- Home
- A-Z Publications
- Annual Review of Biochemistry
- Previous Issues
- Volume 68, 1999
Annual Review of Biochemistry - Volume 68, 1999
Volume 68, 1999
- Review Articles
-
-
-
It All Started on a Streetcar in Boston∗
Vol. 68 (1999), pp. 1–32More LessWe first met on a Boston streetcar in 1940, being introduced by a mutual friend. Celia was returning from research work at the Massachusetts General Hospital as part of her senior thesis at Radcliffe College, and Herb was returning from a concert by the Boston Symphony. We were married in 1946 after Celia had finished her medical training. We started working together in 1952, and we are still actively collaborating in our studies on various aspects of the biosynthesis and function of polyamines. We are honored to have been invited by the editors of the Annual Review of Biochemistry to summarize our activities in biochemical research over the past 60 years. During most of this time we have been at the National Institutes of Health in Bethesda, Md., and we have witnessed the enormous expansion of biomedical research that has occurred during this period. In addition to summarizing our research, Herb summarizes his association with the Journal of Biological Chemistry and the remarkable developments that have occurred recently in electronic publication and dissemination of scientific literature.
-
-
-
-
Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes
Vol. 68 (1999), pp. 33–57More Less▪ AbstractThe metal-activated hydroxide ion is a critical nucleophile in metalloenzymes that catalyze hydrolysis or hydration reactions. The most common metal used is zinc; occasionally, other transition metals such as manganese are required. Human carbonic anhydrase II and rat liver arginase serve as well-studied paradigms of zinc and manganese metalloenzymes, respectively. Comparative structure-function relationships between these two metalloenzymes highlight parallels in the chemistry of metal-activated hydroxide: (a) the protein environment of metal-bound hydroxide modulates its reactivity; (b) a hydrogen bond with metal-bound hydroxide holds it in the proper orientation for catalysis; (c) nonmetal substrate-binding sites are implicated in both enzyme mechanisms; and (d) regeneration of metal-bound hydroxide ion from a metal-bound water molecule requires proton transfer to bulk solvent mediated by a histidine proton shuttle residue. Interestingly, the electrostatics of catalysis differ between the two enzymes, in that the first step of catalysis requires formation of a negatively charged transition state in the carbonic anhydrase II mechanism, whereas a neutral transition state is approached in the arginase mechanism. This electrostatic feature may contribute to the differences in the chemistry, the metal binding sites, and the metal specificity between these two enzymes.
-
-
-
Conus Peptides Targeted to Specific Nicotinic Acetylcholine Receptor Subtypes
Vol. 68 (1999), pp. 59–88More Less▪ AbstractThe venoms of predatory cone snails represent a rich combinatorial-like library of evolutionarily selected, neuropharmacologically active peptides. A major fraction of the venom components are conotoxins—small, disulfide-rich peptides that potently and specifically target components of the neuromuscular system, particularly ligand- and voltage-gated ion channels. This review focuses on Conus peptides, which act at nicotinic acetylcholine receptors. These nicotinic antagonist peptides from Conus are broadly divided into two groups: those that act at the neuromuscular junction and those that act at subtypes of neuronal nicotinic acetylcholine receptors. The latter include peptides specific for the α7, α3β2, and α3β4 nicotinic receptor subtypes. The degree of specificity exhibited by these peptides is remarkable, particularly given their relatively small size. As a group the nicotinic acetylcholine receptor-targeted Conus peptides represent an increasingly well-defined set of tools for probing the structure, function, and physiological role of nicotinic acetylcholine receptors.
-
-
-
Inorganic Polyphosphate: A Molecule of Many Functions
Vol. 68 (1999), pp. 89–125More Less▪ AbstractInorganic polyphosphate (poly P) is a chain of tens or many hundreds of phosphate (Pi) residues linked by high-energy phosphoanhydride bonds. Despite inorganic polyphosphate's ubiquity—found in every cell in nature and likely conserved from prebiotic times—this polymer has been given scant attention. Among the reasons for this neglect of poly P have been the lack of sensitive, definitive, and facile analytical methods to assess its concentration in biological sources and the consequent lack of demonstrably important physiological functions. This review focuses on recent advances made possible by the introduction of novel, enzymatically based assays. The isolation and ready availability of Escherichia coli polyphosphate kinase (PPK) that can convert poly P and ADP to ATP and of a yeast exopolyphosphatase that can hydrolyze poly P to Pi, provide highly specific, sensitive, and facile assays adaptable to a high-throughput format.
