1932

Abstract

Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-072820-100645
2021-06-20
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-072820-100645.html?itemId=/content/journals/10.1146/annurev-biochem-072820-100645&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K et al. 2018. Influenza. Nat. Rev. Dis. Primers 4:13
    [Google Scholar]
  2. 2. 
    Knipe DM, Howley P. 2013. Fields Virology Philadelphia: Lippincott Williams & Wilkins. , 6th ed..
    [Google Scholar]
  3. 3. 
    Eisfeld AJ, Neumann G, Kawaoka Y. 2015. At the centre: influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 13:128–41
    [Google Scholar]
  4. 4. 
    Wandzik JM, Kouba T, Cusack S. 2020. Structure and function of influenza polymerase. Cold Spring Harb. . Perspect. Med. 10:a038372
    [Google Scholar]
  5. 5. 
    Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I et al. 2019. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573:7773287–90
    [Google Scholar]
  6. 6. 
    Pflug A, Guilligay D, Reich S, Cusack S. 2014. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516:7531355–60
    [Google Scholar]
  7. 7. 
    Reich S, Guilligay D, Pflug A, Malet H, Berger I et al. 2014. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:7531361–66
    [Google Scholar]
  8. 8. 
    Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S et al. 2016. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61:1125–37
    [Google Scholar]
  9. 9. 
    Wandzik JM, Kouba T, Karuppasamy M, Pflug A, Drncová P et al. 2020. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181:4877–93.e21
    [Google Scholar]
  10. 10. 
    Deng T, Vreede FT, Brownlee GG. 2006. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80:52337–48
    [Google Scholar]
  11. 11. 
    Oymans J, Te Velthuis AJW 2018. A mechanism for priming and realignment during influenza A virus replication. J. Virol. 92:3e01773–17
    [Google Scholar]
  12. 12. 
    Beaton AR, Krug RM. 1981. Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res 9:174423–36
    [Google Scholar]
  13. 13. 
    Krug RM, Morgan MA, Shatkin AJ. 1976. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20:145–53
    [Google Scholar]
  14. 14. 
    Bercovich-Kinori A, Tai J, Gelbart IA, Shitrit A, Ben-Moshe S et al. 2016. A systematic view on influenza induced host shutoff. eLife 5:e18311
    [Google Scholar]
  15. 15. 
    Plotch SJ, Tomasz J, Krug RM. 1978. Absence of detectable capping and methylating enzymes in influenza virions. J. Virol. 28:175–83
    [Google Scholar]
  16. 16. 
    Bouloy M, Plotch SJ, Krug RM 1978. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. PNAS 75:104886–90
    [Google Scholar]
  17. 17. 
    Plotch SJ, Bouloy M, Krug RM 1979. Transfer of 5′-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. PNAS 76:41618–22
    [Google Scholar]
  18. 18. 
    Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T et al. 2008. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 15:5500–6
    [Google Scholar]
  19. 19. 
    Clohisey S, Parkinson N, Wang B, Bertin N, Wise H et al. 2020. Comprehensive characterization of transcriptional activity during influenza A virus infection reveals biases in cap-snatching of host RNA sequences. J. Virol. 94:10e01720–19
    [Google Scholar]
  20. 20. 
    Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ et al. 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:7240914–18
    [Google Scholar]
  21. 21. 
    Poon LL, Pritlove DC, Fodor E, Brownlee GG. 1999. Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J. Virol. 73:43473–76
    [Google Scholar]
  22. 22. 
    Kouba T, Drncová P, Cusack S. 2019. Structural snapshots of actively transcribing influenza polymerase. Nat. Struct. Mol. Biol. 26:6460–70
    [Google Scholar]
  23. 23. 
    Coloma R, Arranz R, de la Rosa-Trevín JM, Sorzano COS, Munier S et al. 2020. Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Nat. Microbiol. 5:5727–34
    [Google Scholar]
  24. 24. 
    Peng Q, Liu Y, Peng R, Wang M, Yang W et al. 2019. Structural insight into RNA synthesis by influenza D polymerase. Nat. Microbiol. 4:101750–59
    [Google Scholar]
  25. 25. 
    Olschewski S, Cusack S, Rosenthal M. 2020. The cap-snatching mechanism of bunyaviruses. Trends Microbiol 28:4293–303
    [Google Scholar]
  26. 26. 
    Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E. 2006. Influenza virus inhibits RNA polymerase II elongation. Virology 351:1210–17
    [Google Scholar]
  27. 27. 
    Rott R, Scholtissek C. 1970. Specific inhibition of influenza replication by α-amanitin. Nature 228:526656
    [Google Scholar]
  28. 28. 
