1932

Abstract

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-081420-095551
2021-06-20
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-081420-095551.html?itemId=/content/journals/10.1146/annurev-biochem-081420-095551&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475–85
    [Google Scholar]
  2. 2. 
    Rodgers K, McVey M. 2016. Error-prone repair of DNA double-strand breaks. J. Cell Physiol. 231:15–24
    [Google Scholar]
  3. 3. 
    Heyer WD. 2015. Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Biol. 7:a016501
    [Google Scholar]
  4. 4. 
    Friedberg EC, Graham CW, Wolfram S, Wood DR, Schultz AR, Ellenberger T 2006. DNA Repair and Mutagenesis Washington, D.C: ASM Press
    [Google Scholar]
  5. 5. 
    Spies M, Fishel R. 2015. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb. Perspect. Biol. 7:a022657
    [Google Scholar]
  6. 6. 
    Krokan HE, Bjoras M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5:a012583
    [Google Scholar]
  7. 7. 
    Scharer OD. 2013. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5:a012609
    [Google Scholar]
  8. 8. 
    Kuzminov A. 1995. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16:373–84
    [Google Scholar]
  9. 9. 
    Skalka A. 1974. A replicator's view of recombination (and repair). Mechanisms in Recombination RF Grell 421–32 Boston: Springer
    [Google Scholar]
  10. 10. 
    de Lange T. 2009. How telomeres solve the end-protection problem. Science 326:948–52
    [Google Scholar]
  11. 11. 
    Pannunzio NR, Watanabe G, Lieber MR. 2018. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J. Biol. Chem. 293:10512–23
    [Google Scholar]
  12. 12. 
    Scully R, Panday A, Elango R, Willis NA. 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20:698–714
    [Google Scholar]
  13. 13. 
    Seol JH, Shim EY, Lee SE. 2018. Microhomology-mediated end joining: good, bad and ugly. Mutat. Res. 809:81–87
    [Google Scholar]
  14. 14. 
    Paques F, Haber JE. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. . Mol. Biol. Rev. 63:349–404
    [Google Scholar]
  15. 15. 
    Malkova A, Haber JE. 2012. Mutations arising during repair of chromosome breaks. Annu. Rev. Genet. 46:455–73
    [Google Scholar]
  16. 16. 
    Llorente B, Smith CE, Symington LS. 2008. Break-induced replication: What is it and what is it for?. Cell Cycle 7:859–64
    [Google Scholar]
  17. 17. 
    Anand RP, Lovett ST, Haber JE. 2013. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5:a010397
    [Google Scholar]
  18. 18. 
    Kramara J, Osia B, Malkova A. 2018. Break-induced replication: the where, the why, and the how. Trends Genet 34:518–31
    [Google Scholar]
  19. 19. 
    Sakofsky CJ, Malkova A. 2017. Break induced replication in eukaryotes: mechanisms, functions, and consequences. Crit. Rev. Biochem. Mol. Biol. 52:395–413
    [Google Scholar]
  20. 20. 
    Kreuzer KN, Brister JR. 2010. Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol. J. 7:358
    [Google Scholar]
  21. 21. 
    Kreuzer KN, Saunders M, Weislo LJ, Kreuzer HW. 1995. Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4. J. Bacteriol. 177:6844–53
    [Google Scholar]
  22. 22. 
    Luder A, Mosig G 1982. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. PNAS 79:1101–5
    [Google Scholar]
  23. 23. 
    Kreuzer KN. 2000. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25:165–73
    [Google Scholar]
  24. 24. 
    Asai T, Bates DB, Kogoma T. 1994. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78:1051–61
    [Google Scholar]
  25. 25. 
    Asai T, Sommer S, Bailone A, Kogoma T. 1993. Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. . EMBO J 12:3287–95
    [Google Scholar]
  26. 26. 
    Kuzminov A, Stahl FW. 1999. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev 13:345–56
    [Google Scholar]
  27. 27. 
    Gabbai CB, Marians KJ. 2010. Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair 9:202–9
    [Google Scholar]
  28. 28. 
    Heller RC, Marians KJ. 2006. Replisome assembly and the direct restart of stalled replication forks. Nat. Rev. Mol. Cell Biol. 7:932–43
    [Google Scholar]
  29. 29. 
    Mosig G. 1998. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu. Rev. Genet. 32:379–413
    [Google Scholar]
  30. 30. 
    Kogoma T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. . Mol. Biol. Rev. 61:212–38
    [Google Scholar]
  31. 31. 
    Malkova A, Ira G. 2013. Break-induced replication: functions and molecular mechanism. Curr. Opin. Genet. Dev. 23:271–79
    [Google Scholar]
  32. 32. 