Beyond the reagents afforded by the use of these enzymes, their genes, when identified, mutated, and overexpressed, have offered insights into the physiological functions of poly P. Most notably, studies in E. coli reveal large accumulations of poly P in cellular responses to deficiencies in an amino acid, Pi, or nitrogen or to the stresses of a nutrient downshift or high salt. The ppk mutant, lacking PPK and thus severely deficient in poly P, also fails to express RpoS (a sigma factor for RNA polymerase), the regulatory protein that governs ≥50 genes responsible for stationary-phase adaptations to resist starvation, heat and oxidant stresses, UV irradiation, etc. Most dramatically, ppk mutants die after only a few days in stationary phase.
The high degree of homology of the PPK sequence in many bacteria, including some of the major pathogenic species (e.g. Mycobacterium tuberculosis, Neisseria meningitidis, Helicobacter pylori, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, Pseudomonas aeruginosa, Bordetella pertussis, and Yersinia pestis), has prompted the knockout of their ppk gene to determine the dependence of virulence on poly P and the potential of PPK as a target for antimicrobial drugs. In yeast and mammalian cells, exo- and endopolyphosphatases have been identified and isolated, but little is known about the synthesis of poly P or its physiologic functions. Whether microbe or human, all species depend on adaptations in the stationary phase, which is truly a dynamic phase of life. Most research is focused on the early and reproductive phases of organisms, which are rather brief intervals of rapid growth. More attention needs to be given to the extensive period of maturity. Survival of microbial species depends on being able to manage in the stationary phase. In view of the universality and complexity of basic biochemical mechanisms, it would be surprising if some of the variety of poly P functions observed in microorganisms did not apply to aspects of human growth and development, to aging, and to the aberrations of disease.
Of theoretical interest regarding poly P is its antiquity in prebiotic evolution, which along with its high energy and phosphate content, make it a plausible precursor to RNA, DNA, and proteins. Practical interest in poly P includes many industrial applications, among which is the microbial removal of Pi in aquatic environments.
-
-
-
The Molecular Basis of Hypertension
Vol. 68 (1999), pp. 127–155More Less▪ AbstractMore than 50 million Americans display blood pressures outside the safe physiological range. Unfortunately for most individuals, the molecular basis of hypertension is unknown, in part because pathological elevations of blood pressure are the result of abnormal expression of multiple genes. This review identifies a number of important blood pressure regulatory genes including their loci in the human, mouse, and rat genome. Phenotypes of gene deletions and overexpression in mice are summarized. More detailed discussion of selected gene products follows, beginning with proteins involved in ion transport, specifically the epithelial sodium channel and sodium proton exchangers. Next, proteins involved in vasodilation/natriuresis are discussed with emphasis on natriuretic peptides, guanylin/uroguanylin, and nitric oxide. The renin angiotensin aldosterone system has an important role antagonizing the vasodilatory cyclic GMP system.
-
-
-
Sterols and Isoprenoids: Signaling Molecules Derived from the Cholesterol Biosynthetic Pathway
Vol. 68 (1999), pp. 157–185More Less▪ AbstractCompounds derived from the isoprenoid/cholesterol biosynthetic pathway have recently been shown to have novel biological activities. These compounds include certain sterols, oxysterols, farnesol, and geranylgeraniol, as well as the diphosphate derivatives of isopentenyl, geranyl, farnesyl, geranylgeranyl, and presqualene. They regulate transcriptional and post-transcriptional events that in turn affect lipid synthesis, meiosis, apoptosis, developmental patterning, protein cleavage, and protein degradation.
