1932

Abstract

Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-040313
2023-06-20
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052521-040313.html?itemId=/content/journals/10.1146/annurev-biochem-052521-040313&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ingham PW. 2022. Hedgehog signaling. Curr. Top. Dev. Biol. 149:1–58
    [Google Scholar]
  2. 2.
    Kong JH, Siebold C, Rohatgi R. 2019. Biochemical mechanisms of vertebrate hedgehog signaling. Development 146:10dev166892
    [Google Scholar]
  3. 3.
    McMahon AP, Ingham PW, Tabin CJ. 2003. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53:1–114
    [Google Scholar]
  4. 4.
    Ingham PW, Taylor AM, Nakano Y. 1991. Role of the Drosophila patched gene in positional signalling. Nature 353:6340184–87
    [Google Scholar]
  5. 5.
    Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:696283–87
    [Google Scholar]
  6. 6.
    Rohatgi R, Milenkovic L, Scott MP. 2007. Patched1 regulates hedgehog signaling at the primary cilium. Science 317:5836372–76
    [Google Scholar]
  7. 7.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. 2005. Vertebrate Smoothened functions at the primary cilium. Nature 437:70611018–21
    [Google Scholar]
  8. 8.
    Haberland ME, Reynolds JA. 1973. Self-association of cholesterol in aqueous solution. PNAS 70:82313–16
    [Google Scholar]
  9. 9.
    Gilbert DB, Tanford C, Reynolds JA. 1975. Cholesterol in aqueous solution: hydrophobicity and self-association. Biochemistry 14:2444–48
    [Google Scholar]
  10. 10.
    Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ et al. 1996. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271:2716026–34
    [Google Scholar]
  11. 11.
    Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL et al. 2009. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137:71213–24
    [Google Scholar]
  12. 12.
    Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:4830–43
    [Google Scholar]
  13. 13.
    Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. 2008. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8:6512–21
    [Google Scholar]
  14. 14.
    van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:2112–24
    [Google Scholar]
  15. 15.
    Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A 2014. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3:e02882
    [Google Scholar]
  16. 16.
    Lange Y, Steck TL. 2020. Active cholesterol 20 years on. Traffic 21:11662–74
    [Google Scholar]
  17. 17.
    Radhakrishnan A, McConnell HM. 2000. Chemical activity of cholesterol in membranes. Biochemistry 39:288119–24
    [Google Scholar]
  18. 18.
    Demel RA, Jansen JW, van Dijck PW, van Deenen LL. 1977. The preferential interaction of cholesterol with different classes of phospholipids. Biochim. Biophys. Acta Biomembr. 465:11–10
    [Google Scholar]
  19. 19.
    Abrams ME, Johnson KA, Perelman SS, Zhang L-S, Endapally S et al. 2020. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat. Microbiol. 5:929–42
    [Google Scholar]
  20. 20.
    Wang S, Li W, Hui H, Tiwari SK, Zhang Q et al. 2020. Cholesterol 25-hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J 39:21e106057
    [Google Scholar]
  21. 21.
    Hall TM, Porter JA, Beachy PA, Leahy DJ. 1995. A potential catalytic site revealed by the 1.7-Å crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378:6553212–16
    [Google Scholar]
  22. 22.
    Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ. 1997. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:185–97
    [Google Scholar]
  23. 23.
    Porter JA, Ekker SC, Park WJ, von Kessler DP, Young KE et al. 1996. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86:121–34
    [Google Scholar]
  24. 24.
    Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ et al. 1995. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374:6520363–66
    [Google Scholar]
  25. 25.
    Porter JA, Young KE, Beachy PA. 1996. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:5285255–59
    [Google Scholar]
  26. 26.
    Zhao J, Ciulla DA, Xie J, Wagner AG, Castillo DA et al. 2019. General base swap preserves activity and expands substrate tolerance in hedgehog autoprocessing. J. Am. Chem. Soc. 141:4618380–84
    [Google Scholar]
  27. 27.
    Purohit R, Peng DS, Vielmas E, Ondrus AE. 2020. Dual roles of the sterol recognition region in Hedgehog protein modification. Commun. Biol. 3:1250
    [Google Scholar]
  28. 28.
