1932

Abstract

Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox () gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription ( clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012655
2020-06-20
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-062917-012655.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012655&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Heitz E. 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69:762–818
    [Google Scholar]
  2. 2. 
    Trojer P, Reinberg D. 2007. Facultative heterochromatin: Is there a distinctive molecular signature?. Mol. Cell 28:1–13
    [Google Scholar]
  3. 3. 
    Allshire RC, Madhani HD. 2018. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19:229–44
    [Google Scholar]
  4. 4. 
    Brown SW. 1966. Heterochromatin. Science 151:417–25
    [Google Scholar]
  5. 5. 
    Endoh M, Endo TA, Endoh T, Fujimura Y, Ohara O et al. 2008. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135:1513–24
    [Google Scholar]
  6. 6. 
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA et al. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–53
    [Google Scholar]
  7. 7. 
    Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K 2007. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27:3769–79
    [Google Scholar]
  8. 8. 
    Chamberlain SJ, Yee D, Magnuson T 2008. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26:1496–505
    [Google Scholar]
  9. 9. 
    Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A 2010. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24:265–76
    [Google Scholar]
  10. 10. 
    Zylicz JJ, Dietmann S, Gunesdogan U, Hackett JA, Cougot D et al. 2015. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. eLife 4:e09571
    [Google Scholar]
  11. 11. 
    Isono K, Fujimura Y, Shinga J, Yamaki M, O-Wang J et al. 2005. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol. Cell. Biol. 25:6694–706
    [Google Scholar]
  12. 12. 
    Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–66
    [Google Scholar]
  13. 13. 
    Panning B, Dausman J, Jaenisch R 1997. X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90:907–16
    [Google Scholar]
  14. 14. 
    Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N 1996. Requirement for Xist in X chromosome inactivation. Nature 379:131–37
    [Google Scholar]
  15. 15. 
    Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D et al. 2009. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23:105–17
    [Google Scholar]
  16. 16. 
    Frohlich LF, Mrakovcic M, Steinborn R, Chung UI, Bastepe M, Juppner H 2010. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. PNAS 107:9275–80
    [Google Scholar]
  17. 17. 
    Smith EY, Futtner CR, Chamberlain SJ, Johnstone KA, Resnick JL 2011. Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLOS Genet 7:e1002422
    [Google Scholar]
  18. 18. 
    Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F et al. 2015. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 16:209
    [Google Scholar]
  19. 19. 
    Portoso M, Ragazzini R, Brencic Z, Moiani A, Michaud A et al. 2017. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J 36:981–94
    [Google Scholar]
  20. 20. 
    Amandio AR, Necsulea A, Joye E, Mascrez B, Duboule D 2016. Hotair is dispensable for mouse development. PLOS Genet 12:e1006232
    [Google Scholar]
  21. 21. 
    Inoue A, Jiang L, Lu F, Zhang Y 2017. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 31:1927–32
    [Google Scholar]
  22. 22. 
    Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6:a018713
    [Google Scholar]
  23. 23. 
    Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res 21:381–95
    [Google Scholar]
  24. 24. 
    Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G 2017. Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171:34–57
    [Google Scholar]
  25. 25. 
    Margueron R, Reinberg D. 2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49
    [Google Scholar]
  26. 26. 
    Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G et al. 2018. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70:1149–62.e5
    [Google Scholar]
  27. 27. 
    Gao Z, Zhang J, Bonasio R, Strino F, Sawai A et al. 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45:344–56
    [Google Scholar]
  28. 28. 
    Brockdorff N. 2017. Polycomb complexes in X chromosome inactivation. Philos. Trans. R. Soc. B 372:20170021
    [Google Scholar]
  29. 29. 
    Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD 2006. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26:2560–69
    [Google Scholar]
  30. 30. 
    Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF et al. 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–59
    [Google Scholar]
  31. 31. 
    Zeng Y, Chen T. 2019. DNA methylation reprogramming during mammalian development. Genes (Basel) 10:257
    [Google Scholar]
  32. 32. 
    Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes Dev 25:1010–22
    [Google Scholar]
  33. 33. 
    Du Q, Luu PL, Stirzaker C, Clark SJ 2015. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–73
    [Google Scholar]
  34. 34. 
    Wang H, Maurano MT, Qu H, Varley KE, Gertz J et al. 2012. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22:1680–88
    [Google Scholar]
  35. 35. 
    Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J et al. 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44:361–72
    [Google Scholar]
  36. 36. 
    Marchal C, Sima J, Gilbert DM 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell. Biol. 20:721–37
    [Google Scholar]
  37. 37. 
    Borensztein M, Syx L, Ancelin K, Diabangouaya P, Picard C et al. 2017. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24:226–33
    [Google Scholar]
  38. 38. 
    Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  39. 39. 
    Sharman GB. 1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–32
    [Google Scholar]
  40. 40. 
    Escamilla-Del-Arenal M, Rocha ST, Heard E 2011. Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum. Genet. 130:307–27
    [Google Scholar]
  41. 41. 
    Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973
    [Google Scholar]
  42. 42. 
    Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–69
    [Google Scholar]
  43. 43. 
    Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–49
    [Google Scholar]
  44. 44. 
    Chaumeil J, Okamoto I, Guggiari M, Heard E 2002. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet. Genome Res. 99:75–84
    [Google Scholar]
  45. 45. 
    Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM et al. 2005. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–73
    [Google Scholar]
  46. 46. 
    Patrat C, Okamoto I, Diabangouaya P, Vialon V, Le Baccon P et al. 2009. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. PNAS 106:5198–203
    [Google Scholar]
  47. 47. 
    Tada T, Obata Y, Tada M, Goto Y, Nakatsuji N et al. 2000. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127:3101–5
    [Google Scholar]
  48. 48. 
    Borensztein M, Okamoto I, Syx L, Guilbaud G, Picard C et al. 2017. Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat. Commun. 8:1297
    [Google Scholar]
  49. 49. 
    Okamoto I. 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–49
    [Google Scholar]
  50. 50. 
    Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S et al. 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–69
    [Google Scholar]
  51. 51. 
    Boggs BA, Connors B, Sobel RE, Chinault AC, Allis CD 1996. Reduced levels of histone H3 acetylation on the inactive X chromosome in human females. Chromosoma 105:303–9
    [Google Scholar]
  52. 52. 
    Jeppesen P, Turner BM. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–89
    [Google Scholar]
  53. 53. 
    de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M et al. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7:663–76
    [Google Scholar]
  54. 54. 
    Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB et al. 2003. Establishment of histone H3 meth-ylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes. Dev. Cell 4:481–95
    [Google Scholar]
  55. 55. 
    Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–35
    [Google Scholar]
  56. 56. 
    Chaumeil J, Le Baccon P, Wutz A, Heard E 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–37
    [Google Scholar]
  57. 57. 
    Keohane AM, O'Neill L P, Belyaev ND, Lavender JS, Turner BM 1996. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180:618–30
    [Google Scholar]
  58. 58. 
    Mermoud JE, Popova B, Peters AH, Jenuwein T, Brockdorff N 2002. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr. Biol. 12:247–51
    [Google Scholar]
  59. 59. 
    Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R 2000. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol. 150:1189–98
    [Google Scholar]
  60. 60. 
    Escamilla-Del-Arenal M, Rocha ST, Spruijt CG, Masui O, Renaud O et al. 2013. Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol. Cell. Biol. 33:5005–20
    [Google Scholar]
  61. 61. 
    Gendrel AV, Apedaile A, Coker H, Termanis A, Zvetkova I et al. 2012. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 23:265–79
    [Google Scholar]
  62. 62. 
    Lock LF, Takagi N, Martin GR 1987. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48:39–46
    [Google Scholar]
  63. 63. 
    Wutz A, Jaenisch R. 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5:695–705
    [Google Scholar]
  64. 64. 
    Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22:323–24
    [Google Scholar]
  65. 65. 
    Brown SD. 1991. XIST and the mapping of the X chromosome inactivation centre. Bioessays 13:607–12
    [Google Scholar]
  66. 66. 
    Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, Shevchenko AI, Johnston C et al. 2001. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 11:833–49
    [Google Scholar]
  67. 67. 
    Yen ZC, Meyer IM, Karalic S, Brown CJ 2007. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90:453–63
    [Google Scholar]
  68. 68. 
    Loda A, Heard E. 2019. Xist RNA in action: past, present, and future. PLOS Genet 15:e1008333
    [Google Scholar]
  69. 69. 
    Wutz A, Rasmussen TP, Jaenisch R 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30:167–74
    [Google Scholar]
  70. 70. 