    Engelhardt OG, Smith M, Fodor E. 2005. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 79:95812–18
    [Google Scholar]
  29. 29. 
    Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S et al. 2017. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541:7635117–21
    [Google Scholar]
  30. 30. 
    Walker AP, Fodor E. 2019. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol 27:5398–407
    [Google Scholar]
  31. 31. 
    Cramer P. 2019. Organization and regulation of gene transcription. Nature 573:777245–54
    [Google Scholar]
  32. 32. 
    Sun Q, Hao Q, Prasanth KV. 2018. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:2142–57
    [Google Scholar]
  33. 33. 
    Lee Y, Kim M, Han J, Yeom K-H, Lee S et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:204051–60
    [Google Scholar]
  34. 34. 
    Matera AG, Wang Z. 2014. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15:2108–21
    [Google Scholar]
  35. 35. 
    Kufel J, Grzechnik P. 2019. Small nucleolar RNAs tell a different tale. Trends Genet 35:2104–17
    [Google Scholar]
  36. 36. 
    Harlen KM, Churchman LS. 2017. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18:4263–73
    [Google Scholar]
  37. 37. 
    Eick D, Geyer M. 2013. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113:118456–90
    [Google Scholar]
  38. 38. 
    Zaborowska J, Egloff S, Murphy S 2016. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol. 23:9771–77
    [Google Scholar]
  39. 39. 
    Gupta K, Sari-Ak D, Haffke M, Trowitzsch S, Berger I. 2016. Zooming in on transcription preinitiation. J. Mol. Biol. 428:122581–91
    [Google Scholar]
  40. 40. 
    Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C et al. 2017. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551:7679204–9
    [Google Scholar]
  41. 41. 
    Kornberg RD. 2005. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30:5235–39
    [Google Scholar]
  42. 42. 
    Soutourina J. 2018. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19:4262–74
    [Google Scholar]
  43. 43. 
    Eychenne T, Novikova E, Barrault M-B, Alibert O, Boschiero C et al. 2016. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev 30:182119–32
    [Google Scholar]
  44. 44. 
    Nozawa K, Schneider TR, Cramer P. 2017. Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545:7653248–51
    [Google Scholar]
  45. 45. 
    Svejstrup JQ, Li Y, Fellows J, Gnatt A, Bjorklund S, Kornberg RD 1997. Evidence for a mediator cycle at the initiation of transcription. PNAS 94:126075–78
    [Google Scholar]
  46. 46. 
    Wong KH, Jin Y, Struhl K 2014. TFIIH phosphorylation of the Pol II CTD stimulates Mediator dissociation from the preinitiation complex and promoter escape. Mol. Cell 54:4601–12
    [Google Scholar]
  47. 47. 
    Core L, Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33:15–16960–82
    [Google Scholar]
  48. 48. 
    Henriques T, Gilchrist DA, Nechaev S, Bern M, Muse GW et al. 2013. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell 52:4517–28
    [Google Scholar]
  49. 49. 
    Rougvie AE, Lis JT. 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54:6795–804
    [Google Scholar]
  50. 50. 
    Shao W, Zeitlinger J. 2017. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 49:71045–51
    [Google Scholar]
  51. 51. 
    Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y et al. 2010. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143:4540–51
    [Google Scholar]
  52. 52. 
    Bernecky C, Plitzko JM, Cramer P. 2017. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat. Struct. Mol. Biol. 24:10809–15
    [Google Scholar]
  53. 53. 
    Vos SM, Farnung L, Urlaub H, Cramer P. 2018. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560:7720601–6
    [Google Scholar]
  54. 54. 
    Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T et al. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:3343–56
    [Google Scholar]
  55. 55. 
    Vos SM, Pöllmann D, Caizzi L, Hofmann KB, Rombaut P et al. 2016. Architecture and RNA binding of the human negative elongation factor. eLife 5:e14981
    [Google Scholar]
  56. 56. 
    Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A et al. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:141–51
    [Google Scholar]
  57. 57. 
    Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, Sekine S-I. 2017. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357:6354921–24
    [Google Scholar]
  58. 58. 
    Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H. 2006. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21:2227–37
    [Google Scholar]
  59. 59. 
    Hartzog GA, Fu J. 2013. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta Gene Regul. Mech. 1829:1105–15
    [Google Scholar]
  60. 60. 
    Palangat M, Renner DB, Price DH, Landick R 2005. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. PNAS 102:4215036–41
    [Google Scholar]
  61. 61. 
    Cheung ACM, Cramer P. 2011. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471:7337249–53
    [Google Scholar]
  62. 62. 
    Chiu Y-L, Ho CK, Saha N, Schwer B, Shuman S, Rana TM. 2002. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10:3585–97
    [Google Scholar]
  63. 63. 
