1932

Abstract

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011520-105234
2020-06-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011520-105234.html?itemId=/content/journals/10.1146/annurev-biochem-011520-105234&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kühne W. 1864. Untersuchungen über das Protoplasma und die Contractilität Leipzig, Ger.: Engelmann
    [Google Scholar]
  2. 2. 
    Hartman MA, Spudich JA. 2012. The myosin superfamily at a glance. J. Cell Sci. 125:1627–32
    [Google Scholar]
  3. 3. 
    Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467–80
    [Google Scholar]
  4. 4. 
    Foth BJ, Goedecke MC, Soldati D 2006. New insights into myosin evolution and classification. PNAS 103:3681–86
    [Google Scholar]
  5. 5. 
    Wells AL, Lin AW, Chen LQ, Safer D, Cain SM et al. 1999. Myosin VI is an actin-based motor that moves backwards. Nature 401:505–8
    [Google Scholar]
  6. 6. 
    Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA 1987. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328:536–39
    [Google Scholar]
  7. 7. 
    Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR et al. 1993. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58
    [Google Scholar]
  8. 8. 
    Sweeney HL, Houdusse A. 2010. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39:539–57
    [Google Scholar]
  9. 9. 
    Kull FJ, Vale RD, Fletterick RJ 1998. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil. 19:877–86
    [Google Scholar]
  10. 10. 
    Vale RD, Milligan RA. 2000. The way things move: looking under the hood of molecular motor proteins. Science 288:88–95
    [Google Scholar]
  11. 11. 
    Harrington WF, Ueno H, Davis JS 1988. Helix-coil melting in rigor and activated cross-bridges of skeletal muscle. Adv. Exp. Med. Biol. 226:307–18
    [Google Scholar]
  12. 12. 
    Kominz DR ME, Nihei T, Kay CM 1965. The papain digestion of skeletal myosin A. Biochemistry 4:2373–82
    [Google Scholar]
  13. 13. 
    Lowey S, Slayter HS, Weeds AG, Baker H 1969. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42:1–29
    [Google Scholar]
  14. 14. 
    Alamo L, Wriggers W, Pinto A, Bartoli F, Salazar L et al. 2008. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J. Mol. Biol. 384:780–97
    [Google Scholar]
  15. 15. 
    Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA 2018. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys. Rev. 10:27–48
    [Google Scholar]
  16. 16. 
    Alamo L, Pinto A, Sulbaran G, Mavarez J, Padron R 2018. Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys. Rev. 10:1465–77
    [Google Scholar]
  17. 17. 
    Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA 1999. Visualization of head-head interactions in the inhibited state of smooth muscle myosin. J. Cell Biol. 147:1385–90
    [Google Scholar]
  18. 18. 
    Wendt T, Taylor D, Trybus KM, Taylor K 2001. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. PNAS 98:4361–66
    [Google Scholar]
  19. 19. 
    Zoghbi ME, Woodhead JL, Moss RL, Craig R 2008. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. PNAS 105:2386–90
    [Google Scholar]
  20. 20. 
    Jung HS, Komatsu S, Ikebe M, Craig R 2008. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 19:3234–42
    [Google Scholar]
  21. 21. 
    Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padron R 2005. Atomic model of a myosin filament in the relaxed state. Nature 436:1195–99
    [Google Scholar]
  22. 22. 
    Al-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP 2013. Atomic model of the human cardiac muscle myosin filament. PNAS 110:318–23
    [Google Scholar]
  23. 23. 
    Spudich JA. 2015. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43:64–72
    [Google Scholar]
  24. 24. 
    Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS et al. 2017. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat. Struct. Mol. Biol. 24:525–33
    [Google Scholar]
  25. 25. 
    Lee KH, Sulbaran G, Yang S, Mun JY, Alamo L et al. 2018. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. PNAS 115:E1991–2000
    [Google Scholar]
  26. 26. 
    Jung HS, Burgess SA, Billington N, Colegrave M, Patel H et al. 2008. Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 million years of independent evolution. PNAS 105:6022–26
    [Google Scholar]
  27. 27. 
    Trybus KM. 2008. Myosin V from head to tail. Cell Mol. Life Sci. 65:1378–89
    [Google Scholar]
  28. 28. 
    Stoffler HE, Bahler M. 1998. The ATPase activity of Myr3, a rat myosin I, is allosterically inhibited by its own tail domain and by Ca2+ binding to its light chain calmodulin. J. Biol. Chem. 273:14605–11
    [Google Scholar]
  29. 29. 