    Chu C, Zhang QC, Rocha ST, Flynn RA, Bharadwaj M et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161:404–16
    [Google Scholar]
  71. 71. 
    Colognori D, Sunwoo H, Kriz AJ, Wang CY, Lee JT 2019. Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol. Cell 74:101–17.e10
    [Google Scholar]
  72. 72. 
    Bousard A, Raposo AC, Żylicz JJ, Picard C, Pires VB et al. 2019. The role of Xist‐mediated Polycomb recruitment in the initiation of X‐chromosome inactivation. EMBO Rep 20:e48019
    [Google Scholar]
  73. 73. 
    Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS et al. 2019. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat. Commun. 10:3129
    [Google Scholar]
  74. 74. 
    Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N et al. 2017. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell 68:955–69.e10
    [Google Scholar]
  75. 75. 
    da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C et al. 2014. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53:301–16
    [Google Scholar]
  76. 76. 
    Sunwoo H, Colognori D, Froberg JE, Jeon Y, Lee JT 2017. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). PNAS 114:10654–59
    [Google Scholar]
  77. 77. 
    Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G et al. 2017. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 31:876–88
    [Google Scholar]
  78. 78. 
    Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N et al. 2016. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354:468–72
    [Google Scholar]
  79. 79. 
    Barros de Andrade ESL, Jonkers I, Syx L, Dunkel I, Chaumeil J et al. 2019. Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Res 29:1087–99
    [Google Scholar]
  80. 80. 
    Zylicz JJ, Bousard A, Zumer K, Dossin F, Mohammad E et al. 2019. The implication of early chromatin changes in X chromosome inactivation. Cell 176:182–97.e23
    [Google Scholar]
  81. 81. 
    Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W et al. 2013. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602–16
    [Google Scholar]
  82. 82. 
    Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T et al. 2015. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:748–57
    [Google Scholar]
  83. 83. 
    Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H et al. 2015. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47:1179–86
    [Google Scholar]
  84. 84. 
    Kundu S, Ji F, Sunwoo H, Jain G, Lee JT et al. 2017. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65:432–46.e5
    [Google Scholar]
  85. 85. 
    Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A 2004. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLOS Biol 2:E171
    [Google Scholar]
  86. 86. 
    Norris DP, Brockdorff N, Rastan S 1991. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm. Genome 1:78–83
    [Google Scholar]
  87. 87. 
    Costanzi C, Pehrson JR. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601
    [Google Scholar]
  88. 88. 
    Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N 1999. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147:1399–408
    [Google Scholar]
  89. 89. 
    Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL 2001. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107:727–38
    [Google Scholar]
  90. 90. 
    Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK et al. 2012. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22:1864–76
    [Google Scholar]
  91. 91. 
    Marks H, Chow JC, Denissov S, Francoijs KJ, Brockdorff N et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19:1361–73
    [Google Scholar]
  92. 92. 
    Calabrese JM, Sun W, Song L, Mugford JW, Williams L et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951–63
    [Google Scholar]
  93. 93. 
    Schulz EG, Meisig J, Nakamura T, Okamoto I, Sieber A et al. 2014. The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14:203–16
    [Google Scholar]
  94. 94. 
    Plath K, Talbot D, Hamer KM, Otte AP, Yang TP et al. 2004. Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J. Cell Biol. 167:1025–35
    [Google Scholar]
  95. 95. 
    Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X-chromosome. Science 322:750–56
    [Google Scholar]
  96. 96. 
    Davidovich C, Zheng L, Goodrich KJ, Cech TR 2013. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20:1250–57
    [Google Scholar]
  97. 97. 
    McHugh CA, Chen CK, Chow A, Surka CF, Tran C et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–36
    [Google Scholar]
  98. 98. 
    Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B et al. 2015. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276
    [Google Scholar]
  99. 99. 
    Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L et al. 2006. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–22
    [Google Scholar]
  100. 100. 
    Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M et al. 2017. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356:1081–84
    [Google Scholar]
  101. 101. 
    Loda A, Brandsma JH, Vassilev I, Servant N, Loos F et al. 2017. Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat. Commun. 8:690
    [Google Scholar]
  102. 102. 
    Kalantry S, Mills KC, Yee D, Otte AP, Panning B, Magnuson T 2006. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol. 8:195–202
    [Google Scholar]
  103. 103. 