    Rasmussen EB, Lis JT 1993. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. PNAS 90:177923–27
    [Google Scholar]
  64. 64. 
    Tome JM, Tippens ND, Lis JT. 2018. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers. Nat. Genet. 50:111533–41
    [Google Scholar]
  65. 65. 
    Galloway A, Cowling VH. 2019. mRNA cap regulation in mammalian cell function and fate. Biochim. Biophys. Acta. Gene Regul. Mech. 1862:3270–79
    [Google Scholar]
  66. 66. 
    Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:4657–68
    [Google Scholar]
  67. 67. 
    Mazza C, Ohno M, Segref A, Mattaj IW, Cusack S. 2001. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8:2383–96
    [Google Scholar]
  68. 68. 
    Pabis M, Neufeld N, Steiner MC, Bojic T, Shav-Tal Y, Neugebauer KM. 2013. The nuclear cap-binding complex interacts with the U4/U6⋅U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA 19:81054–63
    [Google Scholar]
  69. 69. 
    Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW. 2000. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101:2187–98
    [Google Scholar]
  70. 70. 
    Andersen PR, Domanski M, Kristiansen MS, Storvall H, Ntini E et al. 2013. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol. 20:121367–76
    [Google Scholar]
  71. 71. 
    Narita T, Yung TMC, Yamamoto J, Tsuboi Y, Tanabe H et al. 2007. NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol. Cell 26:3349–65
    [Google Scholar]
  72. 72. 
    Muthukrishnan S, Filipowicz W, Sierra JM, Both GW, Shatkin AJ, Ochoa S. 1975. mRNA methyl-ation and protein synthesis in extracts from embryos of brine shrimp, Artemia salina. J. Biol. Chem. 250:249336–41
    [Google Scholar]
  73. 73. 
    Cowling VH, Cole MD. 2010. Myc regulation of mRNA cap methylation. Genes Cancer 1:6576–79
    [Google Scholar]
  74. 74. 
    Martinez-Rucobo FW, Kohler R, van de Waterbeemd M, Heck AJR, Hemann M et al. 2015. Molecular basis of transcription-coupled pre-mRNA capping. Mol. Cell 58:61079–89
    [Google Scholar]
  75. 75. 
    Yue Z, Maldonado E, Pillutla R, Cho H, Reinberg D, Shatkin AJ 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. PNAS 94:2412898–903
    [Google Scholar]
  76. 76. 
    Varshney D, Petit A-P, Bueren-Calabuig JA, Jansen C, Fletcher DA et al. 2016. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res 44:2110423–36
    [Google Scholar]
  77. 77. 
    Shimotohno K, Kodama Y, Hashimoto J, Miura KI 1977. Importance of 5′-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. PNAS 74:72734–38
    [Google Scholar]
  78. 78. 
    Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J. 2010. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem. 285:4333037–44
    [Google Scholar]
  79. 79. 
    Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:7322452–56
    [Google Scholar]
  80. 80. 
    Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F et al. 2016. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. PNAS 113:3596–601
    [Google Scholar]
  81. 81. 
    Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA et al. 2011. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res 39:114756–68
    [Google Scholar]
  82. 82. 
    Furuichi Y, Morgan M, Shatkin AJ, Jelinek W, Salditt-Georgieff M, Darnell JE 1975. Methylated, blocked 5′ termini in HeLa cell mRNA. PNAS 72:51904–8
    [Google Scholar]
  83. 83. 
    Perry RP, Kelley DE. 1976. Kinetics of formation of 5′ terminal caps in mRNA. Cell 8:3433–42
    [Google Scholar]
  84. 84. 
    Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H et al. 2019. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363:6423eaav0080
    [Google Scholar]
  85. 85. 
    Fabrega C, Shen V, Shuman S, Lima CD. 2003. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11:61549–61
    [Google Scholar]
  86. 86. 
    Ghosh A, Shuman S, Lima CD. 2011. Structural insights to how mammalian capping enzyme reads the CTD code. Mol. Cell 43:2299–310
    [Google Scholar]
  87. 87. 
    Ho CK, Shuman S. 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3:3405–11
    [Google Scholar]
  88. 88. 
    McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G et al. 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11:243306–18
    [Google Scholar]
  89. 89. 
    Mandal SS, Chu C, Wada T, Handa H, Shatkin AJ, Reinberg D 2004. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. PNAS 101:207572–77
    [Google Scholar]
  90. 90. 
    Schneider S, Pei Y, Shuman S, Schwer B. 2010. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Mol. Cell. Biol. 30:102353–64
    [Google Scholar]
  91. 91. 
