1932

Abstract

The bedrock of drug discovery and a key tool for understanding cellular function and drug mechanisms of action is the structure determination of chemical compounds, peptides, and proteins. The development of new structure characterization tools, particularly those that fill critical gaps in existing methods, presents important steps forward for structural biology and drug discovery. The emergence of microcrystal electron diffraction (MicroED) expands the application of cryo–electron microscopy to include samples ranging from small molecules and membrane proteins to even large protein complexes using crystals that are one-billionth the size of those required for X-ray crystallography. This review outlines the conception, achievements, and exciting future trajectories for MicroED, an important addition to the existing biophysical toolkit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-081720-020121
2021-06-20
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-081720-020121.html?itemId=/content/journals/10.1146/annurev-biochem-081720-020121&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dubochet J, Booyl FP, Freeman R, Jones AV, Walter CA. 1981. Low temperature electron microscopy. Ann. Rev. Biophys. 10:133–49
    [Google Scholar]
  2. 2. 
    Taylor KA, Glaeser RM. 1974. Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–37
    [Google Scholar]
  3. 3. 
    Wang L, Sigworth FJ. 2006. Cryo-EM and single particles. Physiology 21:13–18
    [Google Scholar]
  4. 4. 
    Bai XC, Fernandez IS, McMullan G, Scheres SHW. 2013. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2:e00461
    [Google Scholar]
  5. 5. 
    Herzik MA, Wu M, Lander GC. 2017. Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat. Methods 14:1075–78
    [Google Scholar]
  6. 6. 
    Myasnikov A, Zheng S, Bulkley D, Cheng Y, Agard D. 2018. K3—A first look at the new direct electron detection camera from Gatan Company. Microsc. Microanal. 24:890–91
    [Google Scholar]
  7. 7. 
    Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14:290–96
    [Google Scholar]
  8. 8. 
    Tegunov D, Cramer P. 2019. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16:1146–52
    [Google Scholar]
  9. 9. 
    Wagner T, Merino F, Stabrin M, Moriya T, Antoni C et al. 2019. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2:218
    [Google Scholar]
  10. 10. 
    Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJH et al. 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7:e42166
    [Google Scholar]
  11. 11. 
    Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. 2016. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15
    [Google Scholar]
  12. 12. 
    McMullan G, Faruqi AR, Henderson R. 2016. Direct electron detectors. Methods Enzymol. 579:1–17
    [Google Scholar]
  13. 13. 
    Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y et al. 2005. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–38
    [Google Scholar]
  14. 14. 
    Subramanian R, Mayor S, Vinothkumar KR 2019. The resolution revolution reaches India. Biophys. Rev. 11:513–14
    [Google Scholar]
  15. 15. 
    Susannah S, Ando N. 2018. X-rays in the cryo-EM era: structural biology's dynamic future. Biochemistry 57:277–85
    [Google Scholar]
  16. 16. 
    Shi D, Nannenga BL, Iadanza MG, Gonen T. 2013. Three-dimensional electron crystallography of protein microcrystals. eLife 2:e01345
    [Google Scholar]
  17. 17. 
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228
    [Google Scholar]
  18. 18. 
    Taylor DW, Zhu Y, Staals RHJ, Kornfeld JE, Shinkai A et al. 2015. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348:581–86
    [Google Scholar]
  19. 19. 
    Cheng Y. 2018. Single-particle cryo-EM—How did it get here and where will it go. Science 361:876–80
    [Google Scholar]
  20. 20. 
    Murphy GE, Jensen GJ. 2005. Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure 13:1765–73
    [Google Scholar]
  21. 21. 
    Komeili A, Li Z, Newman DK, Jensen GJ. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–46
    [Google Scholar]
  22. 22. 
    Oikonomou CM, Jensen GJ. 2017. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86:873–96
    [Google Scholar]
  23. 23. 
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929
    [Google Scholar]
  24. 24. 
