1932

Abstract

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111603
2021-06-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-013118-111603.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111603&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Neuman RE, Logan MA. 1950. The determination of collagen and elastin in tissues. J. Biol. Chem. 186:2549–56
    [Google Scholar]
  2. 2. 
    Niederreither K, D'Souza R, Metsäranta M, Eberspaecher H, Toman PD et al. 1995. Coordinate patterns of expression of type I and III collagens during mouse development. Matrix Biol 14:9705–13
    [Google Scholar]
  3. 3. 
    Leung AWL, Wong SYY, Chan D, Tam PPL, Cheah KSE. 2010. Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Dev. Dyn. 239:92319–29
    [Google Scholar]
  4. 4. 
    Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. 2004. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:71619–28
    [Google Scholar]
  5. 5. 
    Ricard-Blum S. 2011. The collagen family. Cold Spring Harb. Perspect. Biol. 3:1a004978
    [Google Scholar]
  6. 6. 
    Bächinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J. 1980. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur. J. Biochem. 106:2619–32
    [Google Scholar]
  7. 7. 
    Makareeva E, Aviles NA, Leikin S. 2011. Chaperoning osteogenesis: new protein-folding disease paradigms. Trends Cell Biol. 21:3168–76
    [Google Scholar]
  8. 8. 
    Fidler AL, Boudko SP, Rokas A, Hudson BG. 2018. The triple helix of collagens—an ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell Sci. 131:jcs203950
    [Google Scholar]
  9. 9. 
    Leikina E, Mertts MV, Kuznetsova N, Leikin S 2002. Type I collagen is thermally unstable at body temperature. PNAS 99:31314–18
    [Google Scholar]
  10. 10. 
    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD et al. 2007. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28:3209–21
    [Google Scholar]
  11. 11. 
    Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. 2014. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet. Med. 16:12881–88
    [Google Scholar]
  12. 12. 
    Erdmann RS, Wennemers H. 2012. Effect of sterically demanding substituents on the conformational stability of the collagen triple helix. J. Am. Chem. Soc. 134:4117117–24
    [Google Scholar]
  13. 13. 
    Gauba V, Hartgerink JD. 2008. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. J. Am. Chem. Soc. 130:237509–15
    [Google Scholar]
  14. 14. 
    Bella J, Eaton M, Brodsky B, Berman HM. 1994. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266:518275–81
    [Google Scholar]
  15. 15. 
    Forlino A, Cabral WA, Barnes AM, Marini JC. 2011. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7:9540–57
    [Google Scholar]
  16. 16. 
    Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B. 2000. Amino acid propensities for the collagen triple-helix. Biochemistry 39:4814960–67
    [Google Scholar]
  17. 17. 
    Shoulders MD, Satyshur KA, Forest KT, Raines RT. 2010. Stereoelectronic and steric effects in side chains preorganize a protein main chain. PNAS 107:2559–64
    [Google Scholar]
  18. 18. 
    Shoulders MD, Raines RT. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929–58
    [Google Scholar]
  19. 19. 
    Maaßen A, Gebauer JM, Theres Abraham E, Grimm I, Neudörfl J-M et al. 2020. Triple-helix-stabilizing effects in collagen model peptides containing PPII-helix-preorganized diproline modules. Angew. Chem. Int. Ed. 59:145747–55
    [Google Scholar]
  20. 20. 
    Kramer RZ, Bella J, Mayville P, Brodsky B, Berman HM. 1999. Sequence dependent conformational variations of collagen triple-helical structure. Nat. Struct. Biol. 6:5454–57
    [Google Scholar]
  21. 21. 
    Boudko SP, Engel J, Okuyama K, Mizuno K, Bächinger HP, Schumacher MA. 2008. Crystal structure of human type III collagen Gly991–Gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries. J. Biol. Chem. 283:4732580–89
    [Google Scholar]
  22. 22. 
    Manka SW, Carafoli F, Visse R, Bihan D, Raynal N et al. 2012. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. PNAS 109:3112461–66
    [Google Scholar]
  23. 23. 
    Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. 2000. Structural basis of collagen recognition by integrin α2β1. Cell 101:147–56
    [Google Scholar]
  24. 24. 