    Noe Gonzalez M, Sato S, Tomomori-Sato C, Conaway JW, Conaway RC 2018. CTD-dependent and -independent mechanisms govern co-transcriptional capping of Pol II transcripts. Nat. Commun. 9:13392
    [Google Scholar]
  92. 92. 
    Haline-Vaz T, Silva TCL, Zanchin NIT. 2008. The human interferon-regulated ISG95 protein interacts with RNA polymerase II and shows methyltransferase activity. Biochem. Biophys. Res. Commun. 372:4719–24
    [Google Scholar]
  93. 93. 
    Li Y, Liu M, Chen L-F, Chen R 2018. P-TEFb: finding its ways to release promoter-proximally paused RNA polymerase II. Transcription 9:288–94
    [Google Scholar]
  94. 94. 
    Marshall NF, Price DH. 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270:2112335–38
    [Google Scholar]
  95. 95. 
    Yik JHN, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q. 2003. Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12:4971–82
    [Google Scholar]
  96. 96. 
    Jang MK, Mochizuki K, Zhou M, Jeong H-S, Brady JN, Ozato K. 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19:4523–34
    [Google Scholar]
  97. 97. 
    Chen R, Liu M, Li H, Xue Y, Ramey WN et al. 2008. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev 22:101356–68
    [Google Scholar]
  98. 98. 
    Hu X, Lu X, Liu R, Ai N, Cao Z et al. 2014. Histone cross-talk connects protein phosphatase 1α (PP1α) and histone deacetylase (HDAC) pathways to regulate the functional transition of bromodomain-containing 4 (BRD4) for inducible gene expression. J. Biol. Chem. 289:3323154–67
    [Google Scholar]
  99. 99. 
    McNamara RP, Reeder JE, McMillan EA, Bacon CW, McCann JL, D'Orso I 2016. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol. Cell 61:139–53
    [Google Scholar]
  100. 100. 
    Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. 2004. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24:2787–95
    [Google Scholar]
  101. 101. 
    Schüller R, Forné I, Straub T, Schreieck A, Texier Y et al. 2016. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol. Cell 61:2305–14
    [Google Scholar]
  102. 102. 
    Vos SM, Farnung L, Boehning M, Wigge C, Linden A et al. 2018. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560:7720607–12
    [Google Scholar]
  103. 103. 
    Vos SM, Farnung L, Linden A, Urlaub H, Cramer P. 2020. Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat. Struct. Mol. Biol. 27:7668–77
    [Google Scholar]
  104. 104. 
    Liu X, Farnung L, Wigge C, Cramer P. 2018. Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin. J. Biol. Chem. 293:197189–94
    [Google Scholar]
  105. 105. 
    Sobell HM. 1985. Actinomycin and DNA transcription. PNAS 82:165328–31
    [Google Scholar]
  106. 106. 
    Reich E, Franklin R, Shatkin AJ, Tatum E 1961. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134:3478556–57
    [Google Scholar]
  107. 107. 
    Barry RD. 1964. The effects of actinomycin D and ultraviolet irradiation on the production of fowl plague virus. Virology 24:4563–69
    [Google Scholar]
  108. 108. 
    Barry RD, Ives DR, Cruickshank JG. 1962. Participation of deoxyribonucleic acid in the multiplication of influenza virus. Nature 194:48341139–40
    [Google Scholar]
  109. 109. 
    Mahy BW, Hastie ND, Armstrong SJ 1972. Inhibition of influenza virus replication by α-amanitin: mode of action. PNAS 69:61421–24
    [Google Scholar]
  110. 110. 
    Lamb RA, Choppin PW. 1977. Synthesis of influenza virus polypeptides in cells resistant to alpha-amanitin: evidence for the involvement of cellular RNA polymerase II in virus replication. J. Virol. 23:3816–19
    [Google Scholar]
  111. 111. 
    Spooner LLR, Barry RD. 1977. Participation of DNA-dependent RNA polymerase II in replication of influenza viruses. Nature 268:5621650–52
    [Google Scholar]
  112. 112. 
    Vreede FT, Ng AK-L, Shaw P-C, Fodor E. 2011. Stabilization of influenza virus replication intermediates is dependent on the RNA-binding but not the homo-oligomerization activity of the viral nucleoprotein. J. Virol. 85:2212073–78
    [Google Scholar]
  113. 113. 
    Mark GE, Taylor JM, Broni B, Krug RM. 1979. Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and α-amanitin. J. Virol. 29:2744–52
    [Google Scholar]
  114. 114. 
    Tamm I, Folkers K, Shunk CH, Horsfall FL. 1954. Inhibition of influenza virus multiplication by N-glycosides of benzimidazoles. J. Exp. Med. 99:3227–50
    [Google Scholar]
  115. 115. 
