- Home
- A-Z Publications
- Annual Review of Biochemistry
- Previous Issues
- Volume 71, 2002
Annual Review of Biochemistry - Volume 71, 2002
Volume 71, 2002
- Review Articles
-
-
-
My Career in Molecular Biology
Vol. 71 (2002), pp. xiii–xxivMore Less▪ AbstractNorman Davidson’s training as a physical chemist led him to make key early contributions to the chemistry of DNA. He described the details of DNA denaturation and renaturation, concepts that still form the basis for understanding hybridization. He also applied the single-molecule resolution of the electron microscope to describing the chemistry of circular DNA, mapping specific genes, and characterizing heteroduplexes. The latter became a dominant tool for the study of nucleic acids and contributed to our knowledge of transcription, polyadenylation, and retroviral structure. The advent of cDNA cloning and restriction enzymes enabled Davidson to describe the diversity of Drosophila actin genes and to isolate the gene encoding cAMP phosphodiesterase. Davidson then turned his attention to neuroscience and participated in cDNA cloning, oocyte expression, and structure-function studies of nicotinic acetylcholine receptors, voltage-gated sodium channels, a GABA transporter, a G protein-gated potassium channel, and calcium channels. His interests also extended to synaptic plasticity, and he helped to define the role of neuronal nitric oxide synthase and of trkB receptors. His final experiments concerned the role of protein kinase A in long-term potentiation. (The abstract was written posthumously by a colleague.)
-
-
-
-
Discoveries of Vitamin B12 and Selenium Enzymes*
Vol. 71 (2002), pp. 1–16More Less▪ AbstractMy undergraduate education at Cornell University was followed by graduate studies on methane fermentations under the guidance of H.A. Barker at the University of California, Berkeley. My Ph.D. degree was granted in June 1949. Two anaerobic microorganisms isolated from the mud flats of San Francisco Bay served as sources of biochemical research material for later studies at the National Institutes of Health in Bethesda. These organisms, Methanococcus vannielii and Clostridium sticklandii, proved to be especially rich sources of selenium-dependent enzymes and seleno-tRNAs. New B12 coenzyme-dependent enzymes that catalyzed intermediate steps in the anaerobic conversion of lysine to fatty acids and ammonia were isolated from C. sticklandii and characterized. My research efforts since 1970 have dealt primarily with various aspects of selenium biochemistry. We have shown that selenium is an essential constituent of several enzymes in prokaryotes. Se is present in these either as a selenocysteine residue in the protein or alternatively, in a few molybdoenzymes, as a component of a bound cofactor. Recent studies with a human adenocarcinoma cell line led to the unexpected discovery that selenocysteine occurs in mammalian thioredoxin reductase. The selenium located in a redox center of this enzyme is essential for catalytic activity.
-
-
-
Error-Prone Repair DNA Polymerases in Prokaryotes and Eukaryotes
Vol. 71 (2002), pp. 17–50More Less▪ AbstractDNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis—poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair “factories” could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.
-
-
-
Long-Distance Electron Transfer Through DNA
Vol. 71 (2002), pp. 51–70More Less▪ AbstractDNA molecules are able to transport electrons over long distances. In most experiments the process is stimulated by the oxidation of guanines (G), which generates guanine radical cations. The electron transport through DNA occurs in a multistep hopping mechanism with all Gs as carriers of the positive charge. The rate of each individual hopping step between the Gs decreases strongly with increase of the distance. If the (A:T) bridges between the guanines are long, adenines (A) also become charge carriers. Mismatches, single strands, and G-oxidation products can drastically diminish the efficiency of the charge transport. But in triplexes and DNA/RNA duplexes, as well as in several duplex DNA/peptide complexes, the efficacy of the charge transport is less affected. The ability of DNA molecules to transport charges over long distances could provide a mechanism for ameliorating the harmfulness of damage to DNA under the conditions of oxidative stress.