    Schmidt-Krey I. 2007. Electron crystallography of membrane poteins: two-dimensional crystallization and screening by electron microscopy. Methods 41:417–26
    [Google Scholar]
  25. 25. 
    Nannenga BL, Shi D, Leslie AGW, Gonen T. 2014. High-resolution structure determination by continuous rotation data collection in MicroED. Nat. Methods 11:927–30
    [Google Scholar]
  26. 26. 
    De Rosier DJ, Klug A. 1968. Reconstruction of three dimensional fiber structures from orthogonal projections. Nature 217:130–34
    [Google Scholar]
  27. 27. 
    Van Heel M. 1981. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–94
    [Google Scholar]
  28. 28. 
    Frank J. 1984. The role of multivariate image analysis in solving the architecture of the limulus polyphemus hemocyanin molecule. Ultramicroscopy 13:153–64
    [Google Scholar]
  29. 29. 
    Frank J, Wagenknecht T, McEwen BF, Marko M, Hsieh CE, Mannella C. 2002. Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91
    [Google Scholar]
  30. 30. 
    Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB et al. 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4:27–29
    [Google Scholar]
  31. 31. 
    Frank J, Goldfarb W, Eisenberg D, Baker TS. 1978. Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3:283–90
    [Google Scholar]
  32. 32. 
    Frank J. 2012. Intermediate states during mRNA-tRNA translocation. Curr. Opin. Struct. Biol. 22:778–85
    [Google Scholar]
  33. 33. 
    Henderson R. 1995. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28:171–93
    [Google Scholar]
  34. 34. 
    Herzik MA, Wu M, Lander GC. 2019. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat. Commun. 10:1032
    [Google Scholar]
  35. 35. 
    Gonen S, Akiyoshi B, Iadanza MG, Shi D, Duggan Net al 2012. The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat. Struct. Mol. Biol 19:22530
    [Google Scholar]
  36. 36. 
    Liu Y, Gonen S, Gonen T, Yeates TO 2018. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. PNAS 115:336267
    [Google Scholar]
  37. 37. 
    Wisedchaisri G, Reichow SL, Gonen T. 2011. Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 29:1381–93
    [Google Scholar]
  38. 38. 
    Nannenga BL, Shi D, Hattne J, Reyes FE, Gonen T. 2014. Structure of catalase determined by MicroED. eLife 3:e03600
    [Google Scholar]
  39. 39. 
    Lu C, Reedy M, Erickson HP. 2000. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182:164–70
    [Google Scholar]
  40. 40. 
    Li Z, Trimble MJ, Brun YV, Jensen GJ. 2007. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–708
    [Google Scholar]
  41. 41. 
    Komeili A, Li Z, Newman DK, Jensen GJ. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–46
    [Google Scholar]
  42. 42. 
    Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. 2002. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–13
    [Google Scholar]
  43. 43. 
    Heymann JAW, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniama S. 2006. Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155:63–73
    [Google Scholar]
  44. 44. 
    Hsieh C, Schmelzer T, Kishchenko G, Wagenknecht T, Marko M. 2014. Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography. J. Struct. Biol. 185:32–41
    [Google Scholar]
  45. 45. 
    Zachs T, Schertel A, Medeiros J, Weiss GL, Hugener J et al. 2020. Fully automated, sequential focused ion beam milling for cryo-electron tomography. eLife 9:e52286
    [Google Scholar]
  46. 46. 
    Hoppe W, Gassmann J, Hunsmann N, Schramm H, Sturn M. 1974. Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron microscope. Physiol. Chem. 355:1483–87
    [Google Scholar]
  47. 47. 
    Okumura T, Shoji M, Hisada A, Ominami Y, Ito S et al. 2018. Electron tomography of whole cultured cells using novel transmission electron imaging technique. Micron 104:21–25
    [Google Scholar]
  48. 48. 
    Irobalieva RN, Martins B, Medalia O. 2016. Cellular structural biology as revealed by cryo-electron tomography. J. Cell Sci. 129:469–76
    [Google Scholar]
  49. 49. 