    Perwitasari O, Yan X, O'Donnell J, Johnson S, Tripp RA 2015. Repurposing kinase inhibitors as antiviral agents to control influenza A virus replication. Assay Drug Dev. Technol. 13:10638–49
    [Google Scholar]
  116. 116. 
    Bensaude O. 2011. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity?. Transcription 2:3103–8
    [Google Scholar]
  117. 117. 
    Chao SH, Price DH. 2001. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276:3431793–99
    [Google Scholar]
  118. 118. 
    Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C et al. 2008. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J. Mol. Biol. 381:3540–49
    [Google Scholar]
  119. 119. 
    Yamaguchi Y, Wada T, Handa H. 1998. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3:19–15
    [Google Scholar]
  120. 120. 
    Amorim M-J, Read EK, Dalton RM, Medcalf L, Digard P. 2007. Nuclear export of influenza A virus mRNAs requires ongoing RNA polymerase II activity. Traffic 8:11–11
    [Google Scholar]
  121. 121. 
    Loucaides EM, von Kirchbach JC, Foeglein A, Sharps J, Fodor E, Digard P. 2009. Nuclear dynamics of influenza A virus ribonucleoproteins revealed by live-cell imaging studies. Virology 394:1154–63
    [Google Scholar]
  122. 122. 
    Li B, Clohisey SM, Chia BS, Wang B, Cui A et al. 2020. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat. Commun. 11:1164
    [Google Scholar]
  123. 123. 
    Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G et al. 2015. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18:6723–35
    [Google Scholar]
  124. 124. 
    Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D et al. 2011. Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J. Virol. 85:178569–81
    [Google Scholar]
  125. 125. 
    Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S et al. 2016. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 44:146–58
    [Google Scholar]
  126. 126. 
    Hubel P, Urban C, Bergant V, Schneider WM, Knauer B et al. 2019. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat. Immunol. 20:4493–502
    [Google Scholar]
  127. 127. 
    Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T et al. 2009. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 23:232765–77
    [Google Scholar]
  128. 128. 
    Kwak YT, Guo J, Prajapati S, Park K-J, Surabhi RM et al. 2003. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol. Cell 11:41055–66
    [Google Scholar]
  129. 129. 
    Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S et al. 2007. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J. Proteome Res. 6:2672–82
    [Google Scholar]
  130. 130. 
    Tafforeau L, Chantier T, Pradezynski F, Pellet J, Mangeot PE et al. 2011. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J. Virol. 85:2413010–18
    [Google Scholar]
  131. 131. 
    Zhang J, Li G, Ye X. 2010. Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II. J. Virol. 84:2412619–27
    [Google Scholar]
  132. 132. 
    Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S et al. 2014. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat. Struct. Mol. Biol. 21:10876–83
    [Google Scholar]
  133. 133. 
    Ma X, Yang T, Luo Y, Wu L, Jiang Y et al. 2019. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 8:e42426
    [Google Scholar]
  134. 134. 
    Brass AL, Huang I-C, Benita Y, John SP, Krishnan MN et al. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:71243–54
    [Google Scholar]
  135. 135. 
    König R, Stertz S, Zhou Y, Inoue A, Hoffmann H-H et al. 2010. Human host factors required for influenza virus replication. Nature 463:7282813–17
    [Google Scholar]
  136. 136. 
    Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH et al. 2019. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. PNAS 116:3517399–408
    [Google Scholar]
  137. 137. 
    Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y et al. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16:6795–805
    [Google Scholar]
  138. 138. 
    Krischuns T, Günl F, Henschel L, Binder M, Willemsen J et al. 2018. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Front. Immunol. 9:2229
    [Google Scholar]
  139. 139. 
    Wang Z, Zhao F, Gao Q, Liu Z, Zhang Y et al. 2015. Establishment of a high-throughput assay to monitor influenza A virus RNA transcription and replication. PLOS ONE 10:7e0133558
    [Google Scholar]
  140. 140. 
    Karlas A, Machuy N, Shin Y, Pleissner K-P, Artarini A et al. 2010. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463:7282818–22
    [Google Scholar]
  141. 141. 
    Shapira SD, Gat-Viks I, Shum BOV, Dricot A, de Grace MM et al. 2009. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139:71255–67
    [Google Scholar]
  142. 142. 
    Bortz E, Westera L, Maamary J, Steel J, Albrecht RA et al. 2011. Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. mBio 2:4e00151–11
    [Google Scholar]
  143. 143. 
    Westera L, Jennings AM, Maamary J, Schwemmle M, García-Sastre A, Bortz E. 2019. Poly-ADP ribosyl polymerase 1 (PARP1) regulates influenza A virus polymerase. Adv. Virol. 2019.8512363
    [Google Scholar]
  144. 144. 
    Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R et al. 2007. An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. PNAS 104:4618235–40
    [Google Scholar]
  145. 145. 
    Tran AT, Rahim MN, Ranadheera C, Kroeker A, Cortens JP et al. 2013. Knockdown of specific host factors protects against influenza virus-induced cell death. Cell Death Dis 4:8e769
    [Google Scholar]
  146. 146. 
    York A, Hutchinson EC, Fodor E. 2014. Interactome analysis of the influenza A virus transcription/replication machinery identifies protein phosphatase 6 as a cellular factor required for efficient virus replication. J. Virol. 88:2213284–99
    [Google Scholar]
  147. 147. 
    Karim M, Biquand E, Declercq M, Jacob Y, van der Werf S, Demeret C. 2020. Nonproteolytic K29-linked ubiquitination of the PB2 replication protein of influenza A viruses by proviral cullin 4-based E3 ligases. mBio 11:2e00305–20
    [Google Scholar]
  148. 148. 
    Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P et al. 2011. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell. Microbiol. 13:121894–906
    [Google Scholar]
  149. 149. 
    Marcos-Villar L, Pazo A, Nieto A. 2016. Influenza virus and chromatin: role of the CHD1 chromatin remodeler in the virus life cycle. J. Virol. 90:73694–707
    [Google Scholar]
  150. 150. 
    Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L et al. 2017. The RNA exosome syncs IAV-RNAPII transcription to promote viral ribogenesis and infectivity. Cell 169:4679–92.e14
    [Google Scholar]
  151. 151. 
    Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ et al. 2018. Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep 23:72119–29.e3
    [Google Scholar]
  152. 152. 
    Martínez-Alonso M, Hengrung N, Fodor E. 2016. RNA-free and ribonucleoprotein-associated influenza virus polymerases directly bind the serine-5-phosphorylated carboxyl-terminal domain of host RNA polymerase II. J. Virol. 90:136014–21
    [Google Scholar]
  153. 153. 
    Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M et al. 2018. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70:61101–10.e4
    [Google Scholar]
  154. 154. 
    Doamekpor SK, Sanchez AM, Schwer B, Shuman S, Lima CD. 2014. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes. Genes Dev 28:121323–36
    [Google Scholar]
  155. 155. 
    Long JS, Mistry B, Haslam SM, Barclay WS. 2019. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17:267–81
    [Google Scholar]
  156. 156. 
    Russell AB, Trapnell C, Bloom JD. 2018. Extreme heterogeneity of influenza virus infection in single cells. eLife 7:e32303
    [Google Scholar]
  157. 157. 
    Levy A, Noll M. 1981. Chromatin fine structure of active and repressed genes. Nature 289:5794198–203
    [Google Scholar]
  158. 158. 
    Sutherland H, Bickmore WA. 2009. Transcription factories: gene expression in unions?. Nat. Rev. Genet. 10:7457–66
    [Google Scholar]
  159. 159. 
    Chase GP, Rameix-Welti M-A, Zvirbliene A, Zvirblis G, Götz V et al. 2011. Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLOS Pathog 7:9e1002187
    [Google Scholar]
  160. 160. 
    Bukrinskaya AG, Vorkunova NK, Pushkarskaya NL. 1982. Uncoating of a rimantadine-resistant variant of influenza virus in the presence of rimantadine. J. Gen. Virol. 60:Part 161–66
    [Google Scholar]
  161. 161. 
    Jackson DA, Caton AJ, McCready SJ, Cook PR. 1982. Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 296:5855366–68
    [Google Scholar]
  162. 162. 
    López-Turiso JA, Martínez C, Tanaka T, Ortín J. 1990. The synthesis of influenza virus negative-strand RNA takes place in insoluble complexes present in the nuclear matrix fraction. Virus Res 16:3325–37
    [Google Scholar]
  163. 163. 
    Takizawa N, Watanabe K, Nouno K, Kobayashi N, Nagata K. 2006. Association of functional influenza viral proteins and RNAs with nuclear chromatin and sub-chromatin structure. Microbes Infect 8:3823–33
    [Google Scholar]
  164. 164. 
    Marmorstein R, Zhou M-M. 2014. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6:7a018762
    [Google Scholar]
  165. 165. 
    Hyun K, Jeon J, Park K, Kim J. 2017. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49:4e324
    [Google Scholar]
  166. 166. 
    Lawrence M, Daujat S, Schneider R. 2016. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:142–56
    [Google Scholar]
  167. 167. 
    Ver LS, Marcos-Villar L, Landeras-Bueno S, Nieto A, Ortín J. 2015. The cellular factor NXP2/MORC3 is a positive regulator of influenza virus multiplication. J. Virol. 89:1910023–30
    [Google Scholar]
  168. 168. 