-
-
-
Ciliate Telomerase Biochemistry
Vol. 68 (1999), pp. 187–218More Less▪ AbstractTelomerase is a cellular reverse transcriptase specialized for use of a template carried within the RNA component of the enzyme ribonucleoprotein complex. Substrates for telomerase are single-stranded oligonucleotides in vitro and chromosome ends in vivo. In vitro, a bound substrate is extended by an initial round of DNA synthesis on the internal RNA template and in some cases by multiple rounds of template copying before product dissociation. In vivo, de novo synthesis of one strand of a telomeric repeat sequence by telomerase balances the sequence loss resulting from incomplete replication of linear chromosome ends by RNA primer-requiring DNA polymerases. Telomerase biochemistry has been studied extensively by using partially purified cell extracts. Telomerase components are being identified and beginning to be produced in recombinant form. This review focuses on the enzyme mechanism of telomerases from ciliate species, thus far the most intensively studied systems.
-
-
-
Tolerance and Specificity of Polyketide Synthases
Vol. 68 (1999), pp. 219–253More Less▪ AbstractPolyketide synthases catalyze the assembly of complex natural products from simple precursors such as propionyl-CoA and methylmalonyl-CoA in a biosynthetic process that closely parallels fatty acid biosynthesis. Like fatty acids, polyketides are assembled by successive decarboxylative condensations of simple precursors. But whereas the intermediates in fatty acid biosynthesis are fully reduced to generate unfunctionalized alkyl chains, the intermediates in polyketide biosynthesis may be only partially processed, giving rise to complex patterns of functional groups. Additional complexity arises from the use of different starter and chain extension substrates, the generation of chiral centers, and further functional group modifications, such as cyclizations. The structural and functional modularity of these multienzyme systems has raised the possibility that polyketide biosynthetic pathways might be rationally reprogrammed by combinatorial manipulation. An essential prerequisite for harnessing this biosynthetic potential is a better understanding of the molecular recognition features of polyketide synthases. Within this decade, a variety of genetic, biochemical, and chemical investigations have yielded insights into the tolerance and specificity of several architecturally different polyketide synthases. The results of these studies, together with their implications for biosynthetic engineering, are summarized in this review.
-
-
-
Initiation of Base Excision Repair: Glycosylase Mechanisms and Structures
Vol. 68 (1999), pp. 255–285More Less▪ AbstractThe base excision repair pathway is an organism's primary defense against mutations induced by oxidative, alkylating, and other DNA-damaging agents. This pathway is initiated by DNA glycosylases that excise the damaged base by cleavage of the glycosidic bond between the base and the DNA sugar-phosphate backbone. A subset of glycosylases has an associated apurinic/apyrimidinic (AP) lyase activity that further processes the AP site to generate cleavage of the DNA phosphate backbone. Chemical mechanisms that are supported by biochemical and structural data have been proposed for several glycosylases and glycosylase/AP lyases. This review focuses on the chemical mechanisms of catalysis in the context of recent structural information, with emphasis on the catalytic residues and the active site conformations of several cocrystal structures of glycosylases with their substrate DNAs. Common structural motifs for DNA binding and damage specificity as well as conservation of acidic residues and amino groups for catalysis are discussed.
-
-
-
Structural Motifs in RNA
Vol. 68 (1999), pp. 287–300More Less▪ AbstractAn RNA motif is a discrete sequence or combination of base juxtapositions found in naturally occurring RNAs in unexpectedly high abundance. Because all the motifs examined so far have three-dimensional structures independent of the context in which they are embedded, they are important components of the “kit” of structural elements from which RNAs are constructed. This review discusses the structures of the motifs that have been identified so far and speculates on the importance of their role in determining RNA conformation and their evolutionary origin.