    Dzamba BJ, Wu H, Jaenisch R, Peters DM. 1993. Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J. Cell Biol. 121:51165–72
    [Google Scholar]
  25. 25. 
    Zheng H, Lu C, Lan J, Fan S, Nanda V, Xu F 2018. How electrostatic networks modulate specificity and stability of collagen. PNAS 115:246207–12
    [Google Scholar]
  26. 26. 
    Gauba V, Hartgerink JD. 2007. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129:92683–90
    [Google Scholar]
  27. 27. 
    Hwang J, Huang Y, Burwell TJ, Peterson NC, Connor J et al. 2017. In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 11:109825–35
    [Google Scholar]
  28. 28. 
    Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M et al. 2019. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J 38:e99847
    [Google Scholar]
  29. 29. 
    Rappu P, Salo AM, Myllyharju J, Heino J. 2019. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem 63:3325–35
    [Google Scholar]
  30. 30. 
    Berg RA, Prockop DJ. 1973. Affinity column purification of protocollagen proline hydroxylase from chick embryos and further characterization of the enzyme. J. Biol. Chem. 248:41175–82
    [Google Scholar]
  31. 31. 
    Wilson R, Lees JF, Bulleid NJ. 1998. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 273:169637–43
    [Google Scholar]
  32. 32. 
    Myllyharju J, Kivirikko KI. 2004. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:133–43
    [Google Scholar]
  33. 33. 
    Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. 2014. Stable isotope-labeled collagen: a novel and versatile tool for quantitative collagen analyses using mass spectrometry. J. Proteome Res. 13:83671–78
    [Google Scholar]
  34. 34. 
    Taga Y, Kusubata M, Mizuno K. 2020. Quantitative analysis of the positional distribution of hydroxy-proline in collagenous Gly-Xaa-Yaa sequences by LC-MS with partial acid hydrolysis and precolumn derivatization. Anal. Chem. 92:128427–34
    [Google Scholar]
  35. 35. 
    Pokidysheva E, Boudko S, Vranka J, Zientek K, Maddox K et al. 2014. Biological role of prolyl 3-hydroxylation in type IV collagen. PNAS 111:1161–66
    [Google Scholar]
  36. 36. 
    Eyre DR, Weis MA. 2013. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif. Tissue Int. 93:4338–47
    [Google Scholar]
  37. 37. 
    Vranka JA, Sakai LY, Bächinger HP. 2004. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279:2223615–21
    [Google Scholar]
  38. 38. 
    Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L et al. 2006. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:2291–304
    [Google Scholar]
  39. 39. 
    Choi JW, Sutor SL, Lindquist L, Evans GL, Madden BJ et al. 2009. Severe osteogenesis imperfecta in cyclophilin B–deficient mice. PLOS Genet 5:12e1000750
    [Google Scholar]
  40. 40. 
    Cabral WA, Chang W, Barnes AM, Weis M, Scott MA et al. 2007. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat. Genet. 39:3359–65
    [Google Scholar]
  41. 41. 
    van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PGJ, Piersma SR et al. 2009. PPIB mutations cause severe osteogenesis imperfecta. Am. J. Hum. Genet. 85:4521–27
    [Google Scholar]
  42. 42. 
    Fernandes RJ, Farnand AW, Traeger GR, Weis MA, Eyre DR. 2011. A role for prolyl 3-hydroxylase 2 in post-translational modification of fibril-forming collagens. J. Biol. Chem. 286:3530662–69
    [Google Scholar]
  43. 43. 
    Kivirikko KI, Ryhänen L, Anttinen H, Bornstein P, Prockop DJ. 1973. Further hydroxylation of lysyl residues in collagen by protocollagen lysyl hydroxylase in vitro. Biochemistry 12:244966–71
    [Google Scholar]
  44. 44. 
    Yamauchi M, Sricholpech M. 2012. Lysine post-translational modifications of collagen. Essays Biochem 52:113–33
    [Google Scholar]
  45. 45. 
    Takaluoma K, Lantto J, Myllyharju J. 2007. Lysyl hydroxylase 2 is a specific telopeptide hydroxylase, while all three isoenzymes hydroxylate collagenous sequences. Matrix Biol 26:5396–403
    [Google Scholar]
  46. 46. 