-
-
-
The Bacterial RecA Protein and the Recombinational DNA Repair of Stalled Replication Forks
Vol. 71 (2002), pp. 71–100More Less▪ AbstractThe primary function of bacterial recombination systems is the nonmutagenic repair of stalled or collapsed replication forks. The RecA protein plays a central role in these repair pathways, and its biochemistry must be considered in this context. RecA protein promotes DNA strand exchange, a reaction that contributes to fork regression and DNA end invasion steps. RecA protein activities, especially formation and disassembly of its filaments, affect many additional steps. So far, Escherichia coli RecA appears to be unique among its nearly ubiquitous family of homologous proteins in that it possesses a motorlike activity that can couple the branch movement in DNA strand exchange to ATP hydrolysis. RecA is also a multifunctional protein, serving in different biochemical roles for recombinational processes, SOS induction, and mutagenic lesion bypass. New biochemical and structural information highlights both the similarities and distinctions between RecA and its homologs. Increasingly, those differences can be rationalized in terms of biological function.
-
-
-
V(D)J Recombination: RAG Proteins, Repair Factors, and Regulation*
Vol. 71 (2002), pp. 101–132More Less▪ AbstractV(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
-
-
-
Eukaryotic DNA Polymerases
Vol. 71 (2002), pp. 133–163More Less▪ AbstractAny living cell is faced with the fundamental task of keeping the genome intact in order to develop in an organized manner, to function in a complex environment, to divide at the right time, and to die when it is appropriate. To achieve this goal, an efficient machinery is required to maintain the genetic information encoded in DNA during cell division, DNA repair, DNA recombination, and the bypassing of damage in DNA. DNA polymerases (pols) α, β, γ, δ, and ϵ are the key enzymes required to maintain the integrity of the genome under all these circumstances. In the last few years the number of known pols, including terminal transferase and telomerase, has increased to at least 19. A particular pol might have more than one functional task in a cell and a particular DNA synthetic event may require more than one pol, which suggests that nature has provided various safety mechanisms. This multi-functional feature is especially valid for the variety of novel pols identified in the last three years. These are the lesion-replicating enzymes pol ζ, pol η, pol ι, pol κ, and Rev1, and a group of pols called pol θ, pol λ, pol μ, pol σ, and pol φ that fulfill a variety of other tasks.
-
-
-
Eukaryotic Ribonuclease P: A Plurality of Ribonucleoprotein Enzymes
Vol. 71 (2002), pp. 165–189More Less▪ AbstractRibonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5′ end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
-
-
-
Active Site Tightness and Substrate Fit in DNA Replication
Vol. 71 (2002), pp. 191–219More Less▪ AbstractVarious physicochemical factors influence DNA replication fidelity. Since it is now known that Watson-Crick hydrogen bonds are not necessary for efficient and selective replication of a base pair by DNA polymerase enzymes, a number of alternative physical factors have been examined to explain the efficiency of these enzymes. Among these factors are minor groove hydrogen bonding, base stacking, solvation, and steric effects. We discuss the concept of active site tightness in DNA polymerases, and consider how it might influence steric (size and shape) effects of nucleotide selection in synthesis of a base pair. A high level of active site tightness is expected to lead to higher fidelity relative to proteins with looser active sites. We review the current data on what parts and dimensions of active sites are most affected by size and shape, based on data with modified nucleotides that have been examined as polymerase substrates. We also discuss recent data on nucleotide analogs displaying higher fidelity than the natural ones. The published data are discussed with a view toward testing this sterically based hypothesis and unifying existing observations into a narrowly defined range of effects.