    Kalantry S, Magnuson T. 2006. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLOS Genet 2:e66
    [Google Scholar]
  104. 104. 
    Leeb M, Wutz A. 2007. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J. Cell Biol. 178:219–29
    [Google Scholar]
  105. 105. 
    Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS et al. 2010. Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 11:R110
    [Google Scholar]
  106. 106. 
    Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F et al. 2015. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12:554–61
    [Google Scholar]
  107. 107. 
    Moindrot B, Cerase A, Coker H, Masui O, Grijzenhout A et al. 2015. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep 12:562–72
    [Google Scholar]
  108. 108. 
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–79
    [Google Scholar]
  109. 109. 
    Dossin F, Pinheiro I, Zylicz JJ, Roensch J, Collombet S et al. 2020. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578:455–60
    [Google Scholar]
  110. 110. 
    You SH, Lim HW, Sun Z, Broache M, Won KJ, Lazar MA 2013. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat. Struct. Mol. Biol. 20:182–87
    [Google Scholar]
  111. 111. 
    Shi Y, Downes M, Xie W, Kao HY, Ordentlich P et al. 2001. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15:1140–51
    [Google Scholar]
  112. 112. 
    da Rocha ST, Heard E 2017. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat. Struct. Mol. Biol. 24:197–204
    [Google Scholar]
  113. 113. 
    Pinheiro I, Heard E. 2017. X chromosome inactivation: new players in the initiation of gene silencing. F1000Research 6:344
    [Google Scholar]
  114. 114. 
    Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  115. 115. 
    Brown CJ, Willard HF. 1994. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:154–56
    [Google Scholar]
  116. 116. 
    Hellman A, Chess A. 2007. Gene body-specific methylation on the active X chromosome. Science 315:1141–43
    [Google Scholar]
  117. 117. 
    Graves JA. 1982. 5-azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line. Exp. Cell Res. 141:99–105
    [Google Scholar]
  118. 118. 
    Sado T, Fenner MH, Tan SS, Tam P, Shioda T, Li E 2000. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225:294–303
    [Google Scholar]
  119. 119. 
    Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, Whitelaw N et al. 2008. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40:663–69
    [Google Scholar]
  120. 120. 
    Gendrel AV, Tang YA, Suzuki M, Godwin J, Nesterova TB et al. 2013. Epigenetic functions of Smchd1 repress gene clusters on the inactive X chromosome and on autosomes. Mol. Cell. Biol. 33:3150–65
    [Google Scholar]
  121. 121. 
    Jansz N, Nesterova T, Keniry A, Iminitoff M, Hickey PF et al. 2018. Smchd1 targeting to the inactive X is dependent on the Xist-HnrnpK-PRC1 pathway. Cell Rep 25:1912–23.e9
    [Google Scholar]
  122. 122. 
    Wang CY, Jegu T, Chu HP, Oh HJ, Lee JT 2018. SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174:406–21.e26
    [Google Scholar]
  123. 123. 
    Gdula MR, Nesterova TB, Pintacuda G, Godwin J, Zhan Y et al. 2019. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat. Commun. 10:30
    [Google Scholar]
  124. 124. 
    Keniry A, Gearing LJ, Jansz N, Liu J, Holik AZ et al. 2016. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing. Epigenet. Chromatin 9:16
    [Google Scholar]
  125. 125. 
    Ohhata T, Tachibana M, Tada M, Tada T, Sasaki H et al. 2004. X-inactivation is stably maintained in mouse embryos deficient for histone methyl transferase G9a. Genesis 40:151–56
    [Google Scholar]
  126. 126. 
    Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J et al. 2013. Mouse Imprinting Data and References MouseBook Catalog, MRC Harwell Inst Oxfordshire, UK: https://www.mousebook.org/imprinting-gene-list
    [Google Scholar]
  127. 127. 
    Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N et al. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–3
    [Google Scholar]
  128. 128. 
    Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–39
    [Google Scholar]
  129. 129. 
    Shirane K, Toh H, Kobayashi H, Miura F, Chiba H et al. 2013. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLOS Genet 9:e1003439
    [Google Scholar]
  130. 130. 
    Wang L, Zhang J, Duan J, Gao X, Zhu W et al. 2014. Programming and inheritance of parental DNA methylomes in mammals. Cell 157:979–91
    [Google Scholar]
  131. 131. 
    Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A et al. 2012. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLOS Genet 8:e1002440
    [Google Scholar]
  132. 132. 
    Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H et al. 2015. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 29:2449–62
    [Google Scholar]
  133. 133. 
    Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H et al. 2017. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenet. Chromatin 10:25
    [Google Scholar]
  134. 134. 
    Ciccone DN, Su H, Hevi S, Gay F, Lei H et al. 2009. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–18
    [Google Scholar]
  135. 135. 
    Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ et al. 2010. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285:26114–20
    [Google Scholar]
  136. 136. 
    Sendzikaite G, Hanna CW, Stewart-Morgan KR, Ivanova E, Kelsey G 2019. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat. Commun. 10:1884
    [Google Scholar]
  137. 137. 
    Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X et al. 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573:281–86
    [Google Scholar]
  138. 138. 
    Maenohara S, Unoki M, Toh H, Ohishi H, Sharif J et al. 2017. Role of UHRF1 in de novo DNA meth-ylation in oocytes and maintenance methylation in preimplantation embryos. PLOS Genet 13:e1007042
    [Google Scholar]
  139. 139. 
    Ma P, de Waal E, Weaver JR, Bartolomei MS, Schultz RM 2015. A DNMT3A2-HDAC2 complex is essential for genomic imprinting and genome integrity in mouse oocytes. Cell Rep 13:1552–60
    [Google Scholar]
  140. 140. 
    Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N et al. 2011. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43:811–14
    [Google Scholar]
  141. 141. 
    Bourc'his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99
    [Google Scholar]
  142. 142. 
    Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M et al. 2007. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16:2272–80
    [Google Scholar]
  143. 143. 
    Henckel A, Chebli K, Kota SK, Arnaud P, Feil R 2012. Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 31:606–15
    [Google Scholar]
  144. 144. 
    Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V et al. 2016. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354:909–12
    [Google Scholar]
  145. 145. 
    Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y et al. 2011. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–52
    [Google Scholar]
  146. 146. 
    Watanabe T, Cui X, Yuan Z, Qi H, Lin H 2018. MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J 37:e95329
    [Google Scholar]
  147. 147. 
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20:89–108
    [Google Scholar]
  148. 148. 
    Eckersley-Maslin MA, Alda-Catalinas C, Reik W 2018. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19:436–50
    [Google Scholar]
  149. 149. 
    Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P et al. 2015. Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol 16:112
    [Google Scholar]
  150. 150. 
    Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB 2012. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335:1499–502
    [Google Scholar]
  151. 151. 
    Li X, Ito M, Zhou F, Youngson N, Zuo X et al. 2008. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15:547–57
    [Google Scholar]
  152. 152. 
    Takahashi N, Gray D, Strogantsev R, Noon A, Delahaye C et al. 2015. ZFP57 and the targeted maintenance of postfertilization genomic imprints. Cold Spring Harb. Symp. Quant. Biol. 80:177–87
    [Google Scholar]
  153. 153. 
    Takahashi N, Coluccio A, Thorball CW, Planet E, Shi H et al. 2019. ZNF445 is a primary regulator of genomic imprinting. Genes Dev 33:49–54
    [Google Scholar]
  154. 154. 
    Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T et al. 2006. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9:64–71
    [Google Scholar]
  155. 155. 
    Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K et al. 2012. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–19
    [Google Scholar]
  156. 156. 
    Han L, Ren C, Zhang J, Shu W, Wang Q 2019. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development. Cell Discov 5:9
    [Google Scholar]
  157. 157. 
    Peters J, Robson JE. 2008. Imprinted noncoding RNAs. Mamm. Genome 19:493–502
    [Google Scholar]
  158. 158. 
    Zhang Y, Guan DG, Yang JH, Shao P, Zhou H, Qu LH 2010. ncRNAimprint: a comprehensive database of mammalian imprinted noncoding RNAs. RNA 16:1889–901
    [Google Scholar]
  159. 159. 
    Schertzer MD, Braceros KCA, Starmer J, Cherney RE, Lee DM et al. 2019. lncRNA-induced spread of Polycomb controlled by genome architecture, RNA abundance, and CpG island DNA. Mol. Cell 75:523–37.e10
    [Google Scholar]
  160. 160. 