    Gjaltema RAF, van der Stoel MM, Boersema M, Bank RA 2016. Disentangling mechanisms involved in collagen pyridinoline cross-linking: The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2. PNAS 113:267142–47
    [Google Scholar]
  47. 47. 
    Duran I, Martin JH, Weis MA, Krejci P, Konik P et al. 2017. A chaperone complex formed by HSP47, FKBP65, and BiP modulates telopeptide lysyl hydroxylation of type I procollagen. J. Bone Miner. Res. 32:61309–19
    [Google Scholar]
  48. 48. 
    Ishikawa Y, Holden P, Bächinger HP. 2017. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J. Biol. Chem. 292:4217216–24
    [Google Scholar]
  49. 49. 
    Heard ME, Besio R, Weis M, Rai J, Hudson DM et al. 2016. Sc65-null mice provide evidence for a novel endoplasmic reticulum complex regulating collagen lysyl hydroxylation. PLOS Genet 12:4e1006002
    [Google Scholar]
  50. 50. 
    Hudson DM, Weis M, Rai J, Joeng KS, Dimori M et al. 2017. P3h3-null and Sc65-null mice phenocopy the collagen lysine under-hydroxylation and cross-linking abnormality of Ehlers-Danlos syndrome type VIA. J. Biol. Chem. 292:93877–87
    [Google Scholar]
  51. 51. 
    Ruotsalainen H, Sipilä L, Vapola M, Sormunen R, Salo AM et al. 2006. Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J. Cell Sci. 119:Part 4625–35
    [Google Scholar]
  52. 52. 
    Rautavuoma K, Takaluoma K, Sormunen R, Myllyharju J, Kivirikko KI, Soininen R 2004. Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice. PNAS 101:3914120–25
    [Google Scholar]
  53. 53. 
    Geister KA, Timms AE, Beier DR. 2018. Optimizing genomic methods for mapping and identification of candidate variants in ENU mutagenesis screens using inbred mice. G3: Genes Genomes Genet. 8:2401–9
    [Google Scholar]
  54. 54. 
    Scietti L, Chiapparino A, De Giorgi F, Fumagalli M, Khoriauli L et al. 2018. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat. Commun. 9:13163
    [Google Scholar]
  55. 55. 
    Baumann S, Hennet T. 2016. Collagen accumulation in osteosarcoma cells lacking GLT25D1 collagen galactosyltransferase. J. Biol. Chem. 291:3518514–24
    [Google Scholar]
  56. 56. 
    Banushi B, Forneris F, Straatman-Iwanowska A, Strange A, Lyne A-M et al. 2016. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nat. Commun. 7:12111
    [Google Scholar]
  57. 57. 
    Bentovim L, Amarilio R, Zelzer E. 2013. HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development 139:234473–83 Correction. 2013. Development 140(1):248
    [Google Scholar]
  58. 58. 
    Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H et al. 2013. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73:113285–96
    [Google Scholar]
  59. 59. 
    Eisinger-Mathason TSK, Zhang M, Qiu Q, Skuli N, Nakazawa MS et al. 2013. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3:101190–205
    [Google Scholar]
  60. 60. 
    Xiong G, Stewart RL, Chen J, Gao T, Scott TL et al. 2018. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat. Commun. 9:14456
    [Google Scholar]
  61. 61. 
    Stegen S, Laperre K, Eelen G, Rinaldi G, Fraisl P et al. 2019. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565:7740511–15
    [Google Scholar]
  62. 62. 
    Baumann M, Giunta C, Krabichler B, Rüschendorf F, Zoppi N et al. 2012. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am. J. Hum. Genet. 90:2201–16
    [Google Scholar]
  63. 63. 
    Madhan B, Xiao J, Thiagarajan G, Baum J, Brodsky B. 2008. NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 130:4113520–21
    [Google Scholar]
  64. 64. 
    Sengupta PK, Smith EM, Kim K, Murnane MJ, Smith BD. 2003. DNA hypermethylation near the transcription start site of collagen α2(I) gene occurs in both cancer cell lines and primary colorectal cancers. Cancer Res 63:1789–97
    [Google Scholar]
  65. 65. 