-
-
-
Great Metalloclusters in Enzymology
Vol. 71 (2002), pp. 221–246More Less▪ AbstractMetallocluster-containing enzymes catalyze some of the most basic redox transformations in the biosphere. The reactions catalyzed by these enzymes typically involve small molecules such as N2, CO, and H2 that are used to generate both chemical building blocks and energy for metabolic purposes. During the past decade, structures have been established for the iron-sulfur-based metalloclusters present in the molybdenum nitrogenase, the iron-only hydrogenase, and the nickel-carbon monoxide dehydrogenase, and for the copper-sulfide-based cluster in nitrous oxide reductase. Although these clusters are built from interactions observed in simpler metalloproteins, they contain novel features that may be relevant for their catalytic function. The mechanisms of metallocluster-containing enzymes are still poorly defined, and represent substantial and continuing challenges to biochemists, biophysicists, and synthetic chemists. These proteins also provide a window into the union of the biological and inorganic worlds that may have been relevant to the early evolution of biochemical catalysis.
-
-
-
ATP-Dependent Nucleosome Remodeling
Vol. 71 (2002), pp. 247–273More Less▪ AbstractIt has been a long-standing challenge to decipher the principles that enable cells to both organize their genomes into compact chromatin and ensure that the genetic information remains accessible to regulatory factors and enzymes within the confines of the nucleus. The discovery of nucleosome remodeling activities that utilize the energy of ATP to render nucleosomal DNA accessible has been a great leap forward. In vitro, these enzymes weaken the tight wrapping of DNA around the histone octamers, thereby facilitating the sliding of histone octamers to neighboring DNA segments, their displacement to unlinked DNA, and the accumulation of patches of accessible DNA on the surface of nucleosomes. It is presumed that the collective action of these enzymes endows chromatin with dynamic properties that govern all nuclear functions dealing with chromatin as a substrate. The diverse set of ATPases that qualify as the molecular motors of the nucleosome remodeling process have a common history and are part of a superfamily. The physiological context of their remodeling action builds on the association with a wide range of other proteins to form distinct complexes for nucleosome remodeling. This review summarizes the recent progress in our understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.
-
-
-
Biological Roles of Proteases in Parasitic Protozoa
Vol. 71 (2002), pp. 275–305More Less▪ AbstractProteases from a variety of protozoan parasites have been characterized at the molecular and cellular levels, and the many roles that proteases play in these organisms are coming into focus. Central roles have been proposed for proteases in diverse processes such as host cell invasion and egress, encystation, excystation, catabolism of host proteins, differentiation, cell cycle progression, cytoadherence, and both stimulation and evasion of host immune responses. Detailed structural and functional characterization of parasite proteases has led to novel insights into the workings of these fascinating catalytic machines. The possibility of developing selective inhibitors of key proteases of pathogenic parasites into novel chemotherapeutic strategies is being vigorously explored.
-
-
-
Metabolism and the Control of Circadian Rhythms
Vol. 71 (2002), pp. 307–331More Less▪ AbstractThe core apparatus that regulates circadian rhythm has been extensively studied over the past five years. A looming question remains, however, regarding how this apparatus is adjusted to maintain coordination between physiology and the changing environment. The diversity of stimuli and input pathways that gain access to the circadian clock are summarized. Cellular metabolic states could serve to link physiologic perception of the environment to the circadian oscillatory apparatus. A simple model, integrating biochemical, cellular, and physiologic data, is presented to account for the connection of cellular metabolism and circadian rhythm.
-
-
-
DNA Replication in Eukaryotic Cells
Vol. 71 (2002), pp. 333–374More Less▪ AbstractThe maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
-
-
-
The La Protein
Vol. 71 (2002), pp. 375–403More Less▪ AbstractUbiquitous in eukaryotic cells, the La protein associates with the 3′ termini of many newly synthesized small RNAs. RNAs bound by the La protein include all nascent transcripts made by RNA polymerase III as well as certain small RNAs synthesized by other RNA polymerases. Recent genetic and biochemical analyses have revealed that binding by the La protein protects the 3′ ends of these RNAs from exonucleases. This La-mediated stabilization is required for the normal pathway of pre-tRNA maturation, facilitates assembly of small RNAs into functional RNA-protein complexes, and contributes to nuclear retention of certain small RNAs. Studies of mutant La proteins have given some insights into how the La protein specifically recognizes its RNA targets. However, many questions remain regarding the molecular mechanisms by which La protein binding influences multiple steps in small RNA biogenesis. This review focuses on the roles of the La protein in small RNA biogenesis and also discusses data that implicate the La protein in the translation of specific mRNAs.