    Sokolov A, Radhakrishnan A. 2010. Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J. Biol. Chem. 285:3829480–90
    [Google Scholar]
  29. 29.
    Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP et al. 1998. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273:2214037–45
    [Google Scholar]
  30. 30.
    Taylor FR, Wen D, Garber EA, Carmillo AN, Baker DP et al. 2001. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40:144359–71
    [Google Scholar]
  31. 31.
    Buglino JA, Resh MD. 2008. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J. Biol. Chem. 283:3222076–88
    [Google Scholar]
  32. 32.
    Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M et al. 2001. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293:55372080–84
    [Google Scholar]
  33. 33.
    Jiang Y, Benz TL, Long SB. 2021. Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT. Science 372:65471215–19
    [Google Scholar]
  34. 34.
    Coupland CE, Andrei SA, Ansell TB, Carrique L, Kumar P et al. 2021. Structure, mechanism, and inhibition of Hedgehog acyltransferase. Mol. Cell 81:245025–38.e10
    [Google Scholar]
  35. 35.
    Peters C, Wolf A, Wagner M, Kuhlmann J, Waldmann H. 2004. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. PNAS 101:238531–36
    [Google Scholar]
  36. 36.
    Tukachinsky H, Kuzmickas RP, Jao CY, Liu J, Salic A. 2012. Dispatched and Scube mediate the efficient secretion of the cholesterol-modified Hedgehog ligand. Cell Rep 2:2308–20
    [Google Scholar]
  37. 37.
    Strigini M, Cohen SM. 1997. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124:224697–705
    [Google Scholar]
  38. 38.
    Burke R, Nellen D, Bellotto M, Hafen E, Senti KA et al. 1999. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99:7803–15
    [Google Scholar]
  39. 39.
    Tabata T, Kornberg TB. 1994. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76:189–102
    [Google Scholar]
  40. 40.
    Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF et al. 2001. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:5599–612
    [Google Scholar]
  41. 41.
    Ma Y, Erkner A, Gong R, Yao S, Taipale J et al. 2002. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:163–75
    [Google Scholar]
  42. 42.
    Caspary T, Garcia-Garcia MJ, Huangfu D, Eggenschwiler JT, Wyler MR et al. 2002. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr. Biol. 12:181628–32
    [Google Scholar]
  43. 43.
    Kawakami T, Kawcak T, Li Y-J, Zhang W, Hu Y, Chuang P-T. 2002. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129:245753–65
    [Google Scholar]
  44. 44.
    Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D et al. 1997. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:5323228–31
    [Google Scholar]
  45. 45.
    Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C et al. 1997. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277:5323232–35
    [Google Scholar]
  46. 46.
    Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH et al. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:1107–25
    [Google Scholar]
  47. 47.
    Nikaido H. 2018. RND transporters in the living world. Res. Microbiol. 169:7–8363–71
    [Google Scholar]
  48. 48.
    Davies JP, Ioannou YA. 2000. Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 275:3224367–74
    [Google Scholar]
  49. 49.
    Petrov K, Wierbowski BM, Liu J, Salic A. 2020. Distinct cation gradients power cholesterol transport at different key points in the Hedgehog signaling pathway. Dev. Cell 55:3314–27.e7
    [Google Scholar]
  50. 50.
    Wang Q, Asarnow DE, Ding K, Mann RK, Hatakeyama J et al. 2021. Dispatched uses Na+ flux to power release of lipid-modified Hedgehog. Nature 599:7884320–24
    [Google Scholar]
  51. 51.
    Chen H, Liu Y, Li X. 2020. Structure of human Dispatched-1 provides insights into Hedgehog ligand biogenesis. Life Sci. Alliance 3:8e202000776
    [Google Scholar]
  52. 52.
    Li W, Wang L, Wierbowski BM, Lu M, Dong F et al. 2021. Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release. Nat. Commun. 12:16966
    [Google Scholar]
  53. 53.
    Cannac F, Qi C, Falschlunger J, Hausmann G, Basler K, Korkhov VM. 2020. Cryo-EM structure of the Hedgehog release protein Dispatched. Sci. Adv. 6:16eaay7928
    [Google Scholar]
  54. 54.