    Cho W-K, Spille J-H, Hecht M, Lee C, Li C et al. 2018. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361:6400412–15
    [Google Scholar]
  169. 169. 
    Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:6146664–67
    [Google Scholar]
  170. 170. 
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M et al. 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:6420–35
    [Google Scholar]
  171. 171. 
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:113–23
    [Google Scholar]
  172. 172. 
    Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. 2006. Intrinsic disorder in transcription factors. Biochemistry 45:226873–88
    [Google Scholar]
  173. 173. 
    Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL et al. 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:71842–55.e16
    [Google Scholar]
  174. 174. 
    Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM et al. 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361:6400eaar2555
    [Google Scholar]
  175. 175. 
    Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T et al. 2018. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25:9833–40
    [Google Scholar]
  176. 176. 
    Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A et al. 2019. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572:7770543–48
    [Google Scholar]
  177. 177. 
    Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:51049–60
    [Google Scholar]
  178. 178. 
    Lu H, Yu D, Hansen AS, Ganguly S, Liu R et al. 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:7709318–23
    [Google Scholar]
  179. 179. 
    Qin C, Li W, Li Q, Yin W, Zhang X et al. 2019. Real-time dissection of dynamic uncoating of individual influenza viruses. PNAS 116:72577–82
    [Google Scholar]
  180. 180. 
    Wissink EM, Vihervaara A, Tippens ND, Lis JT. 2019. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 20:12705–23
    [Google Scholar]
  181. 181. 
    Milligan L, Huynh-Thu VA, Delan-Forino C, Tuck A, Petfalski E et al. 2016. Strand-specific, high-resolution mapping of modified RNA polymerase II. Mol. Syst. Biol. 12:6874
    [Google Scholar]
  182. 182. 
    Nojima T, Rebelo K, Gomes T, Grosso AR, Proudfoot NJ, Carmo-Fonseca M. 2018. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell 72:2369–79.e4
    [Google Scholar]
  183. 183. 
    Bataille AR, Jeronimo C, Jacques P-É, Laramée L, Fortin M-È et al. 2012. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45:2158–70
    [Google Scholar]
  184. 184. 
    Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A et al. 2007. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318:58571780–82
    [Google Scholar]
  185. 185. 
    Churchman LS, Weissman JS. 2011. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469:7330368–73
    [Google Scholar]
  186. 186. 
    Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ et al. 2015. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161:3526–40
    [Google Scholar]
  187. 187. 
    Batsché E, Yaniv M, Muchardt C. 2006. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13:122–29
    [Google Scholar]
  188. 188. 
    Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Churchman LS. 2016. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep 15:102147–58
    [Google Scholar]
  189. 189. 
    Prudêncio P, Rebelo K, Grosso AR, Martinho RG, Carmo-Fonseca M. 2020. Analysis of mammalian native elongating transcript sequencing (mNET-seq) high-throughput data. Methods 178:89–95
    [Google Scholar]
  190. 190. 
    Gu W, Gallagher GR, Dai W, Liu P, Li R et al. 2015. Influenza A virus preferentially snatches noncoding RNA caps. RNA 21:122067–75
    [Google Scholar]
  191. 191. 
    Koppstein D, Ashour J, Bartel DP. 2015. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 43:105052–64
    [Google Scholar]
  192. 192. 
    Bouloy M, Plotch SJ, Krug RM 1980. Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. PNAS 77:73952–56
    [Google Scholar]
  193. 193. 
    Wakai C, Iwama M, Mizumoto K, Nagata K. 2011. Recognition of cap structure by influenza B virus RNA polymerase is less dependent on the methyl residue than recognition by influenza A virus polymerase. J. Virol. 85:157504–12
    [Google Scholar]
  194. 194. 
    Pflug A, Gaudon S, Resa-Infante P, Lethier M, Reich S et al. 2018. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors. Nucleic Acids Res 46:2956–71
    [Google Scholar]
  195. 195. 
    Worch R, Niedzwiecka A, Stepinski J, Mazza C, Jankowska-Anyszka M et al. 2005. Specificity of recognition of mRNA 5′ cap by human nuclear cap-binding complex. RNA 11:91355–63
    [Google Scholar]
  196. 196. 
    Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA et al. 2020. NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release. Mol. Cell 78:2261–74.e5
    [Google Scholar]
  197. 197. 
    Schulze WM, Cusack S. 2017. Structural basis for mutually exclusive co-transcriptional nuclear cap-binding complexes with either NELF-E or ARS2. Nat. Commun. 8:11302
    [Google Scholar]
  198. 198. 