    Morrow DM, Connelly C, Hieter P. 1997.. “ Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–82
    [Google Scholar]
  33. 33. 
    Bosco G, Haber JE. 1998. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150:1037–47
    [Google Scholar]
  34. 34. 
    Malkova A, Ivanov EL, Haber JE 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. PNAS 93:7131–36
    [Google Scholar]
  35. 35. 
    Donnianni RA, Symington LS 2013. Break-induced replication occurs by conservative DNA synthesis. PNAS 110:13475–80
    [Google Scholar]
  36. 36. 
    Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell Biol. 25:933–44
    [Google Scholar]
  37. 37. 
    Haber JE. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. . Genetics 191:33–64
    [Google Scholar]
  38. 38. 
    Davis AP, Symington LS. 2004. RAD51-dependent break-induced replication in yeast. Mol. Cell Biol. 24:2344–51
    [Google Scholar]
  39. 39. 
    Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y et al. 2013. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–92
    [Google Scholar]
  40. 40. 
    Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P et al. 2013. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502:393–96
    [Google Scholar]
  41. 41. 
    Chung WH, Zhu Z, Papusha A, Malkova A, Ira G 2010. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLOS Genet 6:5e1000948
    [Google Scholar]
  42. 42. 
    Deem A, Barker K, Vanhulle K, Downing B, Vayl A, Malkova A. 2008. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. . Genetics 179:1845–60
    [Google Scholar]
  43. 43. 
    Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep 7:1640–48
    [Google Scholar]
  44. 44. 
    Sakofsky CJ, Ayyar S, Deem AK, Chung WH, Ira G, Malkova A 2015. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol. Cell 60:860–72
    [Google Scholar]
  45. 45. 
    Vasan S, Deem A, Ramakrishnan S, Argueso JL, Malkova A. 2014. Cascades of genetic instability resulting from compromised break-induced replication. PLOS Genet 10:e1004119
    [Google Scholar]
  46. 46. 
    Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W et al. 2014. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 28:2394–406
    [Google Scholar]
  47. 47. 
    Cortes-Ledesma F, Aguilera A. 2006. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–26
    [Google Scholar]
  48. 48. 
    Katz SS, Gimble FS, Storici F. 2014. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells. PLOS ONE 9:2e88840
    [Google Scholar]
  49. 49. 
    Mayle R, Campbell IM, Beck CR, Yu Y, Wilson M et al. 2015. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science 349:742–47
    [Google Scholar]
  50. 50. 
    Nielsen I, Bentsen IB, Lisby M, Hansen S, Mundbjerg K et al. 2009. A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat. Methods 6:753–57
    [Google Scholar]
  51. 51. 
    Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. 2006. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125:1283–96
    [Google Scholar]
  52. 52. 
    Neil AJ, Liang MU, Khristich AN, Shah KA, Mirkin SM. 2018. RNA-DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res 46:3487–97
    [Google Scholar]
  53. 53. 
    Kim JC, Harris ST, Dinter T, Shah KA, Mirkin SM. 2017. The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nat. Struct. Mol. Biol. 24:55–60
    [Google Scholar]
  54. 54. 
    Costantino L, Koshland D. 2018. Genome-wide map of R-loop-induced damage reveals how a subset of R-loops contributes to genomic instability. Mol. Cell 71:487–97.e3
    [Google Scholar]
  55. 55. 
    Amon JD, Koshland D. 2016. RNase H enables efficient repair of R-loop induced DNA damage. eLife 5:e20533
    [Google Scholar]
  56. 56. 
    Teng SC, Zakian VA. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. . Mol. Cell Biol. 19:8083–93
    [Google Scholar]
  57. 57. 
    Teng SC, Chang J, McCowan B, Zakian VA. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6:947–52
    [Google Scholar]
  58. 58. 
    Lydeard JR, Jain S, Yamaguchi M, Haber JE. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–23
    [Google Scholar]
  59. 59. 
    Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–60
    [Google Scholar]
  60. 60. 
    Hashimoto Y, Costanzo V. 2011. Studying DNA replication fork stability in Xenopus egg extract. Methods Mol. Biol. 745:437–45
    [Google Scholar]
  61. 61. 
    Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E et al. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91
    [Google Scholar]
  62. 62. 
    Hu Q, Lu H, Wang H, Li S, Truong L et al. 2019. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J 38:e101751
    [Google Scholar]
  63. 63. 
    Willis NA, Chandramouly G, Huang B, Kwok A, Follonier C et al. 2014. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510:556–59
    [Google Scholar]
  64. 64. 