    Stewart DP, Marada S, Bodeen WJ, Truong A, Sakurada SM et al. 2018. Cleavage activates Dispatched for Sonic Hedgehog ligand release. eLife 7:e31678
    [Google Scholar]
  55. 55.
    Kawakami A, Nojima Y, Toyoda A, Takahoko M, Satoh M et al. 2005. The zebrafish-secreted matrix protein You/Scube2 is implicated in long-range regulation of hedgehog signaling. Curr. Biol. 15:5480–88
    [Google Scholar]
  56. 56.
    Woods IG, Talbot WS. 2005. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLOS Biol 3:3e66
    [Google Scholar]
  57. 57.
    Hollway GE, Maule J, Gautier P, Evans TM, Keenan DG et al. 2006. Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev. Biol. 294:1104–18
    [Google Scholar]
  58. 58.
    Johnson J-LFA, Hall TE, Dyson JM, Sonntag C, Ayers K et al. 2012. Scube activity is necessary for Hedgehog signal transduction in vivo. Dev. Biol. 368:2193–202
    [Google Scholar]
  59. 59.
    Creanga A, Glenn TD, Mann RK, Saunders AM, Talbot WS, Beachy PA. 2012. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev 26:121312–25
    [Google Scholar]
  60. 60.
    Wierbowski BM, Petrov K, Aravena L, Gu G, Xu Y, Salic A. 2020. Hedgehog pathway activation requires coreceptor-catalyzed, lipid-dependent relay of the Sonic hedgehog ligand. Dev. Cell 55:4450–67.e8
    [Google Scholar]
  61. 61.
    Zeng X, Goetz JA, Suber LM, Scott WJ Jr., Schreiner CM, Robbins DJ. 2001. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411:6838716–20
    [Google Scholar]
  62. 62.
    Gorfinkiel N, Sierra J, Callejo A, Ibañez C, Guerrero I. 2005. The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev. Cell 8:2241–53
    [Google Scholar]
  63. 63.
    Glise B, Miller CA, Crozatier M, Halbisen MA, Wise S et al. 2005. Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev. Cell 8:2255–66
    [Google Scholar]
  64. 64.
    Panáková D, Sprong H, Marois E, Thiele C, Eaton S. 2005. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:703858–65
    [Google Scholar]
  65. 65.
    Bischoff M, Gradilla A-C, Seijo I, Andrés G, Rodríguez-Navas C et al. 2013. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell Biol. 15:111269–81
    [Google Scholar]
  66. 66.
    Matusek T, Wendler F, Polès S, Pizette S, D'Angelo G et al. 2014. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516:752999–103
    [Google Scholar]
  67. 67.
    Desbordes SC, Sanson B. 2003. The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 130:256245–55
    [Google Scholar]
  68. 68.
    Han C, Belenkaya TY, Wang B, Lin X 2004. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131:3601–11
    [Google Scholar]
  69. 69.
    Chen W, Huang H, Hatori R, Kornberg TB. 2017. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc. Development 144:173134–44
    [Google Scholar]
  70. 70.
    Gradilla A-C, Guerrero I. 2022. Hedgehog on track: long-distant signal transport and transfer through direct cell-to-cell contact. Curr. Top. Dev. Biol. 150:1–24
    [Google Scholar]
  71. 71.
    Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ. 1996. Biochemical evidence that patched is the Hedgehog receptor. Nature 384:6605176–79
    [Google Scholar]
  72. 72.
    Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q et al. 1996. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384:6605129–34
    [Google Scholar]
  73. 73.
    Chen Y, Struhl G. 1996. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87:3553–63
    [Google Scholar]
  74. 74.
    Gong X, Qian H, Cao P, Zhao X, Zhou Q et al. 2018. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science 361:6402eaas8935
    [Google Scholar]
  75. 75.
    Qi X, Schmiege P, Coutavas E, Li X 2018. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362:6410aas8843
    [Google Scholar]
  76. 76.
    Qi X, Schmiege P, Coutavas E, Wang J, Li X 2018. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature 560:7716128–32
    [Google Scholar]
  77. 77.