    Makareeva E, Han S, Vera JC, Sackett DL, Holmbeck K et al. 2010. Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res 70:114366–74
    [Google Scholar]
  66. 66. 
    Pace JM, Wiese M, Drenguis AS, Kuznetsova N, Leikin S et al. 2008. Defective C-propeptides of the proα2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J. Biol. Chem. 283:2316061–67
    [Google Scholar]
  67. 67. 
    Bourhis J-M, Mariano N, Zhao Y, Harlos K, Exposito J-Y et al. 2012. Structural basis of fibrillar collagen trimerization and related genetic disorders. Nat. Struct. Mol. Biol. 19:101031–36
    [Google Scholar]
  68. 68. 
    Sharma U, Carrique L, Vadon-Le Goff S, Mariano N, Georges R-N et al. 2017. Structural basis of homo- and heterotrimerization of collagen I. Nat. Commun. 8:14671
    [Google Scholar]
  69. 69. 
    DiChiara AS, Li RC, Suen PH, Hosseini AS, Taylor RJ et al. 2018. A cysteine-based molecular code informs collagen C-propeptide assembly. Nat. Commun. 9:14206
    [Google Scholar]
  70. 70. 
    Lees JF, Tasab M, Bulleid NJ. 1997. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16:5908–16
    [Google Scholar]
  71. 71. 
    Serrat MA, King D, Lovejoy CO 2008. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. PNAS 105:4919348–53
    [Google Scholar]
  72. 72. 
    Ito S, Nagata K. 2017. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62:142–51
    [Google Scholar]
  73. 73. 
    Satoh M, Hirayoshi K, Yokota S, Hosokawa N, Nagata K. 1996. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J. Cell Biol. 133:2469–83
    [Google Scholar]
  74. 74. 
    Natsume T, Koide T, Yokota S, Hirayoshi K, Nagata K. 1994. Interactions between collagen-binding stress protein HSP47 and collagen. Analysis of kinetic parameters by surface plasmon resonance biosensor. J. Biol. Chem. 269:4931224–28
    [Google Scholar]
  75. 75. 
    Koide T, Takahara Y, Asada S, Nagata K. 2002. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J. Biol. Chem. 277:86178–82
    [Google Scholar]
  76. 76. 
    Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F et al. 2012. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. PNAS 109:3313243–47
    [Google Scholar]
  77. 77. 
    Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y et al. 2006. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins. J. Biol. Chem. 281:1611177–85
    [Google Scholar]
  78. 78. 
    Köhler A, Mörgelin M, Gebauer JM, Öcal S, Imhof T et al. 2020. New specific HSP47 functions in collagen subfamily chaperoning. FASEB J 34:912040–52
    [Google Scholar]
  79. 79. 
    Macdonald JR, Bächinger HP. 2001. HSP47 binds cooperatively to triple helical type I collagen but has little effect on the thermal stability or rate of refolding. J. Biol. Chem. 276:2725399–403
    [Google Scholar]
  80. 80. 
    Thomson CA, Ananthanarayanan VS. 2000. Structure–function studies on Hsp47: pH-dependent inhibition of collagen fibril formation in vitro. Biochem. J. 349:Part 3877–83
    [Google Scholar]
  81. 81. 
    Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bächinger HP, Nagata K. 2006. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17:52346–55
    [Google Scholar]
  82. 82. 
    Ito S, Ogawa K, Takeuchi K, Takagi M, Yoshida M et al. 2017. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J. Biol. Chem. 292:4920076–85
    [Google Scholar]
  83. 83. 
    Orgel JPRO, Irving TC, Miller A, Wess TJ 2006. Microfibrillar structure of type I collagen in situ. PNAS 103:249001–5
    [Google Scholar]
  84. 84. 
    Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T et al. 2000. Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150:61499–506
    [Google Scholar]
  85. 85. 
    Birukawa NK, Murase K, Sato Y, Kosaka A, Yoneda A et al. 2014. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth. J. Biol. Chem. 289:2920209–21
    [Google Scholar]
  86. 86. 
    Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M et al. 2010. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86:3389–98
    [Google Scholar]
  87. 87. 
    Masuda H, Fukumoto M, Hirayoshi K, Nagata K. 1994. Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J. Clin. Investig. 94:62481–88
    [Google Scholar]
  88. 88. 
    Sunamoto M, Kuze K, Tsuji H, Ohishi N, Yagi K et al. 1998. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab. Investig. 78:8967–72
    [Google Scholar]
  89. 89. 
    Sato Y, Murase K, Kato J, Kobune M, Sato T et al. 2008. Resolution of liver cirrhosis using vitamin A–coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26:4431–42
    [Google Scholar]
  90. 90. 
    Hirata H, Yamamura I, Yasuda K, Kobayashi A, Tada N et al. 1999. Separate cis-acting DNA elements control cell type- and tissue-specific expression of collagen binding molecular chaperone HSP47. J. Biol. Chem. 274:5035703–10
    [Google Scholar]
  91. 91. 
    Yasuda K, Hirayoshi K, Hirata H, Kubota H, Hosokawa N, Nagata K. 2002. The Kruppel-like factor Zf9 and proteins in the Sp1 family regulate the expression of HSP47, a collagen-specific molecular chaperone. J. Biol. Chem. 277:4744613–22
    [Google Scholar]
  92. 92. 
    Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T et al. 2013. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int. J. Oncol. 43:61855–63
    [Google Scholar]
  93. 93. 
    Zhao D, Jiang X, Yao C, Zhang L, Liu H et al. 2014. Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J. Neurooncol. 118:139–47
    [Google Scholar]
  94. 94. 
    Zhu J, Xiong G, Fu H, Evers BM, Zhou BP, Xu R. 2015. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res 75:81580–91
    [Google Scholar]
  95. 95. 
    Nagata K, Saga S, Yamada KM. 1986. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J. Cell Biol. 103:1223–29
    [Google Scholar]
  96. 96. 
    Mori K. 2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146:6743–50
    [Google Scholar]
  97. 97. 
    Walter P, Ron D 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:60591081–86
    [Google Scholar]
  98. 98. 
    Eletto D, Maganty A, Eletto D, Dersh D, Makarewich C et al. 2012. Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response. J. Cell Sci. 125:Part 204865–75
    [Google Scholar]
  99. 99. 
    Hosokawa N, Takechi H, Yokota S, Hirayoshi K, Nagata K. 1993. Structure of the gene encoding the mouse 47-kDa heat-shock protein (HSP47). Gene 126:2187–93
    [Google Scholar]
  100. 100. 
    Mori K, Sant A, Kohno K, Normington K, Gething MJ, Sambrook JF. 1992. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:72583–93
    [Google Scholar]
  101. 101. 
    Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R et al. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:3549–62
    [Google Scholar]
  102. 102. 
    Torre-Blanco A, Adachi E, Hojima Y, Wootton JA, Minor RR, Prockop DJ 1992. Temperature-induced post-translational over-modification of type I procollagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J. Biol. Chem. 267:42650–55
    [Google Scholar]
  103. 103. 
    Fujii KK, Taga Y, Sakai T, Ito S, Hattori S et al. 2019. Lowering the culture temperature corrects collagen abnormalities caused by HSP47 gene knockout. Sci. Rep. 9:117433
    [Google Scholar]
  104. 104. 
    Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A et al. 1998. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:7993–1003
    [Google Scholar]
  105. 105. 
    Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L 1998. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. PNAS 95:1911199–204
    [Google Scholar]
  106. 106. 
    Saito K, Chen M, Bard F, Chen S, Zhou H et al. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:5891–902
    [Google Scholar]
  107. 107. 
    Wilson DG, Phamluong K, Li L, Sun M, Cao TC et al. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol. 193:5935–51
    [Google Scholar]
  108. 108. 
    Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. 2014. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J. Cell Biol. 206:6751–62
    [Google Scholar]
  109. 109. 
    Maeda M, Katada T, Saito K. 2017. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J. Cell Biol. 216:61731–43
    [Google Scholar]
  110. 110. 
    Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A et al. 2012. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:61021668–72
    [Google Scholar]
  111. 111. 