-
-
-
Transcription Elongation and Human Disease
Vol. 68 (1999), pp. 301–319More Less▪ AbstractEukaryotic mRNA synthesis is catalyzed by multisubunit RNA polymerase II and proceeds through multiple stages referred to as preinitiation, initiation, elongation, and termination. Over the past 20 years, biochemical studies of eukaryotic mRNA synthesis have largely focused on the preinitiation and initiation stages of transcription. These studies led to the discovery of the class of general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), which function in intimate association with RNA polymerase II and are required for selective binding of polymerase to its promoters, formation of the open complex, and synthesis of the first few phosphodiester bonds of nascent transcripts. Recently, biochemical studies of the elongation stage of eukaryotic mRNA synthesis have led to the discovery of several cellular proteins that have properties expected of general elongation factors and that have been found to play unanticipated roles in human disease. Among these candidate general elongation factors are the positive transcription elongation factor b (P-TEFb), eleven-nineteen lysine-rich in leukemia (ELL), Cockayne syndrome complementation group B (CSB), and elongin proteins, which all function in vitro to expedite elongation by RNA polymerase II by suppressing transient pausing or premature arrest by polymerase through direct interactions with the elongation complex. Despite their similar activities in elongation, the P-TEFb, ELL, CSB, and elongin proteins appear to play roles in a diverse collection of human diseases, including human immunodeficiency virus-1 infection, acute myeloid leukemia, Cockayne syndrome, and the familial cancer predisposition syndrome von Hippel-Lindau disease. Here we review our current understanding of the P-TEFb, ELL, CSB, and elongin proteins, their mechanisms of action, and their roles in human disease.
-
-
-
Control of Carpel and Fruit Development in Arabidopsis
Vol. 68 (1999), pp. 321–354More Less▪ AbstractThe fruit is a highly specialized plant organ that occurs in diverse forms among the angiosperms. Fruits of Arabidopsis thaliana, which are typical of the >3000 species of Brassicaceae, develop from a gynoecium that consists of two fused carpels. The mature gynoecium of Arabidopsis is composed of an apical stigma, a short style, and a basal ovary that contains the developing ovules. After the ovules are fertilized, the fruit elongates and differentiates a number of distinct cell types, allowing for the successful maturation and the eventual dispersal of the seeds. Although the processes involved in carpel and fruit morphogenesis are not well understood, recent studies have identified a large number of mutants that display abnormal gynoecium and fruit development. The detailed phenotypic description of these mutants together with recent cloning of many of these genes has begun to shed light on this interesting and complex developmental process. Here we review the growing collection of Arabidopsis genes known to control the initiation and development of the gynoecium and resulting fruit.
-
-
-
Tetrahydropterin-Dependent Amino Acid Hydroxylases
Vol. 68 (1999), pp. 355–381More Less▪ AbstractPhenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a small family of monooxygenases that utilize tetrahydropterins as substrates. When from eukaryotic sources, these enzymes are composed of a homologous catalytic domain to which are attached discrete N-terminal regulatory domains and short C-terminal tetramerization domains, whereas the bacterial enzymes lack the N-terminal and C-terminal domains. Each enzyme contains a single ferrous iron atom bound to two histidines and a glutamate. Recent mechanistic studies have begun to provide insights into the mechanisms of oxygen activation and hydroxylation. Although the hydroxylating intermediate in these enzymes has not been identified, the iron is likely to be involved. Reversible phosphorylation of serine residues in the regulatory domains affects the activities of all three enzymes. In addition, phenylalanine hydroxylase is allosterically regulated by its substrates, phenylalanine and tetrahydrobiopterin.
-
-
-
Mammalian Caspases: Structure, Activation, Substrates, and Functions During Apoptosis
Vol. 68 (1999), pp. 383–424More Less▪ AbstractApoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.
-
-
-
Cellular and Molecular Biology of the Aquaporin Water Channels
Vol. 68 (1999), pp. 425–458More Less▪ AbstractThe high water permeability characteristic of mammalian red cell membranes is now known to be caused by the protein AQP1. This channel freely permits movement of water across the cell membrane, but it is not permeated by other small, uncharged molecules or charged solutes. AQP1 is a tetramer with each subunit containing an aqueous pore likened to an hourglass formed by obversely arranged tandem repeats. Cryoelectron microscopy of reconstituted AQP1 membrane crystals has revealed the three-dimensional structure at 3–6 Å. AQP1 is distributed in apical and basolateral membranes of renal proximal tubules and descending thin limbs as well as capillary endothelia. Ten mammalian aquaporins have been identified in water-permeable tissues and fall into two groupings. Orthodox aquaporins are water-selective and include AQP2, a vasopressin-regulated water channel in renal collecting duct, in addition to AQP0, AQP4, and AQP5. Multifunctional aquaglyceroporins AQP3, AQP7, and AQP9 are permeated by water, glycerol, and some other solutes. Aquaporins are being defined in numerous other species including amphibia, insects, plants, and microbials. Members of the aquaporin family are implicated in numerous physiological processes as well as the pathophysiology of a wide range of clinical disorders.