-
-
-
Lipoprotein Receptors in the Nervous System
Joachim Herz, and Hans H. BockVol. 71 (2002), pp. 405–434More Less▪ AbstractThe low-density–lipoprotein (LDL) receptor family is an evolutionarily ancient gene family of structurally closely related cell-surface receptors. Members of the family are involved in the cellular uptake of extracellular ligands and regulate diverse biological processes including lipid and vitamin metabolism and cell-surface protease activity. Some members of the family also participate in cellular signaling and regulate the development and functional maintenance of the nervous system. Here we review the roles of this family of multifunctional receptors in the nervous system and focus on recent advances toward the understanding of the mechanisms by which lipoprotein receptors and their ligands transmit and modulate signals in the brain.
-
-
-
Order Out of Chaos: Assembly of Ligand Binding Sites in Heparan Sulfate1
Vol. 71 (2002), pp. 435–471More Less▪ AbstractVirtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
-
-
-
Neuronal Ca2+/Calmodulin-Dependent Protein Kinase II: The Role of Structure and Autoregulation in Cellular Function
Vol. 71 (2002), pp. 473–510More Less▪ AbstractHighly enriched in brain tissue and present throughout the body, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is central to the coordination and execution of Ca2+ signal transduction. The substrates phosphorylated by CaMKII are implicated in homeostatic regulation of the cell, as well as in activity-dependent changes in neuronal function that appear to underlie complex cognitive and behavioral responses, including learning and memory. The architecture of CaMKII holoenzymes is unique in nature. The kinase functional domains (12 per holoenzyme) are attached by stalklike appendages to a gear-shaped core, grouped into two clusters of six. Each subunit contains a catalytic, an autoregulatory, and an association domain. Ca2+/calmodulin (CaM) binding disinhibits the autoregulatory domain, allowing autophosphorylation and complex changes in the enzyme’s sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent activity, CaM trapping, and CaM capping. These processes confer a type of molecular memory to the autoregulation and activity of CaMKII. Its function is intimately shaped by its multimeric structure, autoregulation, isozymic type, and subcellular localization; these features and processes are discussed as they relate to known and potential cellular functions of this multifunctional protein kinase.
-
-
-
Biochemistry of Na,K-ATPase
Vol. 71 (2002), pp. 511–535More Less▪ AbstractThe Na,K-ATPase or sodium pump carries out the coupled extrusion and uptake of Na and K ions across the plasma membranes of cells of most higher eukaryotes. It is a member of the P-type ATPase superfamily. This heterodimeric integral membrane protein is composed of a 100-kDa α-subunit with ten transmembrane segments and a heavily glycosylated β subunit of about 55 kDa, which is a type II membrane protein. Current ideas on how the protein achieves active transport are based on a fusion of results of transport physiology, protein chemistry, and heterologous expression of mutant proteins. Recently acquired high resolution structural information provides an important new avenue for a more complete understanding of this protein. In this review, the current status of knowledge of Na,K-ATPase is discussed, and areas where there is still considerable uncertainty are highlighted.