    Qian H, Cao P, Hu M, Gao S, Yan N, Gong X 2019. Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm. Nat. Commun. 10:12320
    [Google Scholar]
  78. 78.
    Rudolf AF, Kinnebrew M, Kowatsch C, Ansell TB, El Omari K et al. 2019. The morphogen Sonic hedgehog inhibits its receptor Patched by a pincer grasp mechanism. Nat. Chem. Biol. 15:10975–82
    [Google Scholar]
  79. 79.
    Zhang Y, Bulkley DP, Xin Y, Roberts KJ, Asarnow DE et al. 2018. Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched. Cell 175:51352–64.e14
    [Google Scholar]
  80. 80.
    Zhang Y, Lu W-J, Bulkley DP, Liang J, Ralko A et al. 2020. Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit. PNAS 117:4628838–46
    [Google Scholar]
  81. 81.
    Qi C, Di Minin G, Vercellino I, Wutz A, Korkhov VM. 2018. Structural basis of sterol recognition by human hedgehog receptor PTCH1. Sci. Adv. 5:9eaaw6490
    [Google Scholar]
  82. 82.
    Tukachinsky H, Petrov K, Watanabe M, Salic A. 2016. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog. PNAS 113:40E5866–75
    [Google Scholar]
  83. 83.
    Chen M-H, Li Y-J, Kawakami T, Xu S-M, Chuang P-T. 2004. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18:6641–59
    [Google Scholar]
  84. 84.
    Lee JD, Kraus P, Gaiano N, Nery S, Kohtz J et al. 2001. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233:1122–36
    [Google Scholar]
  85. 85.
    Tenzen T, Allen BL, Cole F, Kang JS, Krauss RS, McMahon AP. 2006. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev. Cell 10:5647–56
    [Google Scholar]
  86. 86.
    Yao S, Lum L, Beachy P. 2006. The Ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125:2343–57
    [Google Scholar]
  87. 87.
    Zhang W, Kang J-S, Cole F, Yi M-J, Krauss RS 2006. Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev. Cell 10:5657–65
    [Google Scholar]
  88. 88.
    Lee CS, Buttitta L, Fan CM. 2001. Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. PNAS 98:2011347–52
    [Google Scholar]
  89. 89.
    Chuang PT, McMahon AP. 1999. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397:6720617–21
    [Google Scholar]
  90. 90.
    Allen BL, Song JY, Izzi L, Althaus IW, Kang J-S et al. 2011. Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev. Cell 20:6775–87
    [Google Scholar]
  91. 91.
    Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC et al. 2011. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20:6788–801
    [Google Scholar]
  92. 92.
    Allen BL, Tenzen T, McMahon AP. 2007. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21:101244–57
    [Google Scholar]
  93. 93.
    McLellan JS, Zheng X, Hauk G, Ghirlando R, Beachy PA, Leahy DJ. 2008. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455:7215979–83
    [Google Scholar]
  94. 94.
    Zheng X, Mann RK, Sever N, Beachy PA. 2010. Genetic and biochemical definition of the Hedgehog receptor. Genes Dev 24:157–71
    [Google Scholar]
  95. 95.
    Huang P, Wierbowski BM, Lian T, Chan C, García-Linares S et al. 2022. Structural basis for catalyzed assembly of the Sonic hedgehog–Patched1 signaling complex. Dev. Cell 57:5670–85.e8
    [Google Scholar]
  96. 96.
    Lee CS, May NR, Fan CM. 2001. Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Dev. Biol. 236:117–29
    [Google Scholar]
  97. 97.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:6599407–13
    [Google Scholar]
  98. 98.
    Zhang XM, Ramalho-Santos M, McMahon AP. 2001. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:2781–92
    [Google Scholar]
  99. 99.
    Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. 2015. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J. Cell Biol. 209:5739–57
    [Google Scholar]
  100. 100.
    Jeong J, McMahon AP. 2005. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development 132:1143–54
    [Google Scholar]
  101. 101.
    Bosanac I, Maun HR, Scales SJ, Wen X, Lingel A et al. 2009. The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat. Struct. Mol. Biol. 16:7691–97
    [Google Scholar]
  102. 102.