    Teyra J, Huang H, Jain S, Guan X, Dong A et al. 2017. Comprehensive analysis of the human SH3 domain family reveals a wide variety of non-canonical specificities. Structure 25:101598–1610.e3
    [Google Scholar]
  112. 112. 
    Ishikawa Y, Ito S, Nagata K, Sakai LY, Bächinger HP 2016. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. PNAS 113:41E6036–44
    [Google Scholar]
  113. 113. 
    Yuan L, Kenny SJ, Hemmati J, Xu K, Schekman R 2018. TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. PNAS 115:52E12255–64
    [Google Scholar]
  114. 114. 
    Raote I, Ortega Bellido M, Pirozzi M, Zhang C, Melville D et al. 2017. TANGO1 assembles into rings around COPII coats at ER exit sites. J. Cell Biol. 216:4901–9
    [Google Scholar]
  115. 115. 
    Luo C, Pook E, Tang B, Zhang W, Li S et al. 2017. Androgen inhibits key atherosclerotic processes by directly activating ADTRP transcription. Biochim. Biophys. Acta Mol. Basis Dis. 1863:92319–32
    [Google Scholar]
  116. 116. 
    Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C et al. 2018. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 7:e32723
    [Google Scholar]
  117. 117. 
    Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. 2020. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 9:e57822
    [Google Scholar]
  118. 118. 
    Itzhak DN, Tyanova S, Cox J, Borner GH. 2016. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5:e16950
    [Google Scholar]
  119. 119. 
    McCaughey J, Stevenson NL, Cross S, Stephens DJ. 2019. ER-to-Golgi trafficking of procollagen in the absence of large carriers. J. Cell Biol. 218:3929–48
    [Google Scholar]
  120. 120. 
    Chang J, Garva R, Pickard A, Yeung C-YC, Mallikarjun V et al. 2020. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22:174–86
    [Google Scholar]
  121. 121. 
    Bienkowski RS, Baum BJ, Crystal RG. 1978. Fibroblasts degrade newly synthesised collagen within the cell before secretion. Nature 276:5686413–16
    [Google Scholar]
  122. 122. 
    Rennard SI, Stier LE, Crystal RG. 1982. Intracellular degradation of newly synthesized collagen. J. Investig. Dermatol. 79:Suppl. 177s–82s
    [Google Scholar]
  123. 123. 
    Berg RA, Schwartz ML, Crystal RG 1980. Regulation of the production of secretory proteins: intracellular degradation of newly synthesized “defective” collagen. PNAS 77:84746–50
    [Google Scholar]
  124. 124. 
    Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107–32
    [Google Scholar]
  125. 125. 
    Ishida Y, Yamamoto A, Kitamura A, Lamandé SR, Yoshimori T et al. 2009. Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol. Biol. Cell 20:112744–54
    [Google Scholar]
  126. 126. 
    Pohl C, Dikic I. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:6467818–22
    [Google Scholar]
  127. 127. 
    Oikonomou C, Hendershot LM. 2020. Disposing of misfolded ER proteins: a troubled substrate's way out of the ER. Mol. Cell. Endocrinol. 500:110630
    [Google Scholar]
  128. 128. 
    Teckman JH, Perlmutter DH. 2000. Retention of mutant α1-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol. 279:5G961–74
    [Google Scholar]
  129. 129. 
    Kamimoto T, Shoji S, Hidvegi T, Mizushima N, Umebayashi K et al. 2006. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem. 281:74467–76
    [Google Scholar]
  130. 130. 
    Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A et al. 2007. Two endoplasmic reticulum–associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16:6618–29
    [Google Scholar]
  131. 131. 
    Houck SA, Ren HY, Madden VJ, Bonner JN, Conlin MP et al. 2014. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol. Cell 54:1166–79
    [Google Scholar]
  132. 132. 
    Cinque L, Forrester A, Bartolomeo R, Svelto M, Venditti R et al. 2015. FGF signalling regulates bone growth through autophagy. Nature 528:7581272–75
    [Google Scholar]
  133. 133. 
    Duffield JS, Lupher M, Thannickal VJ, Wynn TA. 2013. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. Mech. Dis. 8:241–76
    [Google Scholar]
  134. 134. 
    Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. 2008. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Investig. 118:179–88
    [Google Scholar]
  135. 135. 
    Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW et al. 2018. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24:81121–27
    [Google Scholar]
  136. 136. 
    Okamoto K, Kondo-Okamoto N, Ohsumi Y. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17:187–97
    [Google Scholar]
  137. 137. 
    Schuck S, Gallagher CM, Walter P. 2014. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127:Part 184078–88
    [Google Scholar]
  138. 138. 
    Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:7556354–58
    [Google Scholar]
  139. 139. 
    Chen R, Jin R, Wu L, Ye X, Yang Y et al. 2011. Reticulon 3 attenuates the clearance of cytosolic prion aggregates via inhibiting autophagy. Autophagy 7:2205–16
    [Google Scholar]
  140. 140. 
    Smith MD, Harley ME, Kemp AJ, Wills J, Lee M et al. 2018. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev. Cell 44:2217–32.e11
    [Google Scholar]
  141. 141. 
    Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB et al. 2016. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 18:111173–84
    [Google Scholar]
  142. 142. 
    Chen Q, Xiao Y, Chai P, Zheng P, Teng J, Chen J 2019. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29:5846–55.e6
    [Google Scholar]
  143. 143. 
    Chino H, Hatta T, Natsume T, Mizushima N. 2019. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol. Cell 74:5909–21.e6
    [Google Scholar]
  144. 144. 
    An H, Ordureau A, Paulo JA, Shoemaker CJ, Denic V, Harper JW. 2019. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell 74:5891–908.e10
    [Google Scholar]
  145. 145. 
    Nakatogawa H. 2020. Autophagic degradation of the endoplasmic reticulum. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 96:11–9
    [Google Scholar]
  146. 146. 
    Cui Y, Parashar S, Zahoor M, Needham PG, Mari M et al. 2019. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365:644853–60
    [Google Scholar]
  147. 147. 
    Schnieke A, Harbers K, Jaenisch R. 1983. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature 304:5924315–20
    [Google Scholar]
  148. 148. 
    Gotkin MG, Ripley CR, Lamande SR, Bateman JF, Bienkowski RS. 2004. Intracellular trafficking and degradation of unassociated proα2 chains of collagen type I. Exp. Cell Res 296:2307–16
    [Google Scholar]
  149. 149. 
    Fitzgerald J, Lamande SR, Bateman JF. 1999. Proteasomal degradation of unassembled mutant type I collagen pro-α1(I) chains. J. Biol. Chem. 274:3927392–98
    [Google Scholar]
  150. 150. 
    Warman ML, Abbott M, Apte SS, Hefferon T, McIntosh I et al. 1993. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat. Genet. 5:179–82
    [Google Scholar]
  151. 151. 
    Bonaventure J, Chaminade F, Maroteaux P. 1995. Mutations in three subdomains of the carboxy-terminal region of collagen type X account for most of the Schmid metaphyseal dysplasias. Hum. Genet. 96:158–64
    [Google Scholar]
  152. 152. 
    Wilson R, Freddi S, Bateman JF 2002. Collagen X chains harboring Schmid metaphyseal chondrodysplasia NC1 domain mutations are selectively retained and degraded in stably transfected cells. J. Biol. Chem. 277:1512516–24
    [Google Scholar]
  153. 153. 
    Cameron TL, Bell KM, Gresshoff IL, Sampurno L, Mullan L et al. 2015. XBP1-independent UPR pathways suppress C/EBP-β mediated chondrocyte differentiation in ER-stress related skeletal disease. PLOS Genet 11:9e1005505
    [Google Scholar]
  154. 154. 
    Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C et al. 2010. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329:5988229–32
    [Google Scholar]
  155. 155. 
    Mullan LA, Mularczyk EJ, Kung LH, Forouhan M, Wragg JM et al. 2017. Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism. J. Clin. Investig. 127:103861–65
    [Google Scholar]
  156. 156. 
    Mochida K, Yamasaki A, Matoba K, Kirisako H, Noda NN, Nakatogawa H. 2020. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun. 11:13306
    [Google Scholar]
  157. 157. 