    Regha K, Sloane MA, Huang R, Pauler FM, Warczok KE et al. 2007. Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27:353–66
    [Google Scholar]
  161. 161. 
    Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L et al. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32:232–46
    [Google Scholar]
  162. 162. 
    Barton SC, Surani MA, Norris ML 1984. Role of paternal and maternal genomes in mouse development. Nature 311:374–76
    [Google Scholar]
  163. 163. 
    McGrath J, Solter D. 1984. Maternal Thp lethality in the mouse is a nuclear, not cytoplasmic, defect. Nature 308:550–51
    [Google Scholar]
  164. 164. 
    Surani MA, Barton SC, Norris ML 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–50
    [Google Scholar]
  165. 165. 
    Cattanach BM, Kirk M. 1985. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–98
    [Google Scholar]
  166. 166. 
    Takagi N, Sasaki M. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–42
    [Google Scholar]
  167. 167. 
    Zheng H, Huang B, Zhang B, Xiang Y, Du Z et al. 2016. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63:1066–79
    [Google Scholar]
  168. 168. 
    Harris C, Cloutier M, Trotter M, Hinten M, Gayen S et al. 2019. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 8:e44258
    [Google Scholar]
  169. 169. 
    Inoue A, Chen Z, Yin Q, Zhang Y 2018. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev 32:1525–36
    [Google Scholar]
  170. 170. 
    Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55:347–60
    [Google Scholar]
  171. 171. 
    Hanna CW, Perez-Palacios R, Gahurova L, Schubert M, Krueger F et al. 2019. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol 20:225
    [Google Scholar]
  172. 172. 
    Chen Z, Yin Q, Inoue A, Zhang C, Zhang Y 2019. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. Adv. 5:eaay7246
    [Google Scholar]
  173. 173. 
    Nesterova TB, Barton SC, Surani MA, Brockdorff N 2001. Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev. Biol. 235:343–50
    [Google Scholar]
  174. 174. 
    Forlani S, Lawson KA, Deschamps J 2003. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–19
    [Google Scholar]
  175. 175. 
    Mallo M, Alonso CR. 2013. The regulation of Hox gene expression during animal development. Development 140:3951–63
    [Google Scholar]
  176. 176. 
    Margueron R, Justin N, Ohno K, Sharpe ML, Son J et al. 2009. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–67
    [Google Scholar]
  177. 177. 
    Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T et al. 2016. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7:13661
    [Google Scholar]
  178. 178. 
    Rose NR, King HW, Blackledge NP, Fursova NA, Ember KJ et al. 2016. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 5:e18591
    [Google Scholar]
  179. 179. 
    Laugesen A, Hojfeldt JW, Helin K 2019. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74:8–18
    [Google Scholar]
  180. 180. 
    Tavares L, Dimitrova E, Oxley D, Webster J, Poot R et al. 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–78
    [Google Scholar]
  181. 181. 
    Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y et al. 2019. Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol. Cell 74:1020–36.e8
    [Google Scholar]
  182. 182. 
    Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M et al. 2018. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50:1002–10
    [Google Scholar]
  183. 183. 
    Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E et al. 2019. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol. Cell 76:437–52.e6
    [Google Scholar]
  184. 184. 
    Hojfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K 2019. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol. Cell 76:423–36.e3
    [Google Scholar]
  185. 185. 
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–23
    [Google Scholar]
  186. 186. 
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK et al. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–93
    [Google Scholar]
  187. 187. 
    Li L, Liu B, Wapinski OL, Tsai MC, Qu K et al. 2013. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5:3–12
    [Google Scholar]
  188. 188. 
    Kaneko S, Son J, Bonasio R, Shen SS, Reinberg D 2014. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev 28:1983–88
    [Google Scholar]
  189. 189. 
    Kaneko S, Son J, Shen SS, Reinberg D, Bonasio R 2013. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20:1258–64
    [Google Scholar]
  190. 190. 
    Wang X, Paucek RD, Gooding AR, Brown ZZ, Ge EJ et al. 2017. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat. Struct. Mol. Biol. 24:1028–38
    [Google Scholar]
  191. 191. 
    Beltran M, Yates CM, Skalska L, Dawson M, Reis FP et al. 2016. The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Res 26:896–907
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012655
Loading
/content/journals/10.1146/annurev-biochem-062917-012655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error