    Doerr A. 2016. Cryo-electron tomography. Nat. Methods 14:34
    [Google Scholar]
  50. 50. 
    Henderson R, Unwin PNT. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32
    [Google Scholar]
  51. 51. 
    Mohraz M, Simpson MV, Smith PR. 1987. The three-dimensional structure of the Na,K-ATPase from electron microscopy. J. Cell Biol. 105:1–8
    [Google Scholar]
  52. 52. 
    Hasler L, Heymann JB, Engel A, Kistler J, Walz T. 1998. 2D crystallization of membrane proteins: rationales and examples. J. Struct. Biol. 121:162–71
    [Google Scholar]
  53. 53. 
    Lévy D, Mossera G, Lamberta O, Moeck GS, Bald D, Rigauda JL. 1999. Two-dimensional crystallization on lipid layer: a successful approach for membrane proteins. J. Struct. Biol. 127:44–52
    [Google Scholar]
  54. 54. 
    Miyazawa A, Fujiyoshi Y, Unwin N. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–55
    [Google Scholar]
  55. 55. 
    Unger VM, Kumar NM, Gilula NB, Yeager M. 1999. Expression, two-dimensional crystallization, and electron cryo-crystallography of recombinant gap junction membrane channels. J. Struct. Biol. 128:98–105
    [Google Scholar]
  56. 56. 
    Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R. 1996. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393–421
    [Google Scholar]
  57. 57. 
    Kühlbrandt W, Wang DN, Fujiyoshi Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–21
    [Google Scholar]
  58. 58. 
    Jones CG, Martynowycz MW, Hattne J, Fulton TJ, Stoltz BM et al. 2018. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4:1587–92
    [Google Scholar]
  59. 59. 
    Martynowycz MW, Gonen T. 2018. From electron crystallography of 2D crystals to MicroED of 3D crystals. Curr. Opin. Colloid Interface Sci. 34:9–16
    [Google Scholar]
  60. 60. 
    Hattne J, Reyes FE, Nannenga BL, Shi D, de la Cruz MJ et al. 2015. MicroED data collection and processing. Acta Crystallogr. Sect. A Found. Adv. 71:353–60
    [Google Scholar]
  61. 61. 
    Henderson R. 1995. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28:171–93
    [Google Scholar]
  62. 62. 
    Hirai T, Mitsuoka K, Kidera A, Fujiyoshi Y. 2007. Simulation of charge effects on density maps obtained by high-resolution electron crystallography. J. Electron. Microsc. 56:131–40
    [Google Scholar]
  63. 63. 
    Liu S, Gonen T. 2018. MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter. Commun. Biol. 1:38
    [Google Scholar]
  64. 64. 
    Yonekura K, Kato K, Ogasawara M, Tomita M, Toyoshima C 2015. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. PNAS 112:3368–73
    [Google Scholar]
  65. 65. 
    Shi D, Nannenga BL, de la Cruz MJ, Liu J, Sawtelle S et al. 2016. The collection of MicroED data for macromolecular crystallography. Nat. Protoc. 11:895–904
    [Google Scholar]
  66. 66. 
    Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE et al. 2015. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–90
    [Google Scholar]
  67. 67. 
    Kissick DJ, Wanapun D, Simpson GJ. 2011. Second-order nonlinear optical imaging of chiral crystals. Annu. Rev. Anal. Chem. 4:419–37
    [Google Scholar]
  68. 68. 
    Stevenson HP, Makhov AM, Calero M, Edwards AL, Zeldin OB et al. 2014. Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. PNAS 111:8470–75
    [Google Scholar]
  69. 69. 
    Gallagher-Jones M, Glynn C, Boyer DR, Martynowycz MW, Hernandez E et al. 2018. Sub-ångstrom cryo-EM structure of a prion protofibril reveals a polar clasp. Nat. Struct. Mol. Biol. 25:131–34
    [Google Scholar]
  70. 70. 