    Umeki N, Jung HS, Watanabe S, Sakai T, Li XD et al. 2009. The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. PNAS 106:8483–88
    [Google Scholar]
  30. 30. 
    Yang Y, Baboolal TG, Siththanandan V, Chen M, Walker ML et al. 2009. A FERM domain autoregulates Drosophila myosin 7a activity. PNAS 106:4189–94
    [Google Scholar]
  31. 31. 
    McIntosh BB, Ostap EM. 2016. Myosin-I molecular motors at a glance. J. Cell Sci. 129:2689–95
    [Google Scholar]
  32. 32. 
    Bryant Z, Altman D, Spudich JA 2007. The power stroke of myosin VI and the basis of reverse directionality. PNAS 104:772–77
    [Google Scholar]
  33. 33. 
    Menetrey J, Bahloul A, Wells AL, Yengo CM, Morris CA et al. 2005. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435:779–85
    [Google Scholar]
  34. 34. 
    Ross JL, Ali MY, Warshaw DM 2008. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 20:41–47
    [Google Scholar]
  35. 35. 
    Geeves MA, Holmes KC. 1999. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:687–728
    [Google Scholar]
  36. 36. 
    Málnási-Csizmadia A, Pearson DS, Kovács M, Woolley RJ, Geeves MA, Bagshaw CR 2001. Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 40:12727–37
    [Google Scholar]
  37. 37. 
    Geeves MA, Conibear PB. 1995. The role of three-state docking of myosin S1 with actin in force generation. Biophys. J. 68:194S–99S
    [Google Scholar]
  38. 38. 
    Yengo CM, De La Cruz EM, Chrin LR, Gaffney DP II, Berger CL 2002. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J. Biol. Chem. 277:24114–19
    [Google Scholar]
  39. 39. 
    Yengo CM, De La Cruz EM, Safer D, Ostap EM, Sweeney HL 2002. Kinetic characterization of the weak binding states of myosin V. Biochemistry 41:8508–17
    [Google Scholar]
  40. 40. 
    Holmes KC, Angert I, Kull FJ, Jahn W, Schroder RR 2003. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423–27
    [Google Scholar]
  41. 41. 
    Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA et al. 2003. A structural state of the myosin V motor without bound nucleotide. Nature 425:419–23
    [Google Scholar]
  42. 42. 
    Sweeney HL, Houdusse A. 2004. The motor mechanism of myosin V: insights for muscle contraction. Philos. Trans. R. Soc. B 359:1829–41
    [Google Scholar]
  43. 43. 
    Spudich JA. 2019. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflüg. Arch. Eur. J. Physiol. 471:701–17
    [Google Scholar]
  44. 44. 
    Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA 2000. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102:683–94
    [Google Scholar]
  45. 45. 
    Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H et al. 2011. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331:1439–43
    [Google Scholar]
  46. 46. 
    Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ et al. 2011. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet 378:676–83
    [Google Scholar]
  47. 47. 
    Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM et al. 2011. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378:667–75
    [Google Scholar]
  48. 48. 
    Teerlink JR, Felker GM, McMurray JJ, Solomon SD, Adams KF Jr. et al. 2016. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet 388:2895–903
    [Google Scholar]
  49. 49. 
    Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A 2017. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 8:190
    [Google Scholar]
  50. 50. 
    Kampourakis T, Zhang X, Sun YB, Irving M 2018. Omecamtiv mecarbil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J. Physiol. 596:31–46
    [Google Scholar]
  51. 51. 
    Rohde JA, Thomas DD, Muretta JM 2017. Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke. PNAS 114:E1796–804
    [Google Scholar]
  52. 52. 
    Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM 2018. Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat. Commun. 9:3838
    [Google Scholar]
  53. 53. 
    Liu C, Kawana M, Song D, Ruppel KM, Spudich JA 2018. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat. Struct. Mol. Biol. 25:505–14
    [Google Scholar]
  54. 54. 
    Aksel T, Choe Yu E, Sutton S, Ruppel KM, Spudich JA 2015. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep 11:910–20
    [Google Scholar]
  55. 55. 
    Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E 2015. Omecamtiv mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin. Biochemistry 54:1963–75
    [Google Scholar]
  56. 56. 
    Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC et al. 2017. Omecamtiv mecarbil enhances the duty ratio of human β-cardiac myosin resulting in increased calcium sensitivity and slowed force development in cardiac muscle. J. Biol. Chem. 292:3768–78
    [Google Scholar]
  57. 57. 
    Spudich JA. 2014. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106:1236–49
    [Google Scholar]
  58. 58. 
    Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W et al. 2018. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. PNAS 115:E8143–52
    [Google Scholar]
  59. 59. 
    Robert-Paganin J, Auguin D, Houdusse A 2018. Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. Nat. Commun. 9:4019
    [Google Scholar]
  60. 60. 
    Rohde JA, Roopnarine O, Thomas DD, Muretta JM 2018. Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. PNAS 115:E7486–94
    [Google Scholar]
  61. 61. 
    Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM 2017. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J. Biol. Chem. 292:16571–77
    [Google Scholar]
  62. 62. 
    Marigo V, Nigro A, Pecci A, Montanaro D, Di Stazio M et al. 2004. Correlation between the clinical phenotype of MYH9-related disease and tissue distribution of class II nonmuscle myosin heavy chains. Genomics 83:1125–33
    [Google Scholar]
  63. 63. 
    Côté GP, Robinson EA, Appella E, Korn ED 1984. Amino acid sequence of a segment of the Acanthamoeba myosin II heavy chain containing all three regulatory phosphorylation sites. J. Biol. Chem. 259:12781–87
    [Google Scholar]
  64. 64. 
    Craig R, Smith R, Kendrick-Jones J 1983. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302:436–39
    [Google Scholar]
  65. 65. 
    Pecci A, Ma X, Savoia A, Adelstein RS 2018. MYH9: structure, functions and role of non-muscle myosin IIA in human disease. Gene 664:152–67
    [Google Scholar]
  66. 66. 
    Dulyaninova NG, Bresnick AR. 2013. The heavy chain has its day: regulation of myosin-II assembly. Bioarchitecture 3:77–85
    [Google Scholar]
  67. 67. 
    Beach JR, Hussey GS, Miller TE, Chaudhury A, Patel P et al. 2011. Myosin II isoform switching mediates invasiveness after TGF-β-induced epithelial–mesenchymal transition. PNAS 108:17991–96
    [Google Scholar]
  68. 68. 
    Newell-Litwa KA, Horwitz R, Lamers ML 2015. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis. Model. Mech. 8:1495–515
    [Google Scholar]
  69. 69. 
    Friedl P, Alexander S. 2011. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009
    [Google Scholar]
  70. 70. 
    Daniels MJ, Wang Y, Lee M, Venkitaraman AR 2004. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306:876–79
    [Google Scholar]
  71. 71. 
    Takaoka M, Saito H, Takenaka K, Miki Y, Nakanishi A 2014. BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC. Cancer Res 74:1518–28
    [Google Scholar]
  72. 72. 
    Arozarena I, Calvo F, Crespo P 2011. Ras, an actor on many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2:182–94
    [Google Scholar]
  73. 73. 
    Helfman DM, Pawlak G. 2005. Myosin light chain kinase and acto-myosin contractility modulate activation of the ERK cascade downstream of oncogenic Ras. J. Cell Biochem. 95:1069–80
    [Google Scholar]
  74. 74. 
    Zhong C, Kinch MS, Burridge K 1997. Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol. Biol. Cell 8:2329–44
    [Google Scholar]
  75. 75. 
    Chen JC, Zhuang S, Nguyen TH, Boss GR, Pilz RB 2003. Oncogenic Ras leads to Rho activation by activating the mitogen-activated protein kinase pathway and decreasing Rho-GTPase-activating protein activity. J. Biol. Chem. 278:2807–18
    [Google Scholar]
  76. 76. 
    Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P 2008. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19:3357–68
    [Google Scholar]
  77. 77. 
    Salhia B, Hwang JH, Smith CA, Nakada M, Rutka F et al. 2008. Role of myosin II activity and the regulation of myosin light chain phosphorylation in astrocytomas. Cell Motil. Cytoskelet. 65:12–24
    [Google Scholar]
  78. 78. 
    Picariello HS, Kenchappa RS, Rai V, Crish JF, Dovas A et al. 2019. Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. PNAS 116:15550–59
    [Google Scholar]
  79. 79. 