    Willis NA, Frock RL, Menghi F, Duffey EE, Panday A et al. 2017. Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 551:590–95
    [Google Scholar]
  65. 65. 
    Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, Greenberg RA. 2016. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539:54–58
    [Google Scholar]
  66. 66. 
    Cho NW, Dilley RL, Lampson MA, Greenberg RA. 2014. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108–21
    [Google Scholar]
  67. 67. 
    Minocherhomji S, Ying S, Bjerregaard VA, Bursomanno S, Aleliunaite A et al. 2015. Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–90
    [Google Scholar]
  68. 68. 
    Bhowmick R, Minocherhomji S, Hickson ID. 2016. RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell 64:1117–26
    [Google Scholar]
  69. 69. 
    Ruff P, Donnianni RA, Glancy E, Oh J, Symington LS. 2016. RPA stabilization of single-stranded DNA is critical for break-induced replication. Cell Rep 17:3359–68
    [Google Scholar]
  70. 70. 
    Anand R, Beach A, Li K, Haber J. 2017. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 544:377–80
    [Google Scholar]
  71. 71. 
    Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber JE 2009. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23:291–303
    [Google Scholar]
  72. 72. 
    Piazza A, Shah SS, Wright WD, Gore SK, Koszul R, Heyer WD. 2019. Dynamic processing of displacement loops during recombinational DNA repair. Mol. Cell 73:1255–66.e4
    [Google Scholar]
  73. 73. 
    Liu L, Yan Z, Osia BA, Twarowski J, Sun L et al. 2021. Tracking break-induced replication shows that it stalls at roadblocks. Nature 590:655–59
    [Google Scholar]
  74. 74. 
    Jain S, Sugawara N, Mehta A, Ryu T, Haber JE. 2016. Sgs1 and Mph1 helicases enforce the recombination execution checkpoint during DNA double-strand break repair in Saccharomyces cerevisiae. Genetics 203:667–75
    [Google Scholar]
  75. 75. 
    Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447:102–5
    [Google Scholar]
  76. 76. 
    Stafa A, Donnianni RA, Timashev LA, Lam AF, Symington LS. 2014. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. . Genetics 196:1017–28
    [Google Scholar]
  77. 77. 
    Mehta A, Beach A, Haber JE. 2017. Homology requirements and competition between gene conversion and break-induced replication during double-strand break repair. Mol. Cell 65:515–26.e3
    [Google Scholar]
  78. 78. 
    Smith CE, Lam AF, Symington LS. 2009. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase δ complex. Mol. Cell. Biol. 29:1432–41
    [Google Scholar]
  79. 79. 
    Stith CM, Sterling J, Resnick MA, Gordenin DA, Burgers PM. 2008. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283:34129–40
    [Google Scholar]
  80. 80. 
    Donnianni RA, Zhou ZX, Lujan SA, Al-Zain A, Garcia V et al. 2019. DNA polymerase delta synthesizes both strands during break-induced replication. Mol. Cell 76:371–81.e4
    [Google Scholar]
  81. 81. 
    Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE. 2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24:1133–44
    [Google Scholar]
  82. 82. 
    Elango R, Sheng Z, Jackson J, DeCata J, Ibrahim Y et al. 2017. Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat. Commun. 8:1790
    [Google Scholar]
  83. 83. 
    Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B et al. 2011. Break-induced replication is highly inaccurate. PLOS Biol 9:2e1000594
    [Google Scholar]
  84. 84. 
    Elango R, Osia B, Harcy V, Malc E, Mieczkowski PA et al. 2019. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res 47:9666–84
    [Google Scholar]
  85. 85. 
    Saini N, Gordenin DA. 2020. Hypermutation in single-stranded DNA. DNA Repair91–92:102868
    [Google Scholar]
  86. 86. 
    Sakofsky CJ, Saini N, Klimczak LJ, Chan K, Malc EP et al. 2019. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation. PLOS Biol 17: e3000464.
    [Google Scholar]
  87. 87. 
    Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF et al. 2001. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 15:1055–60
    [Google Scholar]
  88. 88. 
    VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K et al. 2007. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol. Cell. Biol. 27:2601–14
    [Google Scholar]
  89. 89. 
    Signon L, Malkova A, Naylor ML, Klein H, Haber JE. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell Biol. 21:2048–56
    [Google Scholar]
  90. 90. 
    Davis AP, Symington LS. 2001. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159:515–25
    [Google Scholar]
  91. 91. 
    Wu Y, Sugiyama T, Kowalczykowski SC. 2006. DNA annealing mediated by Rad52 and Rad59 proteins. J. Biol. Chem. 281:15441–49
    [Google Scholar]
  92. 92. 
