1932

Abstract

Natural rubber (NR), principally comprising -1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, . In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the -prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111107
2020-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-013118-111107.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111107&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cornish K. 2001. Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–34
    [Google Scholar]
  2. 2. 
    Metcalfe CR. 1967. Distribution of latex in the plant kingdom. Econ. Bot. 21:115–27
    [Google Scholar]
  3. 3. 
    Mooibroek H, Cornish K. 2000. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 53:355–65
    [Google Scholar]
  4. 4. 
    van Beilen JB, Poirier Y 2007. Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–29
    [Google Scholar]
  5. 5. 
    Buchanan RA, Swanson CL, Weisleder D, Cull IM 1979. Gutta-producing grasses. Phytochemistry 18:1069–71
    [Google Scholar]
  6. 6. 
    Tangpakdee J, Tanaka Y, Shiba K, Kawahara S, Sakurai K, Suzuki Y 1997. Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry 45:75–80
    [Google Scholar]
  7. 7. 
    Kent EG, Swinney FB. 1966. Properties and applications of trans-1,4-polyisoprene. Ind. Eng. Chem. Prod. Res. Dev. 5:134–38
    [Google Scholar]
  8. 8. 
    Tanaka Y, Sakdapipanich JT. 2005. Chemical structure and occurrence of natural polyisoprenes. Biopolymers, Vol. 2: Polyisoprenoids T Koyama, A Steinbüchel 1–25 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  9. 9. 
    Hagel JM, Yeung EC, Facchini PJ 2008. Got milk? The secret life of laticifers. Trends Plant Sci 13:631–39
    [Google Scholar]
  10. 10. 
    Mehta IJ. 1982. Stem anatomy of Parthenium argentatum, P. incanum and their natural hybrids. Am. J. Bot. 69:502–12
    [Google Scholar]
  11. 11. 
    Benedict CR, Goss R, Greer PJ, Foster MA 2011. The ultrastructure of low temperature stimulated rubber-producing cortical parenchyma in guayule. Ind. Crops Prod. 33:89–93
    [Google Scholar]
  12. 12. 
    Stewart WD, Wachtel WL, Shipman JJ, Yanko JA 1955. Synthesis of rubber by fungi. Science 122:1271–72
    [Google Scholar]
  13. 13. 
    Ohya N, Takizawa J, Kawahara S, Tanaka Y 1998. Molecular weight distribution of polyisoprene from Lactarius volemus. Phytochemistry 48:781–86
    [Google Scholar]
  14. 14. 
    Priyadarshan PM, Goncalves PDS 2003. Hevea gene pool for breeding. Genet. Resour. Crop Evol. 50:101–14
    [Google Scholar]
  15. 15. 
    Clément-Demange A, Priyadarshan PM, Thuy Hoa TT, Venkatachalam P 2007. Hevea rubber breeding and genetics. Plant Breeding Reviews177–283 Hoboken, NJ: Wiley
    [Google Scholar]
  16. 16. 
    Whaley WG, Bowen JS. 1947. Russian dandelion (kok-saghyz): an emergency source of natural rubber Misc. Publ. 618, US Dep. Agric Washington, DC:
  17. 17. 
    Swanson CL, Buchanan RA, Otey FH 1979. Molecular weights of natural rubbers from selected temperate zone plants. J. Appl. Polym. Sci. 23:743–48
    [Google Scholar]
  18. 18. 
    Bushman BS, Scholte AA, Cornish K, Scott DJ, Brichta JL et al. 2006. Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 67:2590–96
    [Google Scholar]
  19. 19. 
    Kang H, Kim YS, Chung GC 2000. Characterization of natural rubber biosynthesis in Ficus benghalensis. Plant Physiol. Biochem 38:979–87
    [Google Scholar]
  20. 20. 
    Cornish K, Wood DF, Windle JJ 1999. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210:85–96
    [Google Scholar]
  21. 21. 
    Wood DF, Cornish K. 2000. Microstructure of purified rubber particles. Int. J. Plant Sci. 161:435–45
    [Google Scholar]
  22. 22. 
    Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O et al. 2010. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11:11
    [Google Scholar]
  23. 23. 
    Singh AP, Wi SG, Chung GC, Kim YS, Kang H 2003. The micromorphology and protein characterization of rubber particles in Ficus carica. Ficus benghalensis and Hevea brasiliensis. J. Exp. Bot 54985–92
    [Google Scholar]
  24. 24. 
    Chrispeels MJ, Herman EM. 2000. Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123:1227–34
    [Google Scholar]
  25. 25. 
    Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R 2013. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). Plant Mol. Biol. 82:155–68
    [Google Scholar]
  26. 26. 
    Yamashita S, Yamaguchi H, Waki T, Aoki Y, Mizuno M et al. 2016. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. eLife 5:e19022
    [Google Scholar]
  27. 27. 
    Murphy D. 2012. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–85
    [Google Scholar]
  28. 28. 
    Moir GFJ. 1959. Ultracentrifugation and staining of Hevea latex. Nature 184:1626–28
    [Google Scholar]
  29. 29. 
    Wititsuwannakul D, Wititsuwannakul R. 2005. Biochemistry of natural rubber and structure of latex. Biopolymers Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  30. 30. 
    Ohya N, Tanaka Y, Wititsuwannakul D, Koyama T 2000. Activity of rubber transferase and rubber particle size in Hevea latex. J. Rubber Res. 3:214–21
    [Google Scholar]
  31. 31. 
    Yamashita S, Mizuno M, Hayashi H, Yamaguchi H, Miyagi-Inoue Y et al. 2018. Purification and characterization of small and large rubber particles from Hevea brasiliensis. Biosci. Biotechnol. Biochem 82:1011–20
    [Google Scholar]
  32. 32. 
    Subramaniam A. 1972. Gel permeation chromatography of natural rubber. Rubber Chem. Technol. 45:346–58
    [Google Scholar]
  33. 33. 
    Yeang H, Yip E, Hamzah S 1995. Characterisation of Zone 1 and Zone 2 rubber particles in Hevea brasiliensis latex. J. Nat. Rubber Res. 10:108–23
    [Google Scholar]
  34. 34. 
    Sakdapipanich JT. 1999. Structural characterisation of the small rubber particles in fresh Hevea latex. J. Rubber Res. 2:160–68
    [Google Scholar]
  35. 35. 
    Tangpakdee J, Tanaka Y, Wititsuwannakul R, Chareonthiphakorn N 1996. Possible mechanisms controlling molecular weight of rubbers in Hevea brasiliensis. Phytochemistry 42:353–55
    [Google Scholar]
  36. 36. 
    Qu Y, Chakrabarty R, Tran HT, Kwon E-JG, Kwon M et al. 2015. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J. Biol. Chem. 290:1898–914
    [Google Scholar]
  37. 37. 
    Mekkriengkrai D, Ute K, Swiezewska E, Chojnacki T, Tanaka Y, Sakdapipanich JT 2004. Structural characterization of rubber from jackfruit and Euphorbia as a model of natural rubber. Biomacromolecules 5:2013–19
    [Google Scholar]
  38. 38. 
    Archer BL, Audley BG, McSweeney GP, Hong TC 1969. Studies on composition of latex serum and ‘bottom fraction’ particles. J. Rubber Res. Inst. Malaya 21:560–69
    [Google Scholar]
  39. 39. 
    Tanaka Y, Kawahara S, Aik-Hwee E, Shiba K, Ohya N 1995. Initiation of biosynthesis in cis polyisoprenes. Phytochemistry 39:779–84
    [Google Scholar]
  40. 40. 
    Eng AH, Kawahara S, Tanaka Y 1994. trans-Isoprene units in natural rubber. Rubber Chem. Technol. 67:159–68
    [Google Scholar]
  41. 41. 
    Ishii K, Sagami H, Ogura K 1986. A novel prenyltransferase from Paracoccus denitrificans. Biochem. J 233:773–77
    [Google Scholar]
  42. 42. 
    Kaur D, Brennan PJ, Crick DC 2004. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. J. Bacteriol 186:7564–70
    [Google Scholar]
  43. 43. 
    Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D 2008. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32:208–33
    [Google Scholar]
  44. 44. 
    Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73:1019–49
    [Google Scholar]
  45. 45. 
    Burgos J, Hemming FW, Pennock JF, Morton RA 1963. Dolichol: a naturally-occurring C100 isoprenoid alcohol. Biochem. J. 88:470–82
    [Google Scholar]
  46. 46. 
    Krag SS. 1998. The importance of being dolichol. Biochem. Biophys. Res. Commun. 243:1–5
    [Google Scholar]
  47. 47. 
    Chojnacki T, Dallner G. 1988. The biological role of dolichol. Biochem. J. 251:1–9
    [Google Scholar]
  48. 48. 
    Kulcitsky V, Hertel J, Skoczylas E, Swiezewska E, Chojnacki T 1996. The occurrence of long-chain polyprenols in leaves of plants of Combretaceae family. Acta Biochim. Pol. 43:707–11
    [Google Scholar]
  49. 49. 
    Rezanka T, Votruba J. 2001. Chromatography of long chain alcohols (polyprenols) from animal and plant sources. J. Chromatogr. A 936:95–110
    [Google Scholar]
  50. 50. 
    Swiezewska E, Sasak W, Mankowski T, Jankowski W, Vogtman T et al. 1994. The search for plant polyprenols. Acta Biochim. Pol. 41:221–60
    [Google Scholar]
  51. 51. 
    Swiezewska E, Danikiewicz W. 2005. Polyisoprenoids: structure, biosynthesis and function. Prog. Lipid Res. 44:235–58
    [Google Scholar]
  52. 52. 
    Chouda M, Jankowski W. 2005. The occurrence of polyprenols in seeds and leaves of woody plants. Acta Biochim. Pol. 52:243–53
    [Google Scholar]
  53. 53. 
    Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C et al. 2002. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. PNAS 99:1158–63
    [Google Scholar]
  54. 54. 
    Koyama T. 1999. Molecular analysis of prenyl chain elongating enzymes. Biosci. Biotechnol. Biochem. 63:1671–76
    [Google Scholar]
  55. 55. 
    Tanaka Y. 1989. Structure and biosynthesis mechanism of natural polyisoprene. Prog. Polym. Sci. 14:339–71
    [Google Scholar]
  56. 56. 
    Kitaura T, Kobayashi M, Tarachiwin L, Kum-ourm H, Matsuura A et al. 2018. Characterization of natural rubber end groups using high-sensitivity NMR. Macromol. Chem. Phys. 219:1700331
    [Google Scholar]
  57. 57. 
    Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y 2000. Characterization of fatty acids linked to natural rubber—role of linked fatty acids on crystallization of the rubber. Polymer 41:7483–88
    [Google Scholar]
  58. 58. 
    Frank DW, Waechter CJ. 1998. Purification and characterization of a polyisoprenyl phosphate phosphatase from pig brain: possible dual specificity. J. Biol. Chem. 273:11791–98
    [Google Scholar]
  59. 59. 
    Sagami H, Kurisaki A, Ogura K 1993. Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J. Biol. Chem. 268:10109–13
    [Google Scholar]
  60. 60. 
    Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL et al. 2010. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142:203–17
    [Google Scholar]
  61. 61. 
    Tollbom O, Valtersson C, Chojnacki T, Dallner G 1988. Esterification of dolichol in rat liver. J. Biol. Chem. 263:1347–52
    [Google Scholar]
  62. 62. 
    Pulido P, Perello C, Rodriguez-Concepcion M 2012. New insights into plant isoprenoid metabolism. Mol. Plant 5:964–67
    [Google Scholar]
  63. 63. 
    Hemmerlin A, Harwood JL, Bach TJ 2012. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis. Prog. Lipid Res. 51:95–148
    [Google Scholar]
  64. 64. 
    Park RB, Bonner J. 1958. Enzymatic synthesis of rubber from mevalonic acid. J. Biol. Chem. 233:340–43
    [Google Scholar]
  65. 65. 
    Kekwick RGO, Archer BL, Barnard D, Higgins GMC, McSweeney GP, Moore CG 1959. Incorporation of DL-[2–14C] mevalonic acid lactone into polyisoprene. Nature 184:268–70
    [Google Scholar]
  66. 66. 
    Archer BL, Ayrey G, Cockbain EG, McSweeney GP 1961. Incorporation of [I-14C]-isopentenyl pyrophosphate into polyisoprene. Nature 189:663–64
    [Google Scholar]
  67. 67. 
    Archer BL, Audley BG, Cockbain EG, McSweeney GP 1963. The biosynthesis of rubber. Incorporation of mevalonate and isopentenyl pyrophosphate into rubber by Hevea brasiliensis-latex fractions. Biochem. J. 89:565–74
    [Google Scholar]
  68. 68. 
    Suvachittanont W, Wititsuwannakul R. 1995. 3-Hydroxy-3-methylglutaryl-coenzyme, a synthase in Hevea brasiliensis. Phytochemistry 40:757–61
    [Google Scholar]
  69. 69. 
    Wititsuwannakul R, Wititsuwannakul D, Suwanmanee P 1990. 3-Hydroxy-3-methylglutaryl coenzyme A reductase from the latex of Hevea brasiliensis. Phytochemistry 29:1401–3
    [Google Scholar]
  70. 70. 
    Suwanmanee P, Suvachittanont W, Fincher GB 2002. Molecular cloning and sequencing of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase from Hevea brasiliensis (HBK) Mull. Arg. Sci. Asia 28:29–36
    [Google Scholar]
  71. 71. 
    Sirinupong N, Suwanmanee P, Doolittle RF, Suvachitanont W 2005. Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. Planta 221:502–12
    [Google Scholar]
  72. 72. 
    Chye ML, Tan CT, Chua NH 1992. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol. Biol. 19:473–84
    [Google Scholar]
  73. 73. 
    Kush A, Goyvaerts E, Chye ML, Chua NH 1990. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). PNAS 87:1787–90
    [Google Scholar]
  74. 74. 
    Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT et al. 1995. Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–70
    [Google Scholar]
  75. 75. 
    Ponciano G, McMahan CM, Xie W, Lazo GR, Coffelt TA et al. 2012. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. Phytochemistry 79:57–66
    [Google Scholar]
  76. 76. 
    van Deenen N, Bachmann AL, Schmidt T, Schaller H, Sand J et al. 2012. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Mol. Biol. Rep. 39:4337–49
    [Google Scholar]
  77. 77. 
    Dong N, Ponciano G, McMahan CM, Coffelt TA, Johnson L et al. 2013. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Parthenium argentatum (guayule). Ind. Crops Prod. 46:15–24
    [Google Scholar]
  78. 78. 
    Pütter KM, van Deenen N, Unland K, Prüfer D, Schulze Gronover C 2017. Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol 17:88
    [Google Scholar]
  79. 79. 
    Sando T, Takeno S, Watanabe N, Okumoto H, Kuzuyama T et al. 2008. Cloning and characterization of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant. Hevea brasiliensis. Biosci. Biotechnol. Biochem. 72:2903–17
    [Google Scholar]
  80. 80. 
    Yoonram K, Takahashi S, Rattanapittayaporn A, Koyama T, Wititsuwannakul D, Wititsuwannakul R 2008. cDNA, from Hevea brasiliensis latex, encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase. Plant Sci 175:694–700
    [Google Scholar]
  81. 81. 
    Archer BL, Audley BG. 1987. New aspects of rubber biosynthesis. Bot. J. Linn. Soc. 94:181–96
    [Google Scholar]
  82. 82. 
    McMullen A, McSweeny G. 1966. The biosynthesis of rubber: incorporation of isopentenyl pyrophosphate into purified rubber particles by a soluble latex serum enzyme. Biochem. J. 101:42–47
    [Google Scholar]
  83. 83. 
    Cornish K, Backhaus R. 1990. Rubber transferase activity in rubber particles of guayule. Phytochemistry 29:3809–13
    [Google Scholar]
  84. 84. 
    Madhavan S, Greenblatt GA, Foster MA, Benedict CR 1989. Stimulation of isopentenyl pyrophosphate incorporation into polyisoprene in extracts from guayule plants (Parthenium argentatum Gray) by low temperature and 2-(3,4-dichlorophenoxy) triethylamine. Plant Physiol 89:506–11
    [Google Scholar]
  85. 85. 
    Siler DJ, Cornish K. 1993. A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum. Phytochemistry 32:1097–102
    [Google Scholar]
  86. 86. 
    Kang H, Kang MY, Han K-H 2000. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. Plant Physiol 123:1133–42
    [Google Scholar]
  87. 87. 
    Spanò D, Pintus F, Esposito F, Loche D, Floris G, Medda R 2015. Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity. Plant Physiol. Biochem. 87:26–34
    [Google Scholar]
  88. 88. 
    Tangpakdee J, Tanaka Y, Ogura K, Koyama T, Wititsuwannakul R, Wititsuwannakul D 1997. Rubber formation by fresh bottom fraction of Hevea latex. Phytochemistry 45:269–74
    [Google Scholar]
  89. 89. 
    Asawatreratanakul K, Zhang YW, Wititsuwannakul D, Wititsuwannakul R, Takahashi S et al. 2003. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis: a key factor participating in natural rubber biosynthesis. Eur. J. Biochem. 270:4671–80
    [Google Scholar]
  90. 90. 
    Cornish K. 1993. The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. Eur. J. Biochem. 218:267–71
    [Google Scholar]
  91. 91. 
    Rojruthai P, Sakdapipanich JT, Takahashi S, Hyegin L, Noike M et al. 2010. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles. J. Biosci. Bioeng. 109:107–14
    [Google Scholar]
  92. 92. 
    Adiwilaga K, Kush A. 1996. Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis). Plant Mol. Biol. 30:935–46
    [Google Scholar]
  93. 93. 
    Oh SK, Kang H, Shin DH, Yang J, Han K-H 2000. Molecular cloning and characterization of a functional cDNA clone encoding isopentenyl diphosphate isomerase from Hevea brasiliensis. J. Plant Physiol 157:549–57
    [Google Scholar]
  94. 94. 
    Ogura K, Koyama T, Sagami H 1997. Polyprenyl diphosphate synthases. Subcell. Biochem. 28:57–87
    [Google Scholar]
  95. 95. 
    Tarshis LC, Yan M, Poulter CD, Sacchettini JC 1994. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33:10871–77
    [Google Scholar]
  96. 96. 
    Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL et al. 2004. Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J. Biol. Chem. 279:4903–12
    [Google Scholar]
  97. 97. 
    Wang K, Ohnuma S-I. 1999. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem. Sci. 24:445–51
    [Google Scholar]
  98. 98. 
    Ogura K, Koyama T. 1998. Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98:1263–76
    [Google Scholar]
  99. 99. 
    Wang G, Dixon RA. 2009. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. PNAS 106:9914–19
    [Google Scholar]
  100. 100. 
    Kawamukai M. 2018. Biosynthesis and applications of prenylquinones. Biosci. Biotechnol. Biochem. 82:963–77
    [Google Scholar]
  101. 101. 
    Zhang YW, Li XY, Koyama T 2000. Chain length determination of prenyltransferases: Both heteromeric subunits of medium-chain (E)-prenyl diphosphate synthase are involved in the product chain length determination. Biochemistry 39:12717–22
    [Google Scholar]
  102. 102. 
    Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M et al. 2011. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J. Biol. Chem. 286:3729–40
    [Google Scholar]
  103. 103. 
    Shimizu N, Koyama T, Ogura K 1998. Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase: no sequence similarity between E- and Z-prenyl diphosphate synthases. J. Biol. Chem. 273:19476–81
    [Google Scholar]
  104. 104. 
    Apfel CM, Takács B, Fountoulakis M, Stieger M, Keck W 1999. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J. Bacteriol. 181:483–92
    [Google Scholar]
  105. 105. 
    Takahashi S, Koyama T. 2006. Structure and function of cis-prenyl chain elongating enzymes. Chem. Rec. 6:194–205
    [Google Scholar]
  106. 106. 
    Schulbach MC, Brennan PJ, Crick DC 2000. Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J. Biol. Chem 275:22876–81
    [Google Scholar]
  107. 107. 
    Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL et al. 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. PNAS 106:10865–70
    [Google Scholar]
  108. 108. 
    Sallaud C, Rontein D, Onillon S, Jabes F, Duffe P et al. 2009. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–17
    [Google Scholar]
  109. 109. 
    Hemmi H, Yamashita S, Shimoyama T, Nakayama T, Nishino T 2001. Cloning, expression, and characterization of cis-polyprenyl diphosphate synthase from the thermoacidophilic archaeon Sulfolobus acidocaldarius. J. Bacteriol 183:401–4
    [Google Scholar]
  110. 110. 
    Endo S, Zhang YW, Takahashi S, Koyama T 2003. Identification of human dehydrodolichyl diphosphate synthase gene. Biochim. Biophys. Acta 1625:291–95
    [Google Scholar]
  111. 111. 
    Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A 1999. The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol. Cell. Biol. 19:471–83
    [Google Scholar]
  112. 112. 
    Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A 2001. Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations: implication for their distinct physiological roles in dolichol synthesis. Genes Cells 6:495–506
    [Google Scholar]
  113. 113. 
    Surmacz L, Swiezewska E. 2011. Polyisoprenoids – secondary metabolites or physiologically important superlipids. Biochem. Biophys. Res. Commun. 407:627–32
    [Google Scholar]
  114. 114. 
    Kera K, Takahashi S, Sutoh T, Koyama T, Nakayama T 2012. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J 279:3813–27
    [Google Scholar]
  115. 115. 
    Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA et al. 2013. The tomato cis–prenyltransferase gene family. Plant J 73:640–52
    [Google Scholar]
  116. 116. 
    Fujihashi M, Zhang YW, Higuchi Y, Li XY, Koyama T, Miki K 2001. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. PNAS 98:4337–42
    [Google Scholar]
  117. 117. 
    Guo RT, Ko TP, Chen AP, Kuo CJ, Wang AH, Liang PH 2005. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J. Biol. Chem. 280:20762–74
    [Google Scholar]
  118. 118. 
    Gao J, Ko T-P, Chen L, Malwal SR, Zhang J et al. 2017. “Head-to-middle” and “head-to-tail” cis-prenyl transferases: structure of isosesquilavandulyl diphosphate synthase. Angew. Chem. Int. Ed. 57:683–87
    [Google Scholar]
  119. 119. 
    Kharel Y, Takahashi S, Yamashita S, Koyama T 2006. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J 273:647–57
    [Google Scholar]
  120. 120. 
    Ambo T, Noike M, Kurokawa H, Koyama T 2008. Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem. Biophys. Res. Commun. 375:536–40
    [Google Scholar]
  121. 121. 
    Shridas P, Rush JS, Waechter CJ 2003. Identification and characterization of a cDNA encoding a long-chain cis-isoprenyltranferase involved in dolichyl monophosphate biosynthesis in the ER of brain cells. Biochem. Biophys. Res. Commun. 312:1349–56
    [Google Scholar]
  122. 122. 
    Miao RQ, Gao Y, Harrison KD, Prendergast J, Acevedo LM et al. 2006. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. PNAS 103:10997–1002
    [Google Scholar]
  123. 123. 
    Harrison KD, Miao RQ, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa WC 2009. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab 10:208–18
    [Google Scholar]
  124. 124. 
    Harrison KD, Park EJ, Gao N, Kuo A, Rush JS et al. 2011. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J 30:2490–500
    [Google Scholar]
  125. 125. 
    Holcomb J, Doughan M, Spellmon N, Lewis B, Perry E et al. 2018. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains. PLOS ONE 13:e0191371
    [Google Scholar]
  126. 126. 
    Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H et al. 2014. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 20:448–57
    [Google Scholar]
  127. 127. 
    Zhang H, Ohyama K, Boudet J, Chen Z, Yang J et al. 2008. Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20:1879–98
    [Google Scholar]
  128. 128. 
    Brasher MI, Surmacz L, Leong B, Pitcher J, Swiezewska E et al. 2015. A two-component enzyme complex is required for dolichol biosynthesis in tomato. Plant J 82:903–14
    [Google Scholar]
  129. 129. 
    Cunillera N, Arro M, Fores O, Manzano D, Ferrer A 2000. Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett 477:170–74
    [Google Scholar]
  130. 130. 
    Takahashi S, Lee H-J, Yamashita S, Koyama T 2012. Characterization of cis-prenyltransferases from the rubber producing plant Hevea brasiliensis heterologously expressed in yeast and plant cells. Plant Biotechnol 29:411–17
    [Google Scholar]
  131. 131. 
    Surmacz L, Plochocka D, Kania M, Danikiewicz W, Swiezewska E 2014. cis-Prenyltransferase AtCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochim. Biophys. Acta 1841:240–50
    [Google Scholar]
  132. 132. 
    Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K et al. 2013. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom 14:75
    [Google Scholar]
  133. 133. 
    Pootakham W, Sonthirod C, Naktang C, Ruang-Areerate P, Yoocha T et al. 2017. De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species. Sci. Rep. 7:41457
    [Google Scholar]
  134. 134. 
    Schmidt T, Hillebrand A, Wurbs D, Wahler D, Lenders M et al. 2010. Molecular cloning and characterization of rubber biosynthetic genes from Taraxacum koksaghyz. Plant Mol. Biol. Rep 28:277–84
    [Google Scholar]
  135. 135. 
    Post J, van Deenen N, Fricke J, Kowalski N, Wurbs D et al. 2012. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol 158:1406–17
    [Google Scholar]
  136. 136. 
    Cymer F, von Heijne G, White SH 2015. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427:999–1022
    [Google Scholar]
  137. 137. 
    Bernhard F, Tozawa Y. 2013. Cell-free expression—making a mark. Curr. Opin. Struct. Biol. 23:374–80
    [Google Scholar]
  138. 138. 
    Nozawa A, Nanamiya H, Tozawa Y 2010. Production of membrane proteins through the wheat-germ cell-free technology. Methods Mol. Biol. 607:213–18
    [Google Scholar]
  139. 139. 
    Epping J, van Deenen N, Niephaus E, Stolze A, Fricke J et al. 2015. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat. Plants 1:15048
    [Google Scholar]
  140. 140. 
    Dennis MS, Light DR. 1989. Rubber elongation factor from Hevea brasiliensis: identification, characterization, and role in rubber biosynthesis. J. Biol. Chem. 264:18608–17
    [Google Scholar]
  141. 141. 
    Shamsul Bahri A, Hamzah S 1996. Immunocytochemical localisation of rubber membrane protein in Hevea latex. J. Nat. Rubber Res. 11:88–95
    [Google Scholar]
  142. 142. 
    Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chewa NP et al. 1996. The 14.6 kd rubber elongation factor (Hev b 1) and 24 kd (Hev b 3) rubber particle proteins are recognized by IgE from patients with spina bifida and latex allergy. J. Allergy Clin. Immunol. 98:628–39
    [Google Scholar]
  143. 143. 
    Priya P, Venkatachalam P, Thulaseedharan A 2007. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Rep 26:1833–38
    [Google Scholar]
  144. 144. 
    Oh SK, Kang H, Shin DH, Yang J, Chow K-S et al. 1999. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J. Biol. Chem 274:17132–38
    [Google Scholar]
  145. 145. 
    Berthelot K, Lecomte S, Estevez Y, Peruch F 2014. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): an overview on rubber particle proteins. Biochimie 106:1–9
    [Google Scholar]
  146. 146. 
    Laibach N, Hillebrand A, Twyman RM, Prüfer D, Schulze Gronover C 2015. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. Plant J 82:609–20
    [Google Scholar]
  147. 147. 
    Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B et al. 2011. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim. Biophys. Acta 1811:1165–76
    [Google Scholar]
  148. 148. 
    Currie E, Guo X, Christiano R, Chitraju C, Kory N et al. 2014. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 55:1465–77
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111107
Loading
/content/journals/10.1146/annurev-biochem-013118-111107
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error