    Lenasi T, Peterlin BM, Barboric M. 2011. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286:2622758–68
    [Google Scholar]
  199. 199. 
    Bier K, York A, Fodor E. 2011. Cellular cap-binding proteins associate with influenza virus mRNAs. J. Gen. Virol. 92:Part 71627–34
    [Google Scholar]
  200. 200. 
    Farnung L, Vos SM, Cramer P. 2018. Structure of transcribing RNA polymerase II-nucleosome complex. Nat. Commun. 9:15432
    [Google Scholar]
  201. 201. 
    Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA et al. 2018. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173:3720–34.e15
    [Google Scholar]
  202. 202. 
    Reilly PT, Yu Y, Hamiche A, Wang L. 2014. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. BioEssays 36:111062–71
    [Google Scholar]
  203. 203. 
    Byrn RA, Jones SM, Bennett HB, Bral C, Clark MP et al. 2015. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 59:31569–82
    [Google Scholar]
  204. 204. 
    Omoto S, Speranzini V, Hashimoto T, Noshi T, Yamaguchi H et al. 2018. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 8:19633
    [Google Scholar]
  205. 205. 
    Xia C, Wolf JJ, Sun C, Xu M, Studstill CJ et al. 2020. PARP1 enhances influenza A virus propagation by facilitating degradation of host type I interferon receptor. J. Virol. 94:7e01572–19
    [Google Scholar]
  206. 206. 
    Alfonso R, Rodriguez A, Rodriguez P, Lutz T, Nieto A. 2013. CHD6, a cellular repressor of influenza virus replication, is degraded in human alveolar epithelial cells and mice lungs during infection. J. Virol. 87:84534–44
    [Google Scholar]
  207. 207. 
    Su W-C, Chen Y-C, Tseng C-H, Hsu PW-C, Tung K-F et al. 2013. Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry. PNAS 110:4317516–21
    [Google Scholar]
  208. 208. 
    Su W-C, Hsu S-F, Lee Y-Y, Jeng K-S, Lai MMC. 2015. A nucleolar protein, ribosomal RNA processing 1 homolog B (RRP1B), enhances the recruitment of cellular mRNA in influenza virus transcription. J. Virol. 89:2211245–55
    [Google Scholar]
  209. 209. 
    Diot C, Fournier G, Dos Santos M, Magnus J, Komarova A et al. 2016. Influenza A virus polymerase recruits the RNA helicase DDX19 to promote the nuclear export of viral mRNAs. Sci. Rep. 6:33763
    [Google Scholar]
  210. 210. 
    Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreño N et al. 2008. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 8:102077–88
    [Google Scholar]
  211. 211. 
    Thulasi Raman SN, Liu G, Pyo HM, Cui YC, Xu F et al. 2016. DDX3 interacts with influenza A virus NS1 and NP proteins and exerts antiviral function through regulation of stress granule formation. J. Virol. 90:73661–75
    [Google Scholar]
  212. 212. 
    Park E-S, Byun YH, Park S, Jang YH, Han W et al. 2019. Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918 pandemic influenza. EMBO J 38:10e99475
    [Google Scholar]
  213. 213. 
    Momose F, Basler CF, O'Neill RE, Iwamatsu A, Palese P, Nagata K 2001. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J. Virol. 75:41899–908
    [Google Scholar]
  214. 214. 
    Tsai P-L, Chiou N-T, Kuss S, García-Sastre A, Lynch KW, Fontoura BMA. 2013. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLOS Pathog 9:6e1003460
    [Google Scholar]
  215. 215. 
    Yang C-H, Li H-C, Shiu Y-L, Ku T-S, Wang C-W et al. 2017. Influenza A virus upregulates PRPF8 gene expression to increase virus production. Arch. Virol. 162:51223–35
    [Google Scholar]
  216. 216. 
    Fournier G, Chiang C, Munier S, Tomoiu A, Demeret C et al. 2014. Recruitment of RED-SMU1 complex by influenza A virus RNA polymerase to control viral mRNA splicing. PLOS Pathog 10:6e1004164
    [Google Scholar]
  217. 217. 
    Ward SE, Kim HS, Komurov K, Mendiratta S, Tsai P-L et al. 2012. Host modulators of H1N1 cytopathogenicity. PLOS ONE 7:8e39284
    [Google Scholar]
  218. 218. 
    Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. 2011. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLOS Pathog 7:11e1002397
    [Google Scholar]
  219. 219. 
    Fang A, Bi Z, Ye H, Yan L 2020. SRSF10 inhibits the polymerase activity and replication of avian influenza virus by regulating the alternative splicing of chicken ANP32A. Virus Res 286:198063
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-072820-100645
Loading
/content/journals/10.1146/annurev-biochem-072820-100645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error