    Downing B, Morgan R, VanHulle K, Deem A, Malkova A. 2008. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat. Res. 645:9–18
    [Google Scholar]
  93. 93. 
    Bhowmick R, Hickson ID. 2017. The “enemies within”: regions of the genome that are inherently difficult to replicate. F1000Res 6:666
    [Google Scholar]
  94. 94. 
    Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLOS Genet 4:9e1000175
    [Google Scholar]
  95. 95. 
    Chandramouly G, Kwok A, Huang B, Willis NA, Xie A, Scully R. 2013. BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nat. Commun. 4:2404
    [Google Scholar]
  96. 96. 
    Nagaraju G, Odate S, Xie A, Scully R. 2006. Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol. Cell Biol. 26:8075–86
    [Google Scholar]
  97. 97. 
    Nagaraju G, Hartlerode A, Kwok A, Chandramouly G, Scully R. 2009. XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol. Cell Biol. 29:4283–94
    [Google Scholar]
  98. 98. 
    Hastings PJ, Ira G, Lupski JR 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLOS Genet 5:e1000327
    [Google Scholar]
  99. 99. 
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10:551–64
    [Google Scholar]
  100. 100. 
    Carvalho CM, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17:224–38
    [Google Scholar]
  101. 101. 
    Lee JA, Carvalho CM, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–47
    [Google Scholar]
  102. 102. 
    Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C et al. 2011. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 43:1074–81
    [Google Scholar]
  103. 103. 
    Carvalho CM, Pehlivan D, Ramocki MB, Fang P, Alleva B et al. 2013. Replicative mechanisms for CNV formation are error prone. Nat. Genet. 45:1319–26
    [Google Scholar]
  104. 104. 
    Beck CR, Carvalho CM, Banser L, Gambin T, Stubbolo D et al. 2015. Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication. PLOS Genet 11:e1005050
    [Google Scholar]
  105. 105. 
    Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X et al. 2019. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176:1310–24.e10
    [Google Scholar]
  106. 106. 
    Anand RP, Tsaponina O, Greenwell PW, Lee C-S, Du W et al. 2014. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 28:2394–406
    [Google Scholar]
  107. 107. 
    Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE et al. 2011. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903
    [Google Scholar]
  108. 108. 
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40
    [Google Scholar]
  109. 109. 
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K et al. 2011. The genomic complexity of primary human prostate cancer. Nature 470:214–20
    [Google Scholar]
  110. 110. 
    Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84
    [Google Scholar]
  111. 111. 
    Leibowitz ML, Zhang CZ, Pellman D. 2015. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49:183–211
    [Google Scholar]
  112. 112. 
    Kloosterman WP, Hoogstraat M, Paling O, Tavakoli-Yaraki M, Renkens I et al. 2011. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12:R103
    [Google Scholar]
  113. 113. 
    Cortes-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL et al. 2020. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52:331–41
    [Google Scholar]
  114. 114. 
    Osia B, Alsulaiman T, Jackson T, Kramara J, Oliveira S, Malkova A. 2020. Cancer cells are uniquely susceptible to accumulation of MMBIR mutations. bioRxiv 2020.07.19.209445. https://doi.org/10.1101/2020.07.19.209445
    [Crossref]
  115. 115. 
    Liu P, Yuan B, Carvalho CMB, Wuster A, Walter K et al. 2017. An organismal CNV mutator phenotype restricted to early human development. Cell 168:830–42.e7
    [Google Scholar]
  116. 116. 
    Beagan K, McVey M. 2016. Linking DNA polymerase theta structure and function in health and disease. Cell Mol. Life Sci. 73:603–15
    [Google Scholar]
  117. 117. 
    Schimmel J, Kool H, van Schendel R, Tijsterman M. 2017. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 36:3634–49
    [Google Scholar]
  118. 118. 
    Seki M, Wood RD. 2008. DNA polymerase theta (POLQ) can extend from mismatches and from bases opposite a (6–4) photoproduct. DNA Repair 7:119–27
    [Google Scholar]
  119. 119. 
    Carvajal-Garcia J, Cho JE, Carvajal-Garcia P, Feng W, Wood RD et al. 2020. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. PNAS 117:8476–85
    [Google Scholar]
  120. 120. 
    Wang Z, Song Y, Li S, Kurian S, Xiang R et al. 2019. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse. J. Biol. Chem. 294:3909–19
    [Google Scholar]
  121. 121. 
    Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT. 2015. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 22:230–37
    [Google Scholar]
  122. 122. 
    Wellinger RJ, Zakian VA. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191:1073–105
    [Google Scholar]
  123. 123. 