    Bishop B, Aricescu AR, Harlos K, O'Callaghan CA, Jones EY, Siebold C. 2009. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat. Struct. Mol. Biol. 16:7698–703
    [Google Scholar]
  103. 103.
    Griffiths SC, Schwab RA, El Omari K, Bishop B, Iverson EJ et al. 2021. Hedgehog-interacting protein is a multimodal antagonist of Hedgehog signalling. Nat. Commun. 12:17171
    [Google Scholar]
  104. 104.
    Holtz AM, Peterson KA, Nishi Y, Morin S, Song JY et al. 2013. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 140:163423–34
    [Google Scholar]
  105. 105.
    Kwong L, Bijlsma MF, Roelink H. 2014. Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling. Nat. Commun. 5:4849
    [Google Scholar]
  106. 106.
    Taipale J, Cooper MK, Maiti T, Beachy PA. 2002. Patched acts catalytically to suppress the activity of Smoothened. Nature 418:6900892–97
    [Google Scholar]
  107. 107.
    Cooper MK, Porter JA, Young KE, Beachy PA. 1998. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:53691603–7
    [Google Scholar]
  108. 108.
    Incardona JP, Gaffield W, Kapur RP, Roelink H. 1998. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125:183553–62
    [Google Scholar]
  109. 109.
    Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R et al. 2003. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33:4508–13
    [Google Scholar]
  110. 110.
    Blassberg R, Macrae JI, Briscoe J, Jacob J 2016. Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome. Hum. Mol. Genet. 25:4693–705
    [Google Scholar]
  111. 111.
    Petrov K, de Almeida Magalhaes T, Salic A. 2021. Mechanism and ultrasensitivity in Hedgehog signaling revealed by Patched1 disease mutations. PNAS 118:6e2006800118
    [Google Scholar]
  112. 112.
    Ingham PW, Nystedt S, Nakano Y, Brown W, Stark D et al. 2000. Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr. Biol. 10:201315–18
    [Google Scholar]
  113. 113.
    Bidet M, Joubert O, Lacombe B, Ciantar M, Nehme R et al. 2011. The hedgehog receptor patched is involved in cholesterol transport. PLOS ONE 6:9e23834
    [Google Scholar]
  114. 114.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK et al. 2000. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:67991005–9
    [Google Scholar]
  115. 115.
    Chen JK, Taipale J, Cooper MK, Beachy PA. 2002. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:212743–48
    [Google Scholar]
  116. 116.
    Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F. 2007. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282:128959–68
    [Google Scholar]
  117. 117.
    Corcoran RB, Scott MP. 2006. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. PNAS 103:228408–13
    [Google Scholar]
  118. 118.
    Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH et al. 2012. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8:2211–20
    [Google Scholar]
  119. 119.
    Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G et al. 2016. Structural basis of Smoothened regulation by its extracellular domains. Nature 535:7613517–22
    [Google Scholar]
  120. 120.
    Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T et al. 2013. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife 2:e01340
    [Google Scholar]
  121. 121.
    Myers BR, Sever N, Chong YC, Kim J, Belani JD et al. 2013. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev. Cell 26:4346–57
    [Google Scholar]
  122. 122.
    Nedelcu D, Liu J, Xu Y, Jao C, Salic A. 2013. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat. Chem. Biol. 9:9557–64
    [Google Scholar]
  123. 123.
    Xiao X, Tang J-J, Peng C, Wang Y, Fu L et al. 2017. Cholesterol modification of Smoothened is required for Hedgehog signaling. Mol. Cell 66:1154–62.e10
    [Google Scholar]
  124. 124.
    Bazan JF, de Sauvage FJ. 2009. Structural ties between cholesterol transport and morphogen signaling. Cell 138:61055–56
    [Google Scholar]
  125. 125.
    Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A et al. 2016. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 5:e20304
    [Google Scholar]
  126. 126.
    Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y et al. 2016. Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell 166:51176–87
    [Google Scholar]
  127. 127.
    Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. 2017. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. PNAS 114:52E11141–50
    [Google Scholar]
  128. 128.
    Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y et al. 2019. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571:7764284–88
    [Google Scholar]
  129. 129.
    Qi X, Liu H, Thompson B, McDonald J, Zhang C, Li X. 2019. Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature 571:279–83
    [Google Scholar]
  130. 130.
    Qi X, Friedberg L, De Bose-Boyd R, Long T, Li X 2020. Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat. Chem. Biol. 16:121368–75
    [Google Scholar]
  131. 131.
    Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S et al. 2022. Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. Sci. Adv. 8:22eabm5563
    [Google Scholar]
  132. 132.
    Rohatgi R, Milenkovic L, Corcoran RB, Scott MP. 2009. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. PNAS 106:93196–201
    [Google Scholar]
  133. 133.
    Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM et al. 2018. Cilia-associated oxysterols activate Smoothened. Mol. Cell 72:2316–27.e5
    [Google Scholar]
  134. 134.
    Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH et al. 2019. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. eLife 8:e50051
    [Google Scholar]
  135. 135.
    Pusapati GV, Kong JH, Patel BB, Krishnan A, Sagner A et al. 2018. CRISPR screens uncover genes that regulate target cell sensitivity to the morphogen Sonic Hedgehog. Dev. Cell 44:1113–29.e8
    [Google Scholar]
  136. 136.
    Goldstein JL, Brown MS. 2015. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:1161–72
    [Google Scholar]
  137. 137.
    Carafoli E, Krebs J. 2016. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291:4020849–57
    [Google Scholar]
  138. 138.
    Bock A, Annibale P, Konrad C, Hannawacker A, Anton SE et al. 2020. Optical mapping of cAMP signaling at the nanometer scale. Cell 182:61519–30.e17
    [Google Scholar]
  139. 139.
    Radhakrishnan A, Rohatgi R, Siebold C. 2020. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat. Chem. Biol. 16:121303–13
    [Google Scholar]
  140. 140.
    Lo M, Sharir A, Paul MD, Torosyan H, Agnew C et al. 2022. CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids. Nat. Commun. 13:12407
    [Google Scholar]
  141. 141.
    Hausmann G, von Mering C, Basler K. 2009. The hedgehog signaling pathway: Where did it come from?. PLOS Biol 7:6e1000146
    [Google Scholar]
  142. 142.
    Flanagan JJ, Tweten RK, Johnson AE, Heuck AP. 2009. Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48:183977–87
    [Google Scholar]
  143. 143.
    Gay A, Rye D, Radhakrishnan A. 2015. Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes. Biophys. J. 108:61459–69
    [Google Scholar]
  144. 144.
    Liu S-L, Sheng R, Jung JH, Wang L, Stec E et al. 2017. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13:3268–74
    [Google Scholar]
  145. 145.
    Kinnebrew M, Luchetti G, Sircar R, Frigui S, Viti LV et al. 2021. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. eLife 10:e70504
    [Google Scholar]
  146. 146.
    Ohvo H, Slotte JP. 1996. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry 35:248018–24
    [Google Scholar]
  147. 147.
    Desmond E, Gribaldo S. 2009. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1:364–81
    [Google Scholar]
  148. 148.
    Zhang T, Yuan D, Xie J, Lei Y, Li J et al. 2019. Evolution of the cholesterol biosynthesis pathway in animals. Mol. Biol. Evol. 36:112548–56
    [Google Scholar]
  149. 149.
    Shamsuzzama Lebedev R, Trabelcy B, Langier Goncalves I, Gerchman Y, Sapir A 2020. Metabolic reconfiguration in C. elegans suggests a pathway for widespread sterol auxotrophy in the animal kingdom. Curr. Biol. 30:153031–38.e7
    [Google Scholar]
  150. 150.
    Rietveld A, Neutz S, Simons K, Eaton S. 1999. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274:1712049–54
    [Google Scholar]
  151. 151.
    Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB. 2002. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296:5569879–83
    [Google Scholar]
  152. 152.
    Rink JC, Gurley KA, Elliott SA, Sánchez Alvarado A 2009. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326:59581406–10
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-040313
Loading
/content/journals/10.1146/annurev-biochem-052521-040313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error