    Dhruv HD, McDonough Winslow WS, Armstrong B, Tuncali S, Eschbacher J et al. 2013. Reciprocal activation of transcription factors underlies the dichotomy between proliferation and invasion of glioma cells. PLOS ONE 8:e72134
    [Google Scholar]
  80. 80. 
    Schramek D, Sendoel A, Segal JP, Beronja S, Heller E et al. 2014. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343:309–13
    [Google Scholar]
  81. 81. 
    Conti MA, Saleh AD, Brinster LR, Cheng H, Chen Z et al. 2015. Conditional deletion of nonmuscle myosin II-A in mouse tongue epithelium results in squamous cell carcinoma. Sci. Rep. 5:14068
    [Google Scholar]
  82. 82. 
    Surcel A, Schiffhauer E, Thomas D, Zhu Q, DiNapoli K et al. 2017. Harnessing the adaptive potential of mechanoresponsive proteins to overwhelm pancreatic cancer dissemination and invasion. bioRxiv 190553. https://doi.org/10.1101/190553
    [Crossref]
  83. 83. 
    Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH 2006. Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res 66:4952–60
    [Google Scholar]
  84. 84. 
    Chandrasekar I, Huettner JE, Turney SG, Bridgman PC 2013. Myosin II regulates activity dependent compensatory endocytosis at central synapses. J. Neurosci. 33:16131–45
    [Google Scholar]
  85. 85. 
    Hodges JL, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz AR 2011. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLOS ONE 6:e24149
    [Google Scholar]
  86. 86. 
    Ryu J, Liu L, Wong TP, Wu DC, Burette A et al. 2006. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–82
    [Google Scholar]
  87. 87. 
    Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY et al. 2010. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67:603–17
    [Google Scholar]
  88. 88. 
    Rusielewicz T, Nam J, Damanakis E, John GR, Raine CS, Melendez-Vasquez CV 2014. Accelerated repair of demyelinated CNS lesions in the absence of non-muscle myosin IIB. Glia 62:580–91
    [Google Scholar]
  89. 89. 
    Beard RS Jr, Haines RJ, Wu KY, Reynolds JJ, Davis SM et al. 2014. Non-muscle Mlck is required for β-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1β-mediated barrier dysfunction in brain endothelial cells. J. Cell Sci. 127:1840–53
    [Google Scholar]
  90. 90. 
    Srivastava K, Shao B, Bayraktutan U 2013. PKC-β exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway. J. Cereb. Blood Flow Metab. 33:1928–36
    [Google Scholar]
  91. 91. 
    Janssen S, Gudi V, Prajeeth CK, Singh V, Stahl K et al. 2014. A pivotal role of nonmuscle myosin II during microglial activation. Exp. Neurol. 261:666–76
    [Google Scholar]
  92. 92. 
    Nadif Kasri N, Van Aelst L 2008. Rho-linked genes and neurological disorders. Pflüg. Arch. Eur. J. Physiol. 455:787–97
    [Google Scholar]
  93. 93. 
    Hur EM, Yang IH, Kim DH, Byun J, Saijilafu, et al. 2011. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. PNAS 108:5057–62
    [Google Scholar]
  94. 94. 
    Li J, Cai T, Jiang Y, Chen H, He X et al. 2016. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 21:298
    [Google Scholar]
  95. 95. 
    Borisoff JF, Chan CCM, Hiebert GW, Oschipok L, Robertson GS et al. 2003. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol. Cell. Neurosci. 22:405–16
    [Google Scholar]
  96. 96. 
    Kubo T, Yamaguchi A, Iwata N, Yamashita T 2008. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther. Clin. Risk. Manag. 4:605–15
    [Google Scholar]
  97. 97. 
    Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK 2003. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell. Neurosci. 22:319–30
    [Google Scholar]
  98. 98. 
    Yu Z, Liu M, Fu P, Xie M, Wang W, Luo X 2012. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord. Neurochem. Int. 61:1114–20
    [Google Scholar]
  99. 99. 
    Kilinc D, Blasiak A, O'Mahony JJ, Lee GU 2014. Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci. Rep. 4:7128
    [Google Scholar]
  100. 100. 
    Rossi D. 2015. Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog. Neurobiol. 130:86–120
    [Google Scholar]
  101. 101. 
    Schwartz M, Kipnis J, Rivest S, Prat A 2013. How do immune cells support and shape the brain in health, disease, and aging?. J. Neurosci. 33:17587–96
    [Google Scholar]
  102. 102. 
    Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F et al. 2012. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci. Rep. 2:809
    [Google Scholar]
  103. 103. 
    Ding J, Li QY, Wang X, Sun CH, Lu CZ, Xiao BG 2010. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J. Neurochem. 114:1619–29
    [Google Scholar]
  104. 104. 
    Parisi C, Arisi I, D'Ambrosi N, Storti AE, Brandi R et al. 2013. Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959
    [Google Scholar]
  105. 105. 
    Tonges L, Gunther R, Suhr M, Jansen J, Balck A et al. 2014. Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 62:217–32
    [Google Scholar]
  106. 106. 
    Balduini CL, Pecci A, Savoia A 2011. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br. J. Haematol. 154:161–74
    [Google Scholar]
  107. 107. 
    Wood W, Martin P. 2002. Structures in focus—filopodia. Int. J. Biochem. Cell Biol. 34:726–30
    [Google Scholar]
  108. 108. 
    Berg JS, Cheney RE. 2002. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4:246–50
    [Google Scholar]
  109. 109. 
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–77
    [Google Scholar]
  110. 110. 
    Yu H, Wang N, Ju X, Yang Y, Sun D et al. 2012. PtdIns (3,4,5) P3 recruitment of Myo10 is essential for axon development. PLOS ONE 7:e36988
    [Google Scholar]
  111. 111. 
    Schoumacher M, Goldman RD, Louvard D, Vignjevic DM 2010. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189:541–56
    [Google Scholar]
  112. 112. 
    Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE 2000. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113:3439–51
    [Google Scholar]
  113. 113. 
    Mashanov GI, Tacon D, Peckham M, Molloy JE 2004. The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J. Biol. Chem. 279:15274–80
    [Google Scholar]
  114. 114. 
    Lu Q, Yu J, Yan J, Wei Z, Zhang M 2011. Structural basis of the myosin X PH1N-PH2-PH1C tandem as a specific and acute cellular PI(3,4,5)P3 sensor. Mol. Biol. Cell 22:4268–78
    [Google Scholar]
  115. 115. 
    Umeki N, Jung HS, Sakai T, Sato O, Ikebe R, Ikebe M 2011. Phospholipid-dependent regulation of the motor activity of myosin X. Nat. Struct. Mol. Biol. 18:783–88
    [Google Scholar]
  116. 116. 
    Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G et al. 2007. Fascin, a novel target of β-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67:6844–53
    [Google Scholar]
  117. 117. 
    Shibue T, Brooks MW, Inan MF, Reinhardt F, Weinberg RA 2012. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov 2:706–21
    [Google Scholar]
  118. 118. 
    Kolesnikova L, Bohil AB, Cheney RE, Becker S 2007. Budding of Marburgvirus is associated with filopodia. Cell Microbiol 9:939–51
    [Google Scholar]
  119. 119. 
    Romero S, Grompone G, Carayol N, Mounier J, Guadagnini S et al. 2011. ATP-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 9:508–19
    [Google Scholar]
  120. 120. 
    Thompson RF, Langford GM. 2002. Myosin superfamily evolutionary history. Anat. Rec. 268:276–89
    [Google Scholar]
  121. 121. 
    Akhmanova A, Hammer JA 3rd 2010. Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22:479–87
    [Google Scholar]
  122. 122. 
    Libby RT, Steel KP. 2000. The roles of unconventional myosins in hearing and deafness. Essays Biochem 35:159–74
    [Google Scholar]
  123. 123. 
    Szperl AM, Golachowska MR, Bruinenberg M, Prekeris R, Thunnissen AM et al. 2011. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J. Pediatr. Gastroenterol. Nutr. 52:307–13
    [Google Scholar]
  124. 124. 
    Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL et al. 2008. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 40:1163–65
    [Google Scholar]
  125. 125. 
    Van Gele M, Dynoodt P, Lambert J 2009. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 22:268–82
    [Google Scholar]
  126. 126. 
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA et al. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17:7–15
    [Google Scholar]
  127. 127. 
    Frénal K, Dubremetz JF, Lebrun M, Soldati-Favre D 2017. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15:645–60
    [Google Scholar]
  128. 128. 
    Meissner M, Schluter D, Soldati D 2002. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298:837–40
    [Google Scholar]
  129. 129. 
    Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M 2013. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat. Methods 10:125–27
    [Google Scholar]
  130. 130. 