    Hattne J, Shi D, Glynn C, Zee CT, Gallagher-Jones M et al. 2018. Analysis of global and site-specific radiation damage in cryo-EM. Structure 26:759–766.e4
    [Google Scholar]
  71. 71. 
    Jones CG, Asay M, Kim LJ, Kleinsasser JF, Saha A et al. 2019. Characterization of reactive organometallic species via MicroED. ACS Cent. Sci. 5:1507–13
    [Google Scholar]
  72. 72. 
    de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J et al. 2017. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14:399–402
    [Google Scholar]
  73. 73. 
    Martynowycz MW, Zhao W, Hattne J, Jensen GJ, Gonen T. 2019. Collection of continuous rotation MicroED data from ion beam-milled crystals of any size. Structure 27:545–48
    [Google Scholar]
  74. 74. 
    Duyvesteyn HME, Kotecha A, Ginn HM, Hecksel CW, Beale EV et al. 2018. Machining protein microcrystals for structure determination by electron diffraction. PNAS 115:9569–73
    [Google Scholar]
  75. 75. 
    Martynowycz MW, Zhao W, Hattne J, Jensen GJ, Gonen T. 2019. Qualitative analyses of polishing and precoating FIB milled crystals for MicroED. Structure 27:1594–600
    [Google Scholar]
  76. 76. 
    Zhou H, Luo Z, Li X. 2019. Using focus ion beam to prepare crystal lamella for electron diffraction. J. Struct. Biol. 205:59–64
    [Google Scholar]
  77. 77. 
    Martynowycz M, Glynn C, Miao J, de la Cruz MJ, Hattne J et al. 2017. MicroED structures from micrometer thick protein crystals. bioRxiv 152504. https://doi.org/10.1101/152504
    [Crossref]
  78. 78. 
    Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:306–15
    [Google Scholar]
  79. 79. 
    Kabsch W. 2010. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66:125–32
    [Google Scholar]
  80. 80. 
    Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. Sect. D Biol. Crystallogr. 67:271–81
    [Google Scholar]
  81. 81. 
    Parkhurst JM, Winter G, Waterman DG, Fuentes-Montero L, Gildea RJ et al. 2016. Robust background modelling in DIALS. J. Appl. Crystallogr. 49:1912–21
    [Google Scholar]
  82. 82. 
    Sheldrick GM. 2015. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 71:3–8
    [Google Scholar]
  83. 83. 
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40:658–74
    [Google Scholar]
  84. 84. 
    Kamegawa A, Hiroaki Y, Tani K, Fujiyoshi Y 2016. Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide. Reprod. Syst. Sex. Disord. 65:177–84
    [Google Scholar]
  85. 85. 
    Oshima A. 2017. Structure of an innexin gap junction channel and cryo-EM sample preparation. Microscopy 66:371–79
    [Google Scholar]
  86. 86. 
    Nederlof I, Li YW, Van Heel M, Abrahams JP. 2013. Imaging protein three-dimensional nanocrystals with cryo-EM. Acta Crystallogr. Sect. D Biol. Crystallogr. 69:852–59
    [Google Scholar]
  87. 87. 
    van Genderen E, Li YW, Nederlof I, Abrahams JP. 2018. Lattice filter for processing image data of three-dimensional protein nanocrystals. Int. J. Dermatol. 57:34–39
    [Google Scholar]
  88. 88. 
    Rodríguez DD, Grosse C, Himmel S, González C, De Ilarduya IM et al. 2009. Crystallographic ab initio protein structure solution below atomic resolution. Nat. Methods 6:651–53
    [Google Scholar]
  89. 89. 
    Martynowycz MW, Hattne J, Gonen T. 2020. Experimental phasing of MicroED data using radiation damage. Structure 28:458–464.e2
    [Google Scholar]
  90. 90. 
    Kupitz C, Grotjohann I, Conrad CE, Roy-Chowdhury S, Fromme R, Fromme P. 2014. Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos. Trans. R. Soc. B 369:20130316
    [Google Scholar]
  91. 91. 
    Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D et al. 2016. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. PNAS 113:11232–36
    [Google Scholar]
  92. 92. 
    Martynowycz MW, Gonen T. 2021. Efficient, high-throughput ligand incorporation into protein microcrystals by on-grid soaking. Structure 29:188–95
    [Google Scholar]
  93. 93. 
    Kunde T, Schmidt BM. 2019. Microcrystal electron diffraction (MicroED) for small-molecule structure determination. Angew. Chem. Int. Ed. 58:666–68
    [Google Scholar]
  94. 94. 
    Gruene T, Wennmacher YTC, Zaubitzer C, Holstein JJ, Heidler J et al. 2018. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57:16313–17
    [Google Scholar]
  95. 95. 
    van Genderen E, Clabbers MTB, Das PP, Stewart A, Nederlof I et al. 2018. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. Sect. A Found. Adv. 74:236–42
    [Google Scholar]
  96. 96. 
    Matsufuji H, Ichiyama T, Isumi H, Furukawa S. 2005. Low-dose carbamazepine therapy for benign infantile convulsions. Brain Dev 27:554–57
    [Google Scholar]
  97. 97. 
    Hirschfeld RMA, Kasper S. 2004. A review of the evidence for carbamazepine and oxcarbazepine in the treatment of bipolar disorder. Int. J. Neuropsychopharmacol. 7:507–22
    [Google Scholar]
  98. 98. 
    Koytchev R, Vlahov V, Bacratcheva N, Giesel B, Gawronska-Szklarz B et al. 2003. Evaluation of the efficacy of a combined formulation (Grippostad®-C) in the therapy of symptoms of common cold: a randomized, double-blind, multicenter trial. Int. J. Clin. Pharmacol. Ther. 41:114–25
    [Google Scholar]
  99. 99. 
    Beck T, Da Cunha CE, Sheldrick GM 2009. How to get the magic triangle and the MAD triangle into your protein crystal. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65:1068–70
    [Google Scholar]
  100. 100. 
    Geremia S, Campagnolo M, Demitri N, Johnson LN. 2006. Simulation of diffusion time of small molecules in protein crystals. Structure 14:393–400
    [Google Scholar]
  101. 101. 
    Gonen T, Sliz P, Kistler J, Cheng Y, Walz T. 2004. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–97
    [Google Scholar]
  102. 102. 
    Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE. 2008. Projection structure of a N-terminal deletion mutant of connexin 26 channel with decreased central pore density. Cell Commun. Adhes. 15:85–93
    [Google Scholar]
  103. 103. 
    Morikawa M, Derynck R, Miyazono K. 2016. TGF-β and the TGF-β family: context-dependent roles in cell and tssue physiology. Cold Spring Harb. Perspect. Biol. 8:1–24
    [Google Scholar]
  104. 104. 
    Purdy MD, Shi D, Chrustowicz J, Hattne J, Gonen T, Yeager M 2018. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. PNAS 115:13258–63
    [Google Scholar]
  105. 105. 
    Auluck PK, Caraveo G, Lindquist S. 2010. α-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu. Rev. Cell Dev. Biol. 26:211–33
    [Google Scholar]
  106. 106. 
    Sundquist WI, Kräusslich HG. 2012. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2:a006924
    [Google Scholar]
  107. 107. 
    Lee SK, Potempa M, Swanstrom R. 2012. The choreography of HIV-1 proteolytic processing and virion assembly. J. Biol. Chem. 287:40867–74
    [Google Scholar]
  108. 108. 
    Martin DE, Salzwedel K, Allaway GP. 2008. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection. Antivir. Chem. Chemother. 19:107–13
    [Google Scholar]
  109. 109. 
    Wainwright M. 2000. Methylene blue derivatives—suitable photoantimicrobials for blood product disinfection?. Int. J. Antimicrob. Agents 16:381–94
    [Google Scholar]
  110. 110. 