-
-
-
Regulation of the Cytoskeleton and Cell Adhesion by the Rho Family GTPases in Mammalian Cells
K. Kaibuchi, S. Kuroda, and M. AmanoVol. 68 (1999), pp. 459–486More Less▪ AbstractMembers of the Rho family of small Ras-like GTPases—including RhoA, -B, and -C, Rac1 and -2, and Cdc42—exhibit guanine nucleotide-binding activity and function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. The Rho family GTPases participate in regulation of the actin cytoskeleton and cell adhesion through specific targets. Identification and characterization of these targets have begun to clarify how the Rho family GTPases act to regulate cytoskeletal structure and cell-cell and cell-substratum contacts in mammalian cells. The Rho family GTPases are also involved in regulation of smooth muscle contraction, cell morphology, cell motility, neurite retraction, and cytokinesis. However, the molecular mechanisms by which the Rho family GTPases participate in the regulation of such processes are not well established.
-
-
-
Mutagenesis of Glycosidases
Vol. 68 (1999), pp. 487–522More Less▪ AbstractEnzymatic hydrolysis of glycosides can occur by one of two elementary mechanisms identified by the stereochemical outcome of the reaction, inversion or retention. The key active-site residues involved are a pair of carboxylic acids in each case, and strategies for their identification and for probing the details of their roles in catalysis have been developed through detailed kinetic analysis of mutants. Similarly the roles of other active-site residues have also been probed this way, and mutants have been developed that trap intermediates in catalysis, allowing the determination of the three-dimensional structures of several such key species. By manipulating the locations or even the presence of these carboxyl side chains in the active site, the mechanisms of several glycosidases have been completely changed, and this has allowed the development of “glycosynthases,” mutant glycosidases that are capable of synthesizing oligosaccharides but unable to degrade them. Surprisingly little progress has been made on altering specificities through mutagenesis, although recent results suggest that gene shuffling coupled with effective screens will provide the most effective approach.
-
-
-
Charting the Fate of the “Good Cholesterol”: Identification and Characterization of the High-Density Lipoprotein Receptor SR-BI
Vol. 68 (1999), pp. 523–558More Less▪ AbstractRisk for cardiovascular disease due to atherosclerosis increases with increasing concentrations of low-density lipoprotein (LDL) cholesterol and is inversely proportional to the levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well understood for over two decades and has been a focus for the pharmacologic treatment of hypercholesterolemia. In contrast, the first identification and characterization of a receptor that mediates cellular metabolism of HDL was only recently reported. This receptor, called scavenger receptor class B type I (SR-BI), is a fatty acylated glycoprotein that can cluster in caveolae-like domains on the surfaces of cultured cells. SR-BI mediates selective lipid uptake from HDL to cells. The mechanism of selective lipid uptake is fundamentally different from that of classic receptor-mediated endocytic uptake via coated pits and vesicles (e.g. the LDL receptor pathway) in that it involves efficient receptor-mediated transfer of the lipids, but not the outer shell proteins, from HDL to cells. In mice, SR-BI plays a key role in determining the levels of plasma HDL cholesterol and in mediating the regulated, selective delivery of HDL-cholesterol to steroidogenic tissues and the liver. Significant alterations in SR-BI expression can result in cardiovascular and reproductive disorders. SR-BI may play a similar role in humans; thus, modulation of its activity may provide the basis of future approaches to the treatment and prevention of atherosclerotic disease.
-
-
-
Nuclear-Receptor Ligands and Ligand-Binding Domains
Vol. 68 (1999), pp. 559–581More Less▪ AbstractThe determination of several structures of nuclear receptor ligand binding domains (LBD) has led to new insights into the mechanism of action of this very important class of receptors. This review describes and compares the different LBD structures and their relationship to the function of the nuclear receptors. The role of the ligand in the LBD structures and the implications of ligand structure on receptor activity are also discussed. Structural information regarding interactions between the LBD and coactivator proteins and the potential role of these interactions in ligand agonism and antagonism is reviewed. Different pathways for nuclear receptor signaling and the use of new ligands to investigate these pathways are also described.
-
-
-
The Anaphase-Promoting Complex: New Subunits and Regulators
A. M. Page, and P. HieterVol. 68 (1999), pp. 583–609More Less▪ AbstractUbiquitin-mediated proteolysis of cell cycle regulators is a crucial process during the cell cycle. The anaphase-promoting complex (APC) is a large, multiprotein complex whose E3-ubiquitin ligase activity is required for the ubiquitination of mitotic cyclins and other regulatory proteins that are targeted for destruction during cell division. The recent identification of new APC subunits and regulatory proteins has begun to reveal some of the intricate mechanisms that govern APC regulation. One mechanism is the use of specificity factors to impose temporal control over substrate degradation. A second mechanism is the APC-mediated proteolysis of specific APC regulators. Finally, components of both the APC and the SCF E3 ubiquitin-ligase complex contain several conserved sequence motifs, including WD-40 repeats and cullin homology domains, which suggest that both complexes may use a similar mechanism for substrate ubiquitination.
-
Previous Volumes
-
Volume 93 (2024)
-
Volume 92 (2023)
-
Volume 91 (2022)
-
Volume 90 (2021)
-
Volume 89 (2020)
-
Volume 88 (2019)
-
Volume 87 (2018)
-
Volume 86 (2017)
-
Volume 85 (2016)
-
Volume 84 (2015)
-
Volume 83 (2014)
-
Volume 82 (2013)
-
Volume 81 (2012)
-
Volume 80 (2011)
-
Volume 79 (2010)
-
Volume 78 (2009)
-
Volume 77 (2008)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2005)
-
Volume 73 (2004)
-
Volume 72 (2003)
-
Volume 71 (2002)
-
Volume 70 (2001)
-
Volume 69 (2000)
-
Volume 68 (1999)
-
Volume 67 (1998)
-
Volume 66 (1997)
-
Volume 65 (1996)
-
Volume 64 (1995)
-
Volume 63 (1994)
-
Volume 62 (1993)
-
Volume 61 (1992)
-
Volume 60 (1991)
-
Volume 59 (1990)
-
Volume 58 (1989)
-
Volume 57 (1988)
-
Volume 56 (1987)
-
Volume 55 (1986)
-
Volume 54 (1985)
-
Volume 53 (1984)
-
Volume 52 (1983)
-
Volume 51 (1982)
-
Volume 50 (1981)
-
Volume 49 (1980)
-
Volume 48 (1979)
-
Volume 47 (1978)
-
Volume 46 (1977)
-
Volume 45 (1976)
-
Volume 44 (1975)
-
Volume 43 (1974)
-
Volume 42 (1973)
-
Volume 41 (1972)
-
Volume 40 (1971)
-
Volume 39 (1970)
-
Volume 38 (1969)
-
Volume 37 (1968)
-
Volume 36 (1967)
-
Volume 35 (1966)
-
Volume 34 (1965)
-
Volume 33 (1964)
-
Volume 32 (1963)
-
Volume 31 (1962)
-
Volume 30 (1961)
-
Volume 29 (1960)
-
Volume 28 (1959)
-
Volume 27 (1958)
-
Volume 26 (1957)
-
Volume 25 (1956)
-
Volume 24 (1955)
-
Volume 23 (1954)
-
Volume 22 (1953)
-
Volume 21 (1952)
-
Volume 20 (1951)
-
Volume 19 (1950)
-
Volume 18 (1949)
-
Volume 17 (1948)
-
Volume 16 (1947)
-
Volume 15 (1946)
-
Volume 14 (1945)
-
Volume 13 (1944)
-
Volume 12 (1943)
-
Volume 11 (1942)
-
Volume 10 (1941)
-
Volume 9 (1940)
-
Volume 8 (1939)
-
Volume 7 (1938)
-
Volume 6 (1937)
-
Volume 5 (1936)
-
Volume 4 (1935)
-
Volume 3 (1934)
-
Volume 2 (1933)
-
Volume 1 (1932)
-
Volume 0 (1932)