    Dobrowolski JM, Carruthers VB, Sibley LD 1997. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol. Microbiol 26:163–73
    [Google Scholar]
  131. 131. 
    Dobrowolski JM, Sibley LD. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84:933–39
    [Google Scholar]
  132. 132. 
    Herm-Götz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C et al. 2002. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 21:2149–58
    [Google Scholar]
  133. 133. 
    Hettmann C, Herm A, Geiter A, Frank B, Schwarz E et al. 2000. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol. Biol. Cell 11:1385–400
    [Google Scholar]
  134. 134. 
    Mueller C, Graindorge A, Soldati-Favre D 2017. Functions of myosin motors tailored for parasitism. Curr. Opin. Microbiol. 40:113–22
    [Google Scholar]
  135. 135. 
    Williams MJ, Alonso H, Enciso M, Egarter S, Sheiner L et al. 2015. Two essential light chains regulate the MyoA lever arm to promote Toxoplasma gliding motility. mBio 6:e00845–15
    [Google Scholar]
  136. 136. 
    Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM 2014. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J. Biol. Chem. 289:30832–41
    [Google Scholar]
  137. 137. 
    Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H et al. 2017. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. J. Biol. Chem. 292:19290–303
    [Google Scholar]
  138. 138. 
    Powell CJ, Ramaswamy R, Kelsen A, Hamelin DJ, Warshaw DM et al. 2018. Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii. PNAS 115:E10548–55
    [Google Scholar]
  139. 139. 
    Robert-Paganin J, Robblee JP, Auguin D, Blake TCA, Bookwalter CS et al. 2019. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Nat. Commun. 10:3286
    [Google Scholar]
  140. 140. 
    Baum J, Gilberger TW, Frischknecht F, Meissner M 2008. Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol 24:557–63
    [Google Scholar]
  141. 141. 
    Baum J, Richard D, Healer J, Rug M, Krnajski Z et al. 2006. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J. Biol. Chem. 281:5197–208
    [Google Scholar]
  142. 142. 
    Gaji RY, Johnson DE, Treeck M, Wang M, Hudmon A, Arrizabalaga G 2015. Phosphorylation of a myosin motor by TgCDPK3 facilitates rapid initiation of motility during Toxoplasma gondii egress. PLOS Pathog 11:e1005268
    [Google Scholar]
  143. 143. 
    Tang Q, Andenmatten N, Hortua Triana MA, Deng B, Meissner M et al. 2014. Calcium-dependent phosphorylation alters class XIVa myosin function in the protozoan parasite Toxoplasma gondii. Mol. Biol. Cell 25:2579–91
    [Google Scholar]
  144. 144. 
    Leung JM, Tran F, Pathak RB, Poupart S, Heaslip AT et al. 2014. Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a small-molecule inhibitor of parasite motility and invasion. PLOS ONE 9:e98056
    [Google Scholar]
  145. 145. 
    Yusuf NA, Green JL, Wall RJ, Knuepfer E, Moon RW et al. 2015. The Plasmodium class XIV myosin, MyoB, has a distinct subcellular location in invasive and motile stages of the malaria parasite and an unusual light chain. J. Biol. Chem. 290:12147–64
    [Google Scholar]
  146. 146. 
    Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D 2014. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLOS Pathog 10:e1004504
    [Google Scholar]
  147. 147. 
    Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D 2016. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. PLOS Pathog 12:e1005388
    [Google Scholar]
  148. 148. 
    Hutchins JRA, Moore WJ, Hood FE, Wilson JSJ, Andrews PD et al. 2004. Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr. Biol. 14:1099–104
    [Google Scholar]
  149. 149. 
    Shields CM, Taylor R, Nazarenus T, Cheatle J, Hou A et al. 2003. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Curr. Genet. 44:184–94
    [Google Scholar]
  150. 150. 
    Long S, Brown KM, Drewry LL, Anthony B, Phan IQH, Sibley LD 2017. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLOS Pathog 13:e1006379
    [Google Scholar]
  151. 151. 
    Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T et al. 2016. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166:1423–35.e12
    [Google Scholar]
  152. 152. 
    Grasberger H, Bell GI. 2005. Subcellular recruitment by TSG118 and TSPYL implicates a role for zinc finger protein 106 in a novel developmental pathway. Int. J. Biochem. Cell Biol. 37:1421–37
    [Google Scholar]
  153. 153. 
    Smith TF, Gaitatzes C, Saxena K, Neer EJ 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24:181–85
    [Google Scholar]
  154. 154. 
    Jacot D, Daher W, Soldati-Favre D 2013. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. EMBO J 32:1702–16
    [Google Scholar]
  155. 155. 
    Heaslip AT, Nelson SR, Warshaw DM 2016. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol. Biol. Cell 27:2080–89
    [Google Scholar]
  156. 156. 
    Frénal K, Jacot D, Hammoudi PM, Graindorge A, Maco B, Soldati-Favre D 2017. Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat. Commun 8:15710
    [Google Scholar]
  157. 157. 
    Yun CH, Lillehoj HS, Lillehoj EP 2000. Intestinal immune responses to coccidiosis. Dev. Comp. Immunol. 24:303–24
    [Google Scholar]
  158. 158. 
    Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC 2019. Cryptosporidiosis outbreaks—United States, 2009–2017. MMWR Morb. Mortal. Wkly. Rep. 68:568–72
    [Google Scholar]
  159. 159. 
    Frénal K, Foth BJ, Soldati D 2008. Myosin class XIV and other myosins in protists. Myosins: A Superfamily of Molecular Motors LM Coluccio 421–40 Dordrecht, Neth.: Springer
    [Google Scholar]
  160. 160. 
    Periz J, Whitelaw J, Harding C, Gras S, Del Rosario Minina MI et al. 2017. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. eLife 6:e24119
    [Google Scholar]
  161. 161. 
    Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E et al. 2019. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell. Microbiol. 21:e13082
    [Google Scholar]
  162. 162. 
    Richards TA, Cavalier-Smith T. 2005. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–18
    [Google Scholar]
  163. 163. 
    Ravichandran A, Geng M, Hull KG, Li J, Romo D et al. 2019. A novel actin binding drug with in vivo efficacy. Antimicrob. Agents Chemother. 63:e01585–18
    [Google Scholar]
  164. 164. 
    Tan D, Hu H, Tong X, Han M, Zuo W et al. 2019. Genome-wide identification and characterization of myosin genes in the silkworm. Bombyx mori. Gene 691:45–55
    [Google Scholar]
  165. 165. 
    Dans MG, Weiss GE, Wilson DW 2019. Screening the Medicines for Malaria Venture Pathogen Box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. bioRxiv 768648. https://doi.org/10.1101/768648
    [Crossref]
  166. 166. 
    Katta SS, Sahasrabuddhe AA, Gupta CM 2009. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol. Biochem. Parasitol 164:105–10
    [Google Scholar]
  167. 167. 
    Katta SS, Tammana TV, Sahasrabuddhe AA, Bajpai VK, Gupta CM 2010. Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum. J. Cell Sci. 123:2035–44
    [Google Scholar]
  168. 168. 
    Batters C, Woodall KA, Toseland CP, Hundschell C, Veigel C 2012. Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI. J. Biol. Chem. 287:27556–66
    [Google Scholar]
  169. 169. 
    Batters C, Ellrich H, Helbig C, Woodall KA, Hundschell C et al. 2014. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI. PNAS 111:E227–36
    [Google Scholar]
  170. 170. 
    El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G et al. 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–15
    [Google Scholar]
  171. 171. 
    de Souza DAS, Pavoni DP, Krieger MA, Ludwig A 2018. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci. Rep. 8:1376
    [Google Scholar]
  172. 172. 
    Lee BY, Bacon KM, Bottazzi ME, Hotez PJ 2013. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis. 13:342–48
    [Google Scholar]
  173. 173. 
    Spitznagel D, O'Rourke JF, Leddy N, Hanrahan O, Nolan DP 2010. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei. PLOS ONE 5:e12282
    [Google Scholar]
  174. 174. 
    Hamilton WL, Amato R, van der Pluijm RW, Jacob CG, Quang HH et al. 2019. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. Lancet Infect. Dis. 19:P943–51
    [Google Scholar]
  175. 175. 
    Ashley EA, Phyo AP. 2018. Drugs in development for malaria. Drugs 78:861–79
    [Google Scholar]
  176. 176. 
    Tse EG, Korsik M, Todd MH 2019. The past, present and future of anti-malarial medicines. Malar. J 18:93
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011520-105234
Loading
/content/journals/10.1146/annurev-biochem-011520-105234
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error