging In Vivo Analyses of Cell Function Using Fluorescence Imaging*
Vol. 80 (2011), pp. 327–332More LessUnderstanding how cells of all types sense external and internal signals and how these signals are processed to yield particular responses is a major goal of biology. Genetically encoded fluorescent proteins (FPs) and fluorescent sensors are playing an important role in achieving this comprehensive knowledge base of cell function. Providing high sensitivity and immense versatility while being minimally perturbing to a biological specimen, the probes can be used in different microscopy techniques to visualize cellular processes on many spatial scales. Three review articles in this volume discuss recent advances in probe design and applications. These developments help expand the range of biochemical processes in living systems suitable for study. They provide researchers with exciting new tools to explore how cellular processes are organized and their activity regulated in vivo.
-
-
-
Biochemistry of Mobile Zinc and Nitric Oxide Revealed by Fluorescent Sensors
Vol. 80 (2011), pp. 333–355More LessBiological mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes.
-
-
-
Development of Probes for Cellular Functions Using Fluorescent Proteins and Fluorescence Resonance Energy Transfer
Vol. 80 (2011), pp. 357–373More LessMany genetically encoded probes that employ fluorescent proteins and fluorescence resonance energy transfer (FRET) have been developed to better understand the spatiotemporal regulation of various cellular processes. The different types of FRET and measurement techniques necessitate characterization of their specific features. Here I provide theoretical and practical comparisons of bimolecular and unimolecular FRET constructs, intensity-based and lifetime-based FRET measurements, FRET imaging using live- and fixed-cell samples, green fluorescent protein–based and chemical fluorophore-based FRET, and FRET efficiency and indices. The potential benefits and limitations of a variety of features in the technologies using fluorescent proteins and FRET are discussed.
-
-
-
Reporting from the Field: Genetically Encoded Fluorescent Reporters Uncover Signaling Dynamics in Living Biological Systems
Sohum Mehta, and Jin ZhangVol. 80 (2011), pp. 375–401More LessReal-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.
-
-
-
DNA Replicases from a Bacterial Perspective
Vol. 80 (2011), pp. 403–436More LessBacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β2 processivity factor, and a DnaX complex ATPase that loads β2 onto DNA and chaperones Pol III onto the newly loaded β2. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg2+-dependent exonuclease, but also contains a second Zn2+-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
-
Previous Volumes
-
Volume 93 (2024)
-
Volume 92 (2023)
-
Volume 91 (2022)
-
Volume 90 (2021)
-
Volume 89 (2020)
-
Volume 88 (2019)
-
Volume 87 (2018)
-
Volume 86 (2017)
-
Volume 85 (2016)
-
Volume 84 (2015)
-
Volume 83 (2014)
-
Volume 82 (2013)
-
Volume 81 (2012)
-
Volume 80 (2011)
-
Volume 79 (2010)
-
Volume 78 (2009)
-
Volume 77 (2008)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2005)
-
Volume 73 (2004)
-
Volume 72 (2003)
-
Volume 71 (2002)
-
Volume 70 (2001)
-
Volume 69 (2000)
-
Volume 68 (1999)
-
Volume 67 (1998)
-
Volume 66 (1997)
-
Volume 65 (1996)
-
Volume 64 (1995)
-
Volume 63 (1994)
-
Volume 62 (1993)
-
Volume 61 (1992)
-
Volume 60 (1991)
-
Volume 59 (1990)
-
Volume 58 (1989)
-
Volume 57 (1988)
-
Volume 56 (1987)
-
Volume 55 (1986)
-
Volume 54 (1985)
-
Volume 53 (1984)
-
Volume 52 (1983)
-
Volume 51 (1982)
-
Volume 50 (1981)
-
Volume 49 (1980)
-
Volume 48 (1979)
-
Volume 47 (1978)
-
Volume 46 (1977)
-
Volume 45 (1976)
-
Volume 44 (1975)
-
Volume 43 (1974)
-
Volume 42 (1973)
-
Volume 41 (1972)
-
Volume 40 (1971)
-
Volume 39 (1970)
-
Volume 38 (1969)
-
Volume 37 (1968)
-
Volume 36 (1967)
-
Volume 35 (1966)
-
Volume 34 (1965)
-
Volume 33 (1964)
-
Volume 32 (1963)
-
Volume 31 (1962)
-
Volume 30 (1961)
-
Volume 29 (1960)
-
Volume 28 (1959)
-
Volume 27 (1958)
-
Volume 26 (1957)
-
Volume 25 (1956)
-
Volume 24 (1955)
-
Volume 23 (1954)
-
Volume 22 (1953)
-
Volume 21 (1952)
-
Volume 20 (1951)
-
Volume 19 (1950)
-
Volume 18 (1949)
-
Volume 17 (1948)
-
Volume 16 (1947)
-
Volume 15 (1946)
-
Volume 14 (1945)
-
Volume 13 (1944)
-
Volume 12 (1943)
-
Volume 11 (1942)
-
Volume 10 (1941)
-
Volume 9 (1940)
-
Volume 8 (1939)
-
Volume 7 (1938)
-
Volume 6 (1937)
-
Volume 5 (1936)
-
Volume 4 (1935)
-
Volume 3 (1934)
-
Volume 2 (1933)
-
Volume 1 (1932)
-
Volume 0 (1932)