    Holster T, Pakkanen O, Soininen R, Sormunen R, Nokelainen M et al. 2007. Loss of assembly of the main basement membrane collagen, type IV, but not fibril-forming collagens and embryonic death in collagen prolyl 4-hydroxylase I null mice. J. Biol. Chem. 282:42512–19
    [Google Scholar]
  158. 158. 
    Guo H, Tong P, Liu Y, Xia L, Wang T et al. 2015. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. Genet. Med. 17:4300–6
    [Google Scholar]
  159. 159. 
    Rauch F, Fahiminiya S, Majewski J, Carrot-Zhang J, Boudko S et al. 2015. Cole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB. Am. J. Hum. Genet. 96:3425–31
    [Google Scholar]
  160. 160. 
    Mordechai S, Gradstein L, Pasanen A, Ofir R, El Amour K et al. 2011. High myopia caused by a mutation in LEPREL1, encoding prolyl 3-hydroxylase 2. Am. J. Hum. Genet. 89:3438–45
    [Google Scholar]
  161. 161. 
    Barnes AM, Chang W, Morello R, Cabral WA, Weis M et al. 2006. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355:262757–64
    [Google Scholar]
  162. 162. 
    Takaluoma K, Hyry M, Lantto J, Sormunen R, Bank RA et al. 2007. Tissue-specific changes in the hydroxylysine content and cross-links of collagens and alterations in fibril morphology in lysyl hydroxylase 1 knock-out mice. J. Biol. Chem. 282:96588–96
    [Google Scholar]
  163. 163. 
    Hyland J, Ala-Kokko L, Royce P, Steinmann B, Kivirikko KI, Myllylä R 1992. A homozygous stop codon in the lysyl hydroxylase gene in two siblings with Ehlers-Danlos syndrome type VI. Nat. Genet. 2:3228–31
    [Google Scholar]
  164. 164. 
    van der Slot AJ, Zuurmond A-M, Bardoel AFJ, Wijmenga C, Pruijs HEH et al. 2003. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278:4240967–72
    [Google Scholar]
  165. 165. 
    Salo AM, Cox H, Farndon P, Moss C, Grindulis H et al. 2008. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am. J. Hum. Genet. 83:4495–503
    [Google Scholar]
  166. 166. 
    Schegg B, Hülsmeier AJ, Rutschmann C, Maag C, Hennet T. 2009. Core glycosylation of collagen is initiated by two β(1-O)galactosyltransferases. Mol. Cell. Biol. 29:4943–52
    [Google Scholar]
  167. 167. 
    Ishikawa Y, Mizuno K, Bächinger HP. 2017. Ziploc-ing the structure 2.0: Endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J. Biol. Chem. 292:229273–82
    [Google Scholar]
  168. 168. 
    Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR et al. 2014. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLOS Genet 10:6e1004465
    [Google Scholar]
  169. 169. 
    Lietman CD, Rajagopal A, Homan EP, Munivez E, Jiang M-M et al. 2014. Connective tissue alterations in Fkbp10−/− mice. Hum. Mol. Genet. 23:184822–31
    [Google Scholar]
  170. 170. 
    Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K et al. 2010. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86:4551–59
    [Google Scholar]
  171. 171. 
    Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR et al. 2013. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum. Mol. Genet. 22:11–17
    [Google Scholar]
  172. 172. 
    Lekszas C, Foresti O, Raote I, Liedtke D, König E-M et al. 2020. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. eLife 9:e51319
    [Google Scholar]
  173. 173. 
    Wang Y, Liu L, Zhang H, Fan J, Zhang F et al. 2016. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res 26:7787–804
    [Google Scholar]
  174. 174. 
    Pitman JL, Bonnet DJ, Curtiss LK, Gekakis N. 2011. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J. Lipid Res. 52:101775–86
    [Google Scholar]
  175. 175. 
    Baines AC, Adams EJ, Zhang B, Ginsburg D. 2013. Disruption of the Sec24d gene results in early embryonic lethality in the mouse. PLOS ONE 8:4e61114
    [Google Scholar]
  176. 176. 
    Garbes L, Kim K, Rieß A, Hoyer-Kuhn H, Beleggia F et al. 2015. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am. J. Hum. Genet. 96:3432–3
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111603
Loading
/content/journals/10.1146/annurev-biochem-013118-111603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error