1932

Abstract

Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F/H+ antiporters and the Fluc/FEX family of F channels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-071520-112507
2021-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-071520-112507.html?itemId=/content/journals/10.1146/annurev-biochem-071520-112507&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Stockbridge RB, Lim HH, Otten R, Williams C, Shane T et al. 2012. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. PNAS 109:15289–94
    [Google Scholar]
  2. 2. 
    Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C 2013. A family of fluoride-specific ion channels with dual-topology architecture. eLife 2:e01084
    [Google Scholar]
  3. 3. 
    Smith KD, Gordon PB, Rivetta A, Allen KE, Berbasova T et al. 2015. Yeast Fex1p is a constitutively expressed fluoride channel with functional asymmetry of its two homologous domains. J. Biol. Chem. 290:19874–87
    [Google Scholar]
  4. 4. 
    Weinstein LH, Davison A. 2004. Fluorides in the Environment: Effects on Plants and Animals Cambridge, MA: CABI Publ.
  5. 5. 
    Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S. 2012. Fluoride in drinking water and defluoridation of water. Chem. Rev. 112:2454–66
    [Google Scholar]
  6. 6. 
    Windom HL. 1971. Fluoride concentration in coastal and estuarine waters of Georgia. Limnol. Oceanogr. 16:806–10
    [Google Scholar]
  7. 7. 
    U.S. Dep Health Hum. Serv. Fed. Panel Community Water Fluorid. 2015. U.S. Public Health Service recommendation for drinking water for the prevention of dental caries. Public Health Rep. 130:318–31
    [Google Scholar]
  8. 8. 
    CDC (Cent. Dis. Control Prev.) My Water's Fluoride web application. CDC Div. Oral Health https://nccd.cdc.gov/DOH_MWF/Default/Default.aspx
    [Google Scholar]
  9. 9. 
    Johnston NR, Strobel SA. 2020. Principles of fluoride toxicity and the cellular response: a review. Arch. Toxicol. 94:1051–69
    [Google Scholar]
  10. 10. 
    Barbier O, Arreola-Mendoza L, Del Razo LM 2010. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 188:319–33
    [Google Scholar]
  11. 11. 
    Orabi EA, Faraldo-Gomez JD. 2020. A new molecular-mechanics model for simulations of hydrogen fluoride in chemistry and biology. J. Chem. Theory Comput. 16:5105–26
    [Google Scholar]
  12. 12. 
    Wilks JC, Slonczewski JL. 2007. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 189:5601–7
    [Google Scholar]
  13. 13. 
    Krulwich TA, Sachs G, Padan E. 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9:330–43
    [Google Scholar]
  14. 14. 
    Marquis RE, Clock SA, Mota-Meira M. 2003. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26:493–510
    [Google Scholar]
  15. 15. 
    Ji C, Stockbridge RB, Miller C. 2014. Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J. Gen. Physiol. 144:257–61
    [Google Scholar]
  16. 16. 
    Adamek E, Pawlowska-Goral K, Bober K. 2005. In vitro and in vivo effects of fluoride ions on enzyme activity. Ann. Acad. Med. Stetin. 51:69–85
    [Google Scholar]
  17. 17. 
    Johnston NR, Strobel SA. 2019. Nitrate and phosphate transporters rescue fluoride toxicity in yeast. Chem. Res. Toxicol. 32:2305–19
    [Google Scholar]
  18. 18. 
    Samygina VR, Moiseev VM, Rodina EV, Vorobyeva NN, Popov AN et al. 2007. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies. J. Mol. Biol. 366:1305–17
    [Google Scholar]
  19. 19. 
    Heikinheimo P, Tuominen V, Ahonen AK, Teplyakov A, Cooperman BS et al. 2001. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase. PNAS 98:3121–26
    [Google Scholar]
  20. 20. 
    Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L. 2006. Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry 45:793–800
    [Google Scholar]
  21. 21. 
    Lebioda L, Zhang E, Lewinski K, Brewer JM. 1993. Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg2+-F-Pi complex at 2.6 Å resolution. Proteins 16:219–25
    [Google Scholar]
  22. 22. 
    Nowak T, Maurer PJ. 1981. Fluoride inhibition of yeast enolase. 2. Structural and kinetic properties of the ligand complexes determined by nuclear relaxation rate studies. Biochemistry 20:6901–11
    [Google Scholar]
  23. 23. 
    Maurer PJ, Nowak T. 1981. Fluoride inhibition of yeast enolase. 1. Formation of the ligand complexes. Biochemistry 20:6894–900
    [Google Scholar]
  24. 24. 
    Matte A, Tari LW, Delbaere LT. 1998. How do kinases transfer phosphoryl groups?. Structure 6:413–19
    [Google Scholar]
  25. 25. 