    Cesare AJ, Reddel RR. 2010. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11:319–30
    [Google Scholar]
  124. 124. 
    Dilley RL, Greenberg RA. 2015. ALTernative telomere maintenance and cancer. Trends Cancer 1:145–56
    [Google Scholar]
  125. 125. 
    McEachern MJ, Haber JE. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75:111–35
    [Google Scholar]
  126. 126. 
    Zhang JM, Zou L. 2020. Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci 10:30
    [Google Scholar]
  127. 127. 
    Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3:1271–74
    [Google Scholar]
  128. 128. 
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14:4240–48
    [Google Scholar]
  129. 129. 
    Neumann AA, Reddel RR. 2002. Telomere maintenance and cancer—look, no telomerase. Nat. Rev. Cancer 2:879–84
    [Google Scholar]
  130. 130. 
    Chen Q, Ijpma A, Greider CW. 2001. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell Biol. 21:1819–27
    [Google Scholar]
  131. 131. 
    Hu Y, Tang HB, Liu NN, Tong XJ, Dang W et al. 2013. Telomerase-null survivor screening identifies novel telomere recombination regulators. PLOS Genet 9:e1003208
    [Google Scholar]
  132. 132. 
    Le S, Moore JK, Haber JE, Greider CW. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152:143–52
    [Google Scholar]
  133. 133. 
    Huang PH, Pryde FE, Lester D, Maddison RL, Borts RH et al. 2001. SGS1 is required for telomere elongation in the absence of telomerase. Curr. Biol. 11:125–29
    [Google Scholar]
  134. 134. 
    Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L. 2001. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20:905–13
    [Google Scholar]
  135. 135. 
    Larrivee M, Wellinger RJ. 2006. Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat. Cell Biol. 8:741–47
    [Google Scholar]
  136. 136. 
    Kockler ZW, Comeron JM, Malkova A. 2021. A unified alternative telomere-lengthening pathway in yeast survivor cells. Mol. Cell 81:181629.e5
    [Google Scholar]
  137. 137. 
    Pickett HA, Reddel RR. 2015. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat. Struct. Mol. Biol. 22:875–80
    [Google Scholar]
  138. 138. 
    Reddel RR. 2014. Telomere maintenance mechanisms in cancer: clinical implications. Curr. Pharm. Des. 20:6361–74
    [Google Scholar]
  139. 139. 
    Dunham MA, Neumann AA, Fasching CL, Reddel RR. 2000. Telomere maintenance by recombination in human cells. Nat. Genet. 26:447–50
    [Google Scholar]
  140. 140. 
    Grobelny JV, Godwin AK, Broccoli D. 2000. ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J. Cell Sci. 113:4577–85
    [Google Scholar]
  141. 141. 
    Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR. 1999. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–79
    [Google Scholar]
  142. 142. 
    Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA et al. 2009. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16:1244–51
    [Google Scholar]
  143. 143. 
    Barroso-Gonzalez J, Garcia-Exposito L, Hoang SM, Lynskey ML, Roncaioli JL et al. 2020. RAD51AP1 is an essential mediator of alternative lengthening of telomeres. Mol. Cell 76:11–26.e7
    [Google Scholar]
  144. 144. 
    Mason-Osann E, Terranova K, Lupo N, Lock YJ, Carson LM, Flynn RL. 2020. RAD54 promotes alternative lengthening of telomeres by mediating branch migration. EMBO Rep 21:e49495
    [Google Scholar]
  145. 145. 
    O'Sullivan RJ, Arnoult N, Lackner DH, Oganesian L, Haggblom C et al. 2014. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat. Struct. Mol. Biol. 21:167–74
    [Google Scholar]
  146. 146. 
    Min J, Wright WE, Shay JW. 2017. Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol. Cell Biol. 37:20e00226–17
    [Google Scholar]
  147. 147. 
    Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. 2014. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5:5220
    [Google Scholar]
  148. 148. 
    Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB et al. 2019. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT).. Nat. Commun. 10:2252
    [Google Scholar]
  149. 149. 
    Silva B, Pentz R, Figueira AM, Arora R, Lee YW et al. 2019. FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat. Commun. 10:2253
    [Google Scholar]
  150. 150. 
    Sieverling L, Hong C, Koser SD, Ginsbach P, Kleinheinz K et al. 2020. Genomic footprints of activated telomere maintenance mechanisms in cancer. Nat. Commun. 11:733
    [Google Scholar]
  151. 151. 
    Ait Saada A, Lambert SAE, Carr AM 2018. Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair 71:135–47
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-081420-095551
Loading
/content/journals/10.1146/annurev-biochem-081420-095551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error