    Ting CP, Michael A, Funk MA, Halaby SL, Zhang Z et al. 2019. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 365:280–84
    [Google Scholar]
  111. 111. 
    Dick M, Sarai NS, Martynowycz MW, Gonen T, Arnold FH. 2019. Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. J. Am. Chem. Soc. 141:19817–22
    [Google Scholar]
  112. 112. 
    Qin J, Yang L, Sheng X, Sa Z, Huang T et al. 2018. Antitumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma in vivo. Oncol. Lett. 15:6137–46
    [Google Scholar]
  113. 113. 
    Arnisona PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. 2014. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30:108–60
    [Google Scholar]
  114. 114. 
    Kutscher AH, Seguin L, Zegarelli EV, Piro JD. 1959. Antimicrobial activity of thiostrepton: tube dilution studies. J. Am. Dent. Assoc. 59:715–20
    [Google Scholar]
  115. 115. 
    Anderson B, Hodgkin DC, Viswamitra MA. 1970. The structure of thiostrepton. Nature 225:233–35
    [Google Scholar]
  116. 116. 
    Arrebola E, Cazorla FM, Perez-García A, de Vicente A 2011. Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins 3:1089–110
    [Google Scholar]
  117. 117. 
    Garman EF, Weik M. 2017. X-ray radiation damage to biological macromolecules: further insights. J. Synchrotron Radiat. 24:1–6
    [Google Scholar]
  118. 118. 
    Blake CCF, Phillips DC. 1962. Biological effects of ionizing radiation at the molecular level Proc. Ser. Int. At. Energy Agency 92-0-010762-1 Int. At. Energy Agency Vienna:
    [Google Scholar]
  119. 119. 
    Hendrickson WA. 1976. Radiation damage in protein crystallography. J. Mol. Biol. 106:889–93
    [Google Scholar]
  120. 120. 
    Ravelli RBG, Theveneau P, McSweeney S, Caffrey M. 2002. Unit-cell volume change as a metric of radiation damage in crystals of macromolecules. J. Synchrotron Radiat. 9:355–60
    [Google Scholar]
  121. 121. 
    Kmetko J, Husseini NS, Naides M, Kalinin Y, Thorne RE. 2006. Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr. Sect. D Biol. Crystallogr. 62:1030–38
    [Google Scholar]
  122. 122. 
    Weik M, Ravelli RBG, Kryger G, McSweeney S, Raves ML et al. 2000. Specific chemical and structural damage to proteins produced by synchrotron radiation. PNAS 97:623–28
    [Google Scholar]
  123. 123. 
    Karuppasamy M, Karimi Nejadasl F, Vulovic M, Koster AJ, Ravelli RBG 2011. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. J. Synchrotron Radiat. 18:398–412
    [Google Scholar]
  124. 124. 
    Hattne J, Martynowycz MW, Penczek PA, Gonen T. 2019. MicroED with the Falcon III direct electron detector. IUCrJ 6:921–26
    [Google Scholar]
  125. 125. 
    Taylor G. 2003. The phase problem. Acta Crystallogr. Sect. D Biol. Crystallogr. 59:1881–90
    [Google Scholar]
  126. 126. 
    Evans P, McCoy A. 2007. An introduction to molecular replacement. Acta Crystallogr. Sect. D Biol. Crystallogr. 64:1–10
    [Google Scholar]
  127. 127. 
    Schenk H. 1984. An Introduction to Direct Methods. The Most Important Phase Relationships and Their Application in Solving the Phase Problem Cardiff, Wales: Univ. Cardiff Press
    [Google Scholar]
  128. 128. 
    Zubeita C, Nanao M. 2016. Practical radiation damage–induced phasing. Methods Mol. Biol. 1320:205–18
    [Google Scholar]
  129. 129. 
    Drenth J. 1999. The solution of the phase problem by the isomorphous replacement method. Principles of Protein X-ray Crystallography129–79 New York: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-081720-020121
Loading
/content/journals/10.1146/annurev-biochem-081720-020121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error