-
-
-
Mammalian ABC Transporters in Health and Disease
P. Borst, and R. Oude ElferinkVol. 71 (2002), pp. 537–592More Less▪ AbstractThe ATP-binding cassette (ABC) transporters are a family of large proteins in membranes and are able to transport a variety of compounds through membranes against steep concentration gradients at the cost of ATP hydrolysis. The available outline of the human genome contains 48 ABC genes; 16 of these have a known function and 14 are associated with a defined human disease. Major physiological functions of ABC transporters include the transport of lipids, bile salts, toxic compounds, and peptides for antigen presentation or other purposes. We review the functions of mammalian ABC transporters, emphasizing biochemical mechanisms and genetic defects. Our overview illustrates the importance of ABC transporters in human physiology, toxicology, pharmacology, and disease. We focus on three topics: (a) ABC transporters transporting drugs (xenotoxins) and drug conjugates. (b) Mammalian secretory epithelia using ABC transporters to excrete a large number of substances, sometimes against a steep concentration gradient. Several inborn errors in liver metabolism are due to mutations in one of the genes for these pumps; these are discussed. (c) A rapidly increasing number of ABC transporters are found to play a role in lipid transport. Defects in each of these transporters are involved in human inborn or acquired diseases.
-
Previous Volumes
-
Volume 93 (2024)
-
Volume 92 (2023)
-
Volume 91 (2022)
-
Volume 90 (2021)
-
Volume 89 (2020)
-
Volume 88 (2019)
-
Volume 87 (2018)
-
Volume 86 (2017)
-
Volume 85 (2016)
-
Volume 84 (2015)
-
Volume 83 (2014)
-
Volume 82 (2013)
-
Volume 81 (2012)
-
Volume 80 (2011)
-
Volume 79 (2010)
-
Volume 78 (2009)
-
Volume 77 (2008)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2005)
-
Volume 73 (2004)
-
Volume 72 (2003)
-
Volume 71 (2002)
-
Volume 70 (2001)
-
Volume 69 (2000)
-
Volume 68 (1999)
-
Volume 67 (1998)
-
Volume 66 (1997)
-
Volume 65 (1996)
-
Volume 64 (1995)
-
Volume 63 (1994)
-
Volume 62 (1993)
-
Volume 61 (1992)
-
Volume 60 (1991)
-
Volume 59 (1990)
-
Volume 58 (1989)
-
Volume 57 (1988)
-
Volume 56 (1987)
-
Volume 55 (1986)
-
Volume 54 (1985)
-
Volume 53 (1984)
-
Volume 52 (1983)
-
Volume 51 (1982)
-
Volume 50 (1981)
-
Volume 49 (1980)
-
Volume 48 (1979)
-
Volume 47 (1978)
-
Volume 46 (1977)
-
Volume 45 (1976)
-
Volume 44 (1975)
-
Volume 43 (1974)
-
Volume 42 (1973)
-
Volume 41 (1972)
-
Volume 40 (1971)
-
Volume 39 (1970)
-
Volume 38 (1969)
-
Volume 37 (1968)
-
Volume 36 (1967)
-
Volume 35 (1966)
-
Volume 34 (1965)
-
Volume 33 (1964)
-
Volume 32 (1963)
-
Volume 31 (1962)
-
Volume 30 (1961)
-
Volume 29 (1960)
-
Volume 28 (1959)
-
Volume 27 (1958)
-
Volume 26 (1957)
-
Volume 25 (1956)
-
Volume 24 (1955)
-
Volume 23 (1954)
-
Volume 22 (1953)
-
Volume 21 (1952)
-
Volume 20 (1951)
-
Volume 19 (1950)
-
Volume 18 (1949)
-
Volume 17 (1948)
-
Volume 16 (1947)
-
Volume 15 (1946)
-
Volume 14 (1945)
-
Volume 13 (1944)
-
Volume 12 (1943)
-
Volume 11 (1942)
-
Volume 10 (1941)
-
Volume 9 (1940)
-
Volume 8 (1939)
-
Volume 7 (1938)
-
Volume 6 (1937)
-
Volume 5 (1936)
-
Volume 4 (1935)
-
Volume 3 (1934)
-
Volume 2 (1933)
-
Volume 1 (1932)
-
Volume 0 (1932)