    Alani E, Lee JY, Schofield MJ, Kijas AW, Hsieh P, Yang W. 2003. Crystal structure and biochemical analysis of the MutS⋅ADP⋅beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. J. Biol. Chem. 278:16088–94
    [Google Scholar]
  26. 26. 
    Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. 2012. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–35
    [Google Scholar]
  27. 27. 
    Li S, Smith KD, Davis JH, Gordon PB, Breaker RR, Strobel SA 2013. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. PNAS 110:19018–23
    [Google Scholar]
  28. 28. 
    Schultz SG, Wilson NL, Epstein W. 1962. Cation transport in Escherichia coli. II. Intracellular chloride concentration. J. Gen. Physiol. 46:159–66
    [Google Scholar]
  29. 29. 
    Cametti M, Rissanen K. 2009. Recognition and sensing of fluoride anion. Chem. Commun. 2009:2809–29
    [Google Scholar]
  30. 30. 
    Clarke HJ, Howe EN, Wu X, Sommer F, Yano M et al. 2016. Transmembrane fluoride transport: direct measurement and selectivity studies. J. Am. Chem. Soc. 138:16515–22
    [Google Scholar]
  31. 31. 
    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:751–67
    [Google Scholar]
  32. 32. 
    Marcus Y. 1994. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51:111–27
    [Google Scholar]
  33. 33. 
    Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB. 2018. Quasi-chemical theory with cluster sampling from ab initio molecular dynamics: fluoride (F) anion hydration. J. Phys. Chem. A 122:9806–12
    [Google Scholar]
  34. 34. 
    Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB. 2019. Quasi-chemical theory for anion hydration and specific ion effects: Cl(aq) versus F(aq). Chem. Phys. Lett. X 4:100037
    [Google Scholar]
  35. 35. 
    Bostick DL, Brooks CL. 2009. Statistical determinants of selective ionic complexation: ions in solvent, transport proteins, and other “hosts.”. Biophys. J. 96:4470–92
    [Google Scholar]
  36. 36. 
    Li M, Zhuang B, Lu Y, Wang ZG, An L 2017. Accurate determination of ion polarizabilities in aqueous solutions. J. Phys. Chem. B 121:6416–24
    [Google Scholar]
  37. 37. 
    Ohtaki H, Radnai T. 1993. Structure and dynamics of hydrated ions. Chem. Rev. 93:1157–204
    [Google Scholar]
  38. 38. 
    Cametti M, Rissanen K. 2013. Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chem. Soc. Rev. 42:2016–38
    [Google Scholar]
  39. 39. 
    Merchant S, Asthagiri D. 2009. Thermodynamically dominant hydration structures of aqueous ions. J. Chem. Phys. 130:195102
    [Google Scholar]
  40. 40. 
    Jentsch TJ, Pusch M. 2018. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol. Rev. 98:1493–590
    [Google Scholar]
  41. 41. 
    Miller C. 2015. In the beginning: a personal reminiscence on the origin and legacy of ClC-0, the ‘Torpedo Cl channel’. J. Physiol. 593:4085–90
    [Google Scholar]
  42. 42. 
    Accardi A, Lobet S, Williams C, Miller C, Dutzler R. 2006. Synergism between halide binding and proton transport in a CLC-type exchanger. J. Mol. Biol. 362:691–99
    [Google Scholar]
  43. 43. 
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–94
    [Google Scholar]
  44. 44. 
    Jayaram H, Accardi A, Wu F, Williams C, Miller C 2008. Ion permeation through a Cl-selective channel designed from a CLC Cl/H+ exchanger. PNAS 105:11194–99
    [Google Scholar]
  45. 45. 
    Feng L, Campbell EB, Hsiung Y, MacKinnon R. 2010. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–41
    [Google Scholar]
  46. 46. 
    Park E, Campbell EB, MacKinnon R. 2017. Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541:500–5
    [Google Scholar]
  47. 47. 
    Park E, MacKinnon R. 2018. Structure of the CLC-1 chloride channel from Homo sapiens. eLife 7:e36629
    [Google Scholar]
  48. 48. 
    Liao Y, Chen J, Brandt BW, Zhu Y, Li J et al. 2015. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLOS ONE 10:e0122630
    [Google Scholar]
  49. 49. 
    Li G, Shi M, Zhao S, Li D, Long Y et al. 2020. RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 726:144197
    [Google Scholar]
  50. 50. 
    Men X, Shibata Y, Takeshita T, Yamashita Y. 2016. Identification of anion channels responsible for fluoride resistance in oral streptococci. PLOS ONE 11:e0165900
    [Google Scholar]
  51. 51. 
    Brammer AE, Stockbridge RB, Miller C. 2014. F/Cl selectivity in CLCF-type F/H+ antiporters. J. Gen. Physiol. 144:129–36
    [Google Scholar]
  52. 52. 
    Last NB, Miller C. 2015. Functional monomerization of a ClC-type fluoride transporter. J. Mol. Biol. 427:3607–12
    [Google Scholar]
  53. 53. 
    Last NB, Stockbridge RB, Wilson AE, Shane T, Kolmakova-Partensky L et al. 2018. A CLC-type F/H+ antiporter in ion-swapped conformations. Nat. Struct. Mol. Biol. 25:601–6
    [Google Scholar]
  54. 54. 
    Pearson RG. 1966. Acids and bases. Science 151:172–77
    [Google Scholar]
  55. 55. 
    Lisal J, Maduke M. 2008. The ClC-0 chloride channel is a ‘broken’ Cl/H+ antiporter. Nat. Struct. Mol. Biol. 15:805–10
    [Google Scholar]
  56. 56. 
    Feng L, Campbell EB, MacKinnon R 2012. Molecular mechanism of proton transport in CLC Cl/H+ exchange transporters. PNAS 109:11699–704
    [Google Scholar]
  57. 57. 
    Dutzler R, Campbell EB, MacKinnon R. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108–12
    [Google Scholar]
  58. 58. 
    Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA et al. 2020. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl/H+ transport cycle. eLife 9:e53479
    [Google Scholar]
  59. 59. 
    Lim HH, Stockbridge RB, Miller C. 2013. Fluoride-dependent interruption of the transport cycle of a CLC Cl/H+ antiporter. Nat. Chem. Biol. 9:721–25
    [Google Scholar]
  60. 60. 
    Chiariello MG, Bolnykh V, Ippoliti E, Meloni S, Olsen JMH et al. 2020. Molecular basis of CLC antiporter inhibition by fluoride. J. Am. Chem. Soc. 142:7254–58
    [Google Scholar]
  61. 61. 
    Stockbridge RB, Koide A, Miller C, Koide S. 2014. Proof of dual-topology architecture of Fluc F channels with monobody blockers. Nat. Commun. 5:5120
    [Google Scholar]
  62. 62. 
    Turman DL, Nathanson JT, Stockbridge RB, Street TO, Miller C 2015. Two-sided block of a dual-topology F channel. PNAS 112:5697–701
    [Google Scholar]
  63. 63. 
    Turman DL, Stockbridge RB. 2017. Mechanism of single- and double-sided inhibition of dual topology fluoride channels by synthetic monobodies. J. Gen. Physiol. 149:511–22
    [Google Scholar]
  64. 64. 
    McIlwain BC, Newstead S, Stockbridge RB. 2018. Cork-in-bottle occlusion of fluoride ion channels by crystallization chaperones. Structure 26:635–39.e1
    [Google Scholar]
  65. 65. 
    Dong W, Setlow P. 2019. Fluoride movement into and out of Bacillus spores and growing cells and effects of fluoride accumulation on spore properties. J. Appl. Microbiol. 126:503–15
    [Google Scholar]
  66. 66. 
    Binder J, Held J, Krappmann S. 2019. Impairing fluoride export of Aspergillus fumigatus mitigates its voriconazole resistance. Int. J. Antimicrob. Agents 53:689–93
    [Google Scholar]
  67. 67. 
    Song J, Hou C, Guo J, Niu Q, Wang X et al. 2020. Two new members of CsFEXs couple proton gradients to export fluoride and participate in reducing the fluoride accumulation in low-fluoride tea cultivars. J. Agric. Food Chem. 68:8568–79
    [Google Scholar]
  68. 68. 
    Berbasova T, Nallur S, Sells T, Smith KD, Gordon PB et al. 2017. Fluoride export (FEX) proteins from fungi, plants and animals are ‘single barreled’ channels containing one functional and one vestigial ion pore. PLOS ONE 12:e0177096
    [Google Scholar]
  69. 69. 
    Izuora K, Twombly JG, Whitford GM, Demertzis J, Pacifici R, Whyte MP. 2011. Skeletal fluorosis from brewed tea. J. Clin. Endocrinol. Metab. 96:2318–24
    [Google Scholar]
  70. 70. 
    Zhu J, Xing A, Wu Z, Tao J, Ma Y et al. 2019. CsFEX, a fluoride export protein gene from Camellia sinensis, alleviates fluoride toxicity in transgenic Escherichia coli and Arabidopsis thaliana. J. Agric. Food Chem. 67:5997–6006
    [Google Scholar]
  71. 71. 
    Macdonald CB, Stockbridge RB. 2017. A topologically diverse family of fluoride channels. Curr. Opin. Struct. Biol. 45:142–49
    [Google Scholar]
  72. 72. 
    Forrest LR. 2015. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44:311–37
    [Google Scholar]
  73. 73. 
    Keller R, Ziegler C, Schneider D. 2014. When two turn into one: evolution of membrane transporters from half modules. Biol. Chem. 395:1379–88
    [Google Scholar]
  74. 74. 
    Rapp M, Granseth E, Seppala S, von Heijne G 2006. Identification and evolution of dual-topology membrane proteins. Nat. Struct. Mol. Biol. 13:112–16
    [Google Scholar]
  75. 75. 
    Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG. 2003. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J 22:6175–81
    [Google Scholar]
  76. 76. 
    Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P et al. 2018. Structure-based analysis of CysZ-mediated cellular uptake of sulfate. eLife 7:e27829
    [Google Scholar]
  77. 77. 
    Stockbridge RB, Kolmakova-Partensky L, Shane T, Koide A, Koide S et al. 2015. Crystal structures of a double-barrelled fluoride ion channel. Nature 525:548–51
    [Google Scholar]
  78. 78. 
    Turman DL, Cheloff AZ, Corrado AD, Nathanson JT, Miller C. 2018. Molecular interactions between a fluoride ion channel and synthetic protein blockers. Biochemistry 57:1212–18
    [Google Scholar]
  79. 79. 
    McIlwain BC, Martin K, Hayter EA, Stockbridge RB. 2020. An interfacial sodium ion is an essential structural feature of Fluc family fluoride channels. J. Mol. Biol. 432:1098–108
    [Google Scholar]
  80. 80. 
    Last NB, Kolmakova-Partensky L, Shane T, Miller C. 2016. Mechanistic signs of double-barreled structure in a fluoride ion channel. eLife 5:e18767
    [Google Scholar]
  81. 81. 
    Morais-Cabral JH, Zhou Y, MacKinnon R. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42
    [Google Scholar]
  82. 82. 
    Hodgkin AL, Keynes RD. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61–88
    [Google Scholar]
  83. 83. 
    Eisenman W. 1962. A two-way affair. Science 136:182
    [Google Scholar]
  84. 84. 
    Hille B, Schwarz W. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409–42
    [Google Scholar]
  85. 85. 
    Zhou YF, MacKinnon R. 2003. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965–75
    [Google Scholar]
  86. 85a. 
    McIlwain BC, Gundepudi R, Koff BB, Stockbridge RB The fluoride permeation pathway and anion recognition in Fluc family fluoride channels. bioRxiv 2021.04.03.438337 https://doi.org/10.1101/2021.04.03.438337
    [Crossref] [Google Scholar]
  87. 86. 
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
    [Google Scholar]
  88. 87. 
    Latorre R, Miller C. 1983. Conduction and selectivity in potassium channels. J. Membr. Biol. 71:11–30
    [Google Scholar]
  89. 88. 
    Payandeh J, Scheuer T, Zheng N, Catterall WA. 2011. The crystal structure of a voltage-gated sodium channel. Nature 475:353–58
    [Google Scholar]
  90. 89. 
    Last NB, Sun S, Pham MC, Miller C. 2017. Molecular determinants of permeation in a fluoride-specific ion channel. eLife 6:e31259
    [Google Scholar]
  91. 90. 
    Philip V, Harris J, Adams R, Nguyen D, Spiers J et al. 2011. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the Protein Data Bank: searching for anion-π pairs. Biochemistry 50:2939–50
    [Google Scholar]
  92. 91. 
    Allen FH. 2002. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58:380–88
    [Google Scholar]
  93. 92. 
    Chakravarty S, Ung AR, Moore B, Shore J, Alshamrani M. 2018. A comprehensive analysis of anion-quadrupole interactions in protein structures. Biochemistry 57:1852–67
    [Google Scholar]
  94. 93. 
    Bostick DL, Brooks CL 3rd 2007. Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state. PNAS 104:9260–65
    [Google Scholar]
  95. 94. 
    Varma S, Sabo D, Rempe SB. 2008. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. J. Mol. Biol. 376:13–22
    [Google Scholar]
  96. 95. 
    Fernandez R, Berro J. 2016. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9. Yeast 33:549–57
    [Google Scholar]
  97. 96. 
    Lellouche J, Friedman A, Gedanken A, Banin E. 2012. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int. J. Nanomed. 7:5611–24
    [Google Scholar]
  98. 97. 
    Li S, Breaker RR. 2012. Fluoride enhances the activity of fungicides that destabilize cell membranes. Bioorg. Med. Chem. Lett. 22:3317–22
    [Google Scholar]
  99. 98. 
    Nelson JW, Zhou Z, Breaker RR. 2014. Gramicidin D enhances the antibacterial activity of fluoride. Bioorg. Med. Chem. Lett. 24:2969–71
    [Google Scholar]
  100. 99. 
    Sherlock ME, Breaker RR. 2020. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA 26:675–93
    [Google Scholar]
  101. 100. 
    Zhao B, Guffy SL, Williams B, Zhang Q. 2017. An excited state underlies gene regulation of a transcriptional riboswitch. Nat. