1932

Abstract

We first met on a Boston streetcar in 1940, being introduced by a mutual friend. Celia was returning from research work at the Massachusetts General Hospital as part of her senior thesis at Radcliffe College, and Herb was returning from a concert by the Boston Symphony. We were married in 1946 after Celia had finished her medical training. We started working together in 1952, and we are still actively collaborating in our studies on various aspects of the biosynthesis and function of polyamines. We are honored to have been invited by the editors of the to summarize our activities in biochemical research over the past 60 years. During most of this time we have been at the National Institutes of Health in Bethesda, Md., and we have witnessed the enormous expansion of biomedical research that has occurred during this period. In addition to summarizing our research, Herb summarizes his association with the and the remarkable developments that have occurred recently in electronic publication and dissemination of scientific literature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.68.1.1
1999-07-01
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/68/1/annurev.biochem.68.1.1.html?itemId=/content/journals/10.1146/annurev.biochem.68.1.1&mimeType=html&fmt=ahah

Literature Cited

  1. Hastings AB. 1989. Crossing Boundaries: Biological, Disciplinary, Human.. A Biochemist Pioneers for Medicine, ed. HN Christenson. Grand Rapids, MI: Four Corners 356 pp.
  2. Christenson HN. 1994. Albert Baird Hastings. Biographical Memoirs, National Academy of Sciences. 63173–216 Washington, DC: Natl. Acad. Sci [Google Scholar]
  3. Tabor H, Hastings AB. 1943. The ionization constant of secondary magnesium phosphate.. J. Biol. Chem. 148:627–32 [Google Scholar]
  4. Lowry OH. 1990. How to succeed in research without being a genius.. Annu. Rev. Biochem. 59:1–27 [Google Scholar]
  5. Hopper JJ, Tabor H, Winkler AW. 1944. Simultaneous measurements of the blood volume in man and dog by means of Evans Blue Dye, T1824, and by means of carbon monoxide. I. Normal subjects.. J. Clin. Invest. 23:628–35 [Google Scholar]
  6. Paul JR, Long CNH. 1958. John Punnett Peters. Biographical Memoirs, National Academy of Sciences. 31348–75 Washington, DC: Natl. Acad. Sci [Google Scholar]
  7. Peters JP, Van Slyke DD. 1931. Quantitative Clinical Chemistry. Baltimore: Williams & Wilkins. Vol. I, Interpretations. 1265 pp., Vol. II, Methods. 957 pp [Google Scholar]
  8. Colowick SP. 1958. Arda Alden Green, Protein Chemist.. Science 128:519–21 [Google Scholar]
  9. Tabor CW, Freeman MV, Baily J, Smith PK. 1951. Studies on the metabolism of para-aminobenzoic acid.. J. Pharmacol. Exp. Ther. 102:98–102 [Google Scholar]
  10. Natl. Inst. Health. Public Health Service 1950. Saline solution in treatment of burn shock.. Public Health Rep. 65:1317–20 [Google Scholar]
  11. Rosenthal SM, Tabor H. 1945. Electrolyte changes and chemotherapy in experimental burn and traumatic shock and hemorrhage.. Arch. Surg. 51:244–52 [Google Scholar]
  12. Williams RC. 1951. The United States Public Health Service: 1798–1950. Bethesda, MD: Comm. Off. Assoc., US Public Health Serv 890 pp. [Google Scholar]
  13. Kramer VH. 1937. The National Institute of Health. A Study in Public Administration. New Haven, CT: Quinniplack 87 pp. [Google Scholar]
  14. Harden VA. 1986. Inventing the NIH. Federal Biomedical Research Policy, 1887–1937. Baltimore: Johns Hopkins Univ. Press 274 pp. [Google Scholar]
  15. Offutt W. 1995. Bethesda. A Social History of the Area Through World War Two. Bethesda, MD: Innovation Game 784 pp. [Google Scholar]
  16. Kornberg A, Tabor H, Sebrell WH. 1944. The effect of L. casei factor (“folic acid”) on blood regeneration following hemorrhage in rats.. Am. J. Physiol. 142:604–14 [Google Scholar]
  17. Kornberg A. 1989. For the Love of Enzymes: The Odyssey of a Biochemist. Cambridge, MA: Harvard Univ. Press 336 pp. [Google Scholar]
  18. Kornberg A. 1989. Never a dull enzyme.. Annu. Rev. Biochem. 58:1–30 [Google Scholar]
  19. Stetten DeWitt Jr, Carrigan WT. eds 1984. NIH: An Account of Research in Its Laboratories and Clinics. Orlando, FL: Academic 554 pp. [Google Scholar]
  20. Tabor H. 1954. Metabolic studies on histidine, histamine, and related imidazoles.. Pharmacol. Rev. 6:299–343 [Google Scholar]
  21. Tabor H. 1951. Diamine oxidase.. J. Biol. Chem. 188:125–36 [Google Scholar]
  22. Tabor H, Mehler AH, Hayaishi O, White J. 1952. Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids.. J. Biol. Chem. 196:121–28 [Google Scholar]
  23. Borek B, Waelsch H. 1953. An intermediate of the enzymatic degradation of histidine.. J. Am. Chem. Soc. 75:1772–73 [Google Scholar]
  24. Seegmiller JE, Silverman M, Tabor H, Mehler AH. 1954. Synthesis of a metabolic product of histidine.. J. Am. Chem. Soc. 76:6205 [Google Scholar]
  25. Tabor H, Rabinowitz J. 1956. Intermediate steps in the formylation of tetrahydrofolic acid by formiminoglutamic acid in rabbit liver.. J. Am. Chem. Soc. 78:5705–06 [Google Scholar]
  26. Tabor H, Wyngarden L. 1959. The enzymatic formation of formiminotetrahydrofolic acid, 5,10 methenyltetrahydrofolic acid, and 10-formyltetrahydrofolic acid in the metabolism of formiminoglutamic acid.. J. Biol. Chem. 234:1830–46 [Google Scholar]
  27. Hiatt H, Goldstein M, Tabor H. 1958. Urinary excretion of formiminoglutamic acid by human subjects after antifolic acid therapy.. J. Clin. Invest. 37:829–32 [Google Scholar]
  28. Hayaishi O, Tabor H, Hayaishi T. 1957. N-formimino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazole-acetic acid to formylaspartic acid.. J. Biol. Chem. 227:161–80 [Google Scholar]
  29. Mandel R. 1996. A Half Century of Peer Review, 1946–1996. Bethesda, MD: Div. Res. Grants, Natl. Inst. Health [Google Scholar]
  30. Leuwenhoek A. 1678. Observationes D. Anthonii Leuwenhoek, de Natis è semine genitali Animalculis.. Philos. Trans. R. Soc. London Ser. A 12:1040–43 Transl. 1941, in Alle de Brieven van Antonii van Leeuwenhoek, ed. JJ Swart. Amsterdam: Swets & Zeitlinger [Google Scholar]
  31. Fischer ER, Rosenthal SM. 1951. Pathology and pathogenesis of spermine induced renal disease.. Arch. Pathol. 57:244–53 [Google Scholar]
  32. Rosenthal SM, Tabor CW. 1956. The pharmacology of spermine and spermidine. Distribution and excretion.. J. Pharmacol. Exp. Ther. 116:131–38 [Google Scholar]
  33. Tabor CW, Rosenthal SM. 1956. Pharmacology of spermine and spermidine. Some effects on animals and bacteria.. J. Pharmacol. Exp. Ther. 116:139–55 [Google Scholar]
  34. Tabor CW, Tabor H, Rosenthal SM. 1954. Purification of amine oxidase from beef plasma.. J. Biol. Chem. 208:645–61 [Google Scholar]
  35. Tabor CW, Tabor H, Bachrach U. 1964. Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase.. J. Biol. Chem. 239:2194–203 [Google Scholar]
  36. Bachrach U, Tabor CW, Tabor H. 1963. Inactivation of bacteriophages by oxidized spermine.. Biochim. Biophys. Acta 78:768–70 [Google Scholar]
  37. Klinman JP. 1996. New quinocofactors in eukaryotes.. J. Biol. Chem. 271:27189–92 [Google Scholar]
  38. Tabor H, Tabor CW. 1964. Spermidine, spermine, and related amines.. Pharmacol. Rev. 16:245–300 [Google Scholar]
  39. Tabor H, Tabor CW. 1972. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines.. Adv. Enzymol. Relat. Areas Mol. Biol. 36:203–68 [Google Scholar]
  40. Tabor CW, Tabor H. 1976. 1,4-Diaminobutane (putrescine), spermidine, and spermine.. Annu. Rev. Biochem. 45:285–306 [Google Scholar]
  41. Tabor CW, Tabor H. 1984. Polyamines.. Annu. Rev. Biochem. 53:749–90 [Google Scholar]
  42. Tabor H, Rosenthal SM, Tabor CW. 1958. The biosynthesis of spermidine and spermine from putrescine and methionine.. J. Biol. Chem. 233:907–14 [Google Scholar]
  43. Greene RC. 1957. Incorporation of the carbon chain of methionine into spermidine.. J. Am. Chem. Soc. 79:3929 [Google Scholar]
  44. Tabor CW, Tabor H. 1970. The complete conversion of spermidine to a peptide derivative in Escherichia coli.. Biochem. Biophys. Res. Commun. 41:232–38 [Google Scholar]
  45. Tabor H, Tabor CW. 1975. Isolation, characterization, and turnover of glutathionyl-spermidine from Escherichia coli.. J. Biol. Chem. 250:2648–54 [Google Scholar]
  46. Tabor CW, Dobbs LG. 1970. Metabolism of 1,4-diaminobutane and spermidine in Escherichia coli: the effects of low temperature during storage and harvesting of the cultures.. J. Biol. Chem. 245:2086–91 [Google Scholar]
  47. Tabor CW, Tabor H, Hafner EH. 1983. Mass screening for mutants in the biosynthesis pathway for polyamines in Escherichia coli: a general method for mutants in enzymatic reactions producing CO2.. Methods Enzymol. 94:83–91 [Google Scholar]
  48. Tabor CW, Tabor H, Xie QW. 1986. Spermidine synthase of Escherichia coli: localization of the speE gene.. Proc. Natl. Acad. Sci. USA 83:6040–44 [Google Scholar]
  49. Xie QW, Tabor CW, Tabor H. 1993. Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli.. Gene 126:115–17 [Google Scholar]
  50. Tabor H, Tabor CW, Cohn MS. 1983. Mass screening for mutants in the polyamine biosynthetic pathway in Saccharomyces cerevisiae.. Methods Enzymol. 94:104–8 [Google Scholar]
  51. Xie QW, Tabor CW, Tabor H. 1990. Ornithine decarboxylase in Saccharomyces cerevisiae: chromosomal assignment and genetic mapping of the SPE1 gene.. Yeast 6:455–60 [Google Scholar]
  52. Kashiwagi K, Taneja SK, Liu TY, Tabor CW, Tabor H. 1990. Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase.. J. Biol. Chem. 265:22321–28 [Google Scholar]
  53. Balasundaram D, Tabor CW, Tabor H. 1991. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae.. Proc. Natl. Acad. Sci. USA 88:5872–76 [Google Scholar]
  54. Hamasaki-Katagiri N, Tabor CW, Tabor H. 1997. Spermidine biosynthesis in Saccharomyces cerevisiae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase).. Gene 187:35–43 [Google Scholar]
  55. Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H. 1998. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a SPE4 deletion mutant.. Gene 210:195–201 [Google Scholar]
  56. Tabor S, Richardson CC. 1987. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase.. Proc. Natl. Acad. Sci. USA 84:4767–71 [Google Scholar]
  57. Wickner RB, Tabor CW, Tabor H. 1970. Purification of adenosylmethionine decarboxylase from Escherichia coli W: evidence for covalently bound pyruvate.. J. Biol. Chem. 245:2132–39 [Google Scholar]
  58. Markham GD, Tabor CW, Tabor H. 1982. S-adenosylmethionine decarboxylase of Escherichia coli. Studies on the covalently linked pyruvate required for activity.. J. Biol. Chem. 257:12063–68 [Google Scholar]
  59. Riley WD, Snell EE. 1968. Histidine decarboxylase of Lactobacillus 30a. IV. The presence of covalently bound pyruvate as the prosthetic group.. Biochemistry 7:3520–28 [Google Scholar]
  60. van Poelje PD, Snell EE. 1990. Pyruvoyl dependent enzymes.. Annu. Rev. Biochem. 59:29–59 [Google Scholar]
  61. Tabor CW, Tabor H. 1987. The speEspeD operon of Escherichia coli: Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.. J. Biol. Chem. 262:16037–40 [Google Scholar]
  62. Tabor CW. 1962. Stabilization of proto-plasts and spheroplasts by spermine and other polyamines.. J. Bacteriol. 83:1101–11 [Google Scholar]
  63. Tabor H. 1960. Stabilization of bacteriophage T5 by spermine and related polyamines.. Biochem. Biophys. Res. Commun. 3:382–85 [Google Scholar]
  64. Kaiser D, Tabor H, Tabor CW. 1963. Spermine protection of coliphage λ DNA against breakage by hydrodynamic shear.. J. Mol. Biol. 6:141–47 [Google Scholar]
  65. Tabor CW, Kellogg PD. 1967. The effect of isolation conditions on the polyamine content of Escherichia coli ribosomes.. J. Biol. Chem. 242:1044–52 [Google Scholar]
  66. Ames BN, Dubin DT. 1960. The Role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid.. J. Biol. Chem. 235:769–75 [Google Scholar]
  67. Cohen SS. 1998. A Guide to the Polyamines. New York: Oxford Univ. Press 595 pp. [Google Scholar]
  68. Hafner EW, Tabor CW, Tabor H. 1979. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine.. J. Biol. Chem. 254:12419–26 [Google Scholar]
  69. Tabor CW, Tabor H, Hafner EW. 1978. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis.. J. Biol. Chem. 253:3671–76 [Google Scholar]
  70. Tabor H, Tabor CW, Cohn MS, Hafner EW. 1981. Streptomycin resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [Δ(spe-A-spe-B)Δ spe-C]. J. Bacteriol. 147:702–4 [Google Scholar]
  71. Tabor H, Tabor CW. 1982. Polyamine requirement for efficient translation of amber codons in vivo.. Proc. Natl. Acad. Sci. USA 79:7087–91 [Google Scholar]
  72. Balasundaram D, Dinman JD, Wickner RB, Tabor CW, Tabor H. 1994. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae.. Proc. Natl. Acad. Sci. USA 91:172–76 [Google Scholar]
  73. Balasundaram D, Dinman JD, Tabor CW, Tabor H. 1994. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frame shifting in Saccharomyces cerevisiae.. J. Bacteriol. 176:7126–28 [Google Scholar]
  74. Balasundaram D, Tabor CW, Tabor H. 1993. Oxygen toxicity in a polyamine-depleted spe2Δ mutant of Saccharomyces cerevisiae.. Proc. Natl. Acad. Sci. USA 90:4693–97 [Google Scholar]
  75. Minton KW, Tabor H, Tabor CW. 1990. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines.. Proc. Natl. Acad. Sci. USA 87:2851–55 [Google Scholar]
  76. Fairlamb AH, Cerami A. 1992. Metabolism and functions of trypanothione in the kinetoplastida.. Annu. Rev. Microbiol. 46:695–729 [Google Scholar]
  77. Edsall J. 1980. The Journal of Biological Chemistry after Seventy-Five Years.. J. Biol. Chem. 255:8939–51 [Google Scholar]
  78. Edsall J. 1978. Robert A. Harte.. J. Biol. Chem. 253:3353–54 [Google Scholar]
  79. Moore S. 1987. William H. Stein. Biographical Memoirs, National Academy of Sciences. 56415–40 Washington, DC: Natl. Acad. Sci [Google Scholar]
  80. Moore S. 1980. William H. Stein.. J. Biol. Chem. 255:9517–18 [Google Scholar]
  81. Dixon B. 1996. Funny business.. Br. Med. J. 312:1484 [Google Scholar]
/content/journals/10.1146/annurev.biochem.68.1.1
Loading
/content/journals/10.1146/annurev.biochem.68.1.1
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error