1932

Abstract

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111442
2020-06-20
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-013118-111442.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111442&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–12
    [Google Scholar]
  2. 2. 
    Kellermayer MS, Smith SB, Granzier HL, Bustamante C 1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–16
    [Google Scholar]
  3. 3. 
    Tskhovrebova L, Trinick J, Sleep JA, Simmons RM 1997. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–12
    [Google Scholar]
  4. 4. 
    Shank EA, Cecconi C, Dill JW, Marqusee S, Bustamante C 2010. The folding cooperativity of a protein is controlled by its chain topology. Nature 465:637–40
    [Google Scholar]
  5. 5. 
    Tapia-Rojo R, Eckels EC, Fernández JM 2019. Ephemeral states in protein folding under force captured with a magnetic tweezers design. PNAS 116:7873–78
    [Google Scholar]
  6. 6. 
    Löf A, Walker PU, Sedlak SM, Gruber S, Obser T et al. 2019. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. PNAS 116:18798–807
    [Google Scholar]
  7. 7. 
    Jackson JD. 1999. Classical Electrodynamics New York: Wiley, 3rd ed..
    [Google Scholar]
  8. 8. 
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288–90
    [Google Scholar]
  9. 9. 
    Žoldák G, Stigler J, Pelz B, Li H, Rief M 2013. Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy. PNAS 110:18156–61
    [Google Scholar]
  10. 10. 
    Moffitt JR, Chemla YR, Izhaky D, Bustamante C 2006. Differential detection of dual traps improves the spatial resolution of optical tweezers. PNAS 103:9006–11
    [Google Scholar]
  11. 11. 
    Bustamante C, Chemla YR, Forde NR, Izhaky D 2004. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73:705–48
    [Google Scholar]
  12. 12. 
    Bell GI. 1978. Models for the specific adhesion of cells to cells. Science 200:618–27
    [Google Scholar]
  13. 13. 
    Wen J-D, Manosas M, Li PTX, Smith SB, Bustamante C et al. 2007. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys. J. 92:2996–3009
    [Google Scholar]
  14. 14. 
    Greenleaf WJ, Woodside MT, Abbondanzieri EA, Block SM 2005. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95:208102
    [Google Scholar]
  15. 15. 
    Dudko OK, Hummer G, Szabo A 2006. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96:108101
    [Google Scholar]
  16. 16. 
    Hummer G, Szabo A. 2003. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85:5–15
    [Google Scholar]
  17. 17. 
    Landry MP, McCall PM, Qi Z, Chemla YR 2009. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys. J. 97:2128–36
    [Google Scholar]
  18. 18. 
    Cecconi C, Shank EA, Bustamante C, Marqusee S 2005. Direct observation of the three-state folding of a single protein molecule. Science 309:2057–60
    [Google Scholar]
  19. 19. 
    Pfitzner E, Wachauf C, Kilchherr F, Pelz B, Shih WM et al. 2013. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Ed. 52:7766–71
    [Google Scholar]
  20. 20. 
    Bustamante C, Marko JF, Siggia ED, Smith SB 1994. Entropic elasticity of lambda phage DNA. Science 265:1599–600
    [Google Scholar]
  21. 21. 
    Smith SB, Cui Y, Bustamante C 1996. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–99
    [Google Scholar]
  22. 22. 
    Wang MD, Yin H, Landick R, Gelles J, Block SM 1997. Stretching DNA with optical tweezers. Biophys. J. 72:1335–46
    [Google Scholar]
  23. 23. 
    Marko JF, Siggia ED. 1995. Stretching DNA. 288759–70
  24. 24. 
    Bouchiat C, Wang MD, Allemand J-F, Strick T, Block SM, Croquette V 1999. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76:409–13
    [Google Scholar]
  25. 25. 
    Baumann C, Smith SB, Bloomfield VA, Bustamante C 1997. Ionic effects on the elasticity of single DNA molecules. PNAS 94:6185–90
    [Google Scholar]
  26. 26. 
    Yang G, Cecconi C, Baase WA, Vetter IR, Breyer WA et al. 2000. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. PNAS 97:139–44
    [Google Scholar]
  27. 27. 
    Vieregg J, Cheng W, Bustamante C, Tinoco I 2007. Measurement of the effect of monovalent cations on RNA hairpin stability. J. Am. Chem. Soc. 129:14966–73
    [Google Scholar]
  28. 28. 
    Allersma MW, Gittes F, deCastro MJ, Stewart RJ, Schmidt CF 1998. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys. J. 74:1074–85
    [Google Scholar]
  29. 29. 
    Stigler J, Ziegler F, Gieseke A, Gebhardt JC, Rief M 2011. The complex folding network of single calmodulin molecules. Science 334:512–16
    [Google Scholar]
  30. 30. 
    Jarzynski C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78:2690–93
    [Google Scholar]
  31. 31. 
    Crooks GE. 1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60:2721–26
    [Google Scholar]
  32. 32. 
    Liphardt J, Dumont S, Smith SB, Tinoco I Jr., Bustamante C. 2002. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. Science 296:1832–35
    [Google Scholar]
  33. 33. 
    Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I, Bustamante C 2005. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437:231–34
    [Google Scholar]
  34. 34. 
    Dudko OK, Hummer G, Szabo A 2008. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. PNAS 105:15755–60
    [Google Scholar]
  35. 35. 
    Jarzynski C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78:2690–93
    [Google Scholar]
  36. 36. 
    Liphardt J, Dumont S, Smith SB, Tinoco I, Bustamante C 2002. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. Science 296:1832–35
    [Google Scholar]
  37. 37. 
    Liu K, Chen X, Kaiser CM 2019. Energetic dependencies dictate folding mechanism in a complex protein. PNAS 116:25641–48
    [Google Scholar]
  38. 38. 
    Zhang Y, Dudko OK. 2013. A transformation for the mechanical fingerprints of complex biomolecular interactions. PNAS 110:16432–37
    [Google Scholar]
  39. 39. 
    Liphardt J, Onoa B, Smith SB, Tinoco I Jr., Bustamante C 2001. Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–37
    [Google Scholar]
  40. 40. 
    Kaiser CM, Goldman DH, Chodera JD, Tinoco I Jr., Bustamante C. 2011. The ribosome modulates nascent protein folding. Science 334:1723–27
    [Google Scholar]
  41. 41. 
    Mckinney SA, Joo C, Ha T 2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91:1941–51
    [Google Scholar]
  42. 42. 
    Stigler J, Rief M. 2012. Hidden Markov analysis of trajectories in single-molecule experiments and the effects of missed events. Chem. Phys. Chem. 13:1079–86
    [Google Scholar]
  43. 43. 
    Sgouralis I, Whitmore M, Lapidus L, Comstock MJ, Presse S 2018. Single molecule force spectroscopy at high data acquisition: a Bayesian nonparametric analysis. J. Chem. Phys. 148:123320
    [Google Scholar]
  44. 44. 
    Elms PJ, Chodera JD, Bustamante C, Marqusee S 2012. Limitations of constant-force-feedback experiments. Biophys. J. 103:1490–99
    [Google Scholar]
  45. 45. 
    Heidarsson PO, Naqvi MM, Otazo MR, Mossa A, Kragelund BB, Cecconi C 2014. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. PNAS 111:13069–74
    [Google Scholar]
  46. 46. 
    Cossio P, Hummer G, Szabo A 2015. On artifacts in single-molecule force spectroscopy. PNAS 112:14248–53
    [Google Scholar]
  47. 47. 
    Suzuki Y, Dudko OK. 2013. Single molecules in an extension clamp: extracting rates and activation barriers. Phys. Rev. Lett. 110:158105
    [Google Scholar]
  48. 48. 
    Li PTX, Collin D, Smith SB, Bustamante C, Tinoco I 2006. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump and force-ramp methods. Biophys. J. 90:250–60
    [Google Scholar]
  49. 49. 
    Raschke TM, Marqusee S. 1997. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat. Struct. Biol. 4:298–304
    [Google Scholar]
  50. 50. 
    Yu H, Liu X, Neupane K, Gupta AN, Brigley AM et al. 2012. Direct observation of multiple misfolding pathways in a single prion protein molecule. PNAS 109:5283–88
    [Google Scholar]
  51. 51. 
    Woodside MT, Block SM. 2014. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43:19–39
    [Google Scholar]
  52. 52. 
    Woodside MT, Anthony PC, Behnke-Parks WM, Larizadeh K, Herschlag D, Block SM 2006. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314:1001–4
    [Google Scholar]
  53. 53. 
    Hinczewski M, Gebhardt JC, Rief M, Thirumalai D 2013. From mechanical folding trajectories to intrinsic energy landscapes of biopolymers. PNAS 110:4500–5
    [Google Scholar]
  54. 54. 
    Gebhardt JC, Bornschlogl T, Rief M 2010. Full distance-resolved folding energy landscape of one single protein molecule. PNAS 107:2013–18
    [Google Scholar]
  55. 55. 
    Yu H, Gupta AN, Liu X, Neupane K, Brigley AM et al. 2012. Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates. PNAS 109:14452–57
    [Google Scholar]
  56. 56. 
    Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF et al. 1999. Mechanical unfolding intermediates in titin modules. Nature 402:100–3
    [Google Scholar]
  57. 57. 
    Dietz H, Berkemeier F, Bertz M, Rief M 2006. Anisotropic deformation response of single protein molecules. PNAS 103:12724–28
    [Google Scholar]
  58. 58. 
    Best RB, Fowler SB, Herrera JL, Steward A, Paci E, Clarke J 2003. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. J. Mol. Biol. 330:867–77
    [Google Scholar]
  59. 59. 
    Best RB, Paci E, Hummer G, Dudko OK 2008. Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. J. Phys. Chem. B 112:5968–76
    [Google Scholar]
  60. 60. 
    Jagannathan B, Elms PJ, Bustamante C, Marqusee S 2012. Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein. PNAS 109:17820–25
    [Google Scholar]
  61. 61. 
    Guinn EJ, Jagannathan B, Marqusee S 2015. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein. Nat. Commun. 6:6861
    [Google Scholar]
  62. 62. 
    Fersht AR, Matouschek A, Serrano L 1992. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224:771–82
    [Google Scholar]
  63. 63. 
    Motlagh HN, Toptygin D, Kaiser CM, Hilser VJ 2016. Single-molecule chemo-mechanical spectroscopy provides structural identity of folding intermediates. Biophys. J. 110:1280–90
    [Google Scholar]
  64. 64. 
    Hilser VJ, Freire E. 1996. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262:756–72
    [Google Scholar]
  65. 65. 
    Chung HS, Louis JM, Eaton WA 2009. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. PNAS 106:11837–44
    [Google Scholar]
  66. 66. 
    Neupane K, Foster DA, Dee DR, Yu H, Wang F, Woodside MT 2016. Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352:239–42
    [Google Scholar]
  67. 67. 
    Yu H, Dee DR, Liu X, Brigley AM, Sosova I, Woodside MT 2015. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape. PNAS 112:8308–13
    [Google Scholar]
  68. 68. 
    Bryngelson JD, Wolynes PG. 1987. Spin glasses and the statistical mechanics of protein folding. PNAS 84:7524–28
    [Google Scholar]
  69. 69. 
    Braselmann E, Chaney JL, Clark PL 2013. Folding the proteome. Trends Biochem. Sci. 38:337–44
    [Google Scholar]
  70. 70. 
    Bauer D, Meinhold S, Jakob RP, Stigler J, Merkel U et al. 2018. A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. PNAS 115:4666–71
    [Google Scholar]
  71. 71. 
    Bauer D, Merz DR, Pelz B, Theisen KE, Yacyshyn G et al. 2015. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK. PNAS 112:10389–94
    [Google Scholar]
  72. 72. 
    Jahn M, Buchner J, Hugel T, Rief M 2016. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. PNAS 113:1232–37
    [Google Scholar]
  73. 73. 
    Jahn M, Tych K, Girstmair H, Steinmassl M, Hugel T et al. 2018. Folding and domain interactions of three orthologs of Hsp90 studied by single-molecule force spectroscopy. Structure 26:96–105
    [Google Scholar]
  74. 74. 
    Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM 1999. Single protein misfolding events captured by atomic force microscopy. Nat. Struct. Biol. 6:1025–28
    [Google Scholar]
  75. 75. 
    Borgia MB, Borgia A, Best RB, Steward A, Nettels D et al. 2011. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474:662–65
    [Google Scholar]
  76. 76. 
    Shtilerman M, Lorimer GH, Englander SW 1999. Chaperonin function: folding by forced unfolding. Science 284:822–25
    [Google Scholar]
  77. 77. 
    Lin Z, Madan D, Rye HS 2008. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15:303–11
    [Google Scholar]
  78. 78. 
    Hayer-Hartl M, Bracher A, Hartl FU 2016. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41:62–76
    [Google Scholar]
  79. 79. 
    Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I Jr, Bustamante C 2015. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348:457–60
    [Google Scholar]
  80. 80. 
    Liu K, Rehfus JE, Mattson E, Kaiser CM 2017. The ribosome destabilizes native and non-native structures in a nascent multidomain protein. Protein Sci 26:1439–51
    [Google Scholar]
  81. 81. 
    Jahn M, Rehn A, Pelz B, Hellenkamp B, Richter K et al. 2014. The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function. PNAS 111:17881–86
    [Google Scholar]
  82. 82. 
    Bremer H, Dennis PP. 2008. Modulation of hemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3: https://doi.org/10.1128/ecosal.5.2.3
    [Crossref] [Google Scholar]
  83. 83. 
    Bostrom K, Wettesten M, Boren J, Bondjers G, Wiklund O, Olofsson SO 1986. Pulse-chase studies of the synthesis and intracellular transport of apolipoprotein B-100 in Hep G2 cells. J. Biol. Chem. 261:13800–6
    [Google Scholar]
  84. 84. 
    Phillips DC. 1967. Hen egg-white lysozyme molecule. PNAS 57:484–95
    [Google Scholar]
  85. 85. 
    Baase WA, Liu L, Tronrud DE, Matthews BW 2010. Lessons from the lysozyme of phage T4. Protein Sci 19:631–41
    [Google Scholar]
  86. 86. 
    Liu K, Maciuba K, Kaiser CM 2019. The ribosome cooperates with a chaperone to guide multi-domain protein folding. Mol. Cell 74:310–19
    [Google Scholar]
  87. 87. 
    Wruck F, Katranidis A, Nierhaus KH, Büldt G, Hegner M 2017. Translation and folding of single proteins in real time. PNAS 114:E4399–407
    [Google Scholar]
  88. 88. 
    Alexander L, Goldman DH, Wee LM, Bustamante C 2019. Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding. Nat. Commun. 10:2709
    [Google Scholar]
  89. 89. 
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU 2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82:323–55
    [Google Scholar]
  90. 90. 
    Bechtluft P, van Leeuwen RG, Tyreman M, Tomkiewicz D, Nouwen N et al. 2007. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318:1458–61
    [Google Scholar]
  91. 91. 
    Park S, Liu G, Topping TB, Cover WH, Randall LL 1988. Modulation of folding pathways of exported proteins by the leader sequence. Science 239:1033–35
    [Google Scholar]
  92. 92. 
    Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJ et al. 2013. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500:98–101
    [Google Scholar]
  93. 93. 
    Saio T, Guan X, Rossi P, Economou A, Kalodimos CG 2014. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494
    [Google Scholar]
  94. 94. 
    Kramer G, Rauch T, Rist W, Vorderwulbecke S, Patzelt H et al. 2002. L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–74
    [Google Scholar]
  95. 95. 
    Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–60
    [Google Scholar]
  96. 96. 
    Clerico EM, Tilitsky JM, Meng W, Gierasch LM 2015. How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol. 427:1575–88
    [Google Scholar]
  97. 97. 
    Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R et al. 2016. Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539:448–51
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111442
Loading
/content/journals/10.1146/annurev-biochem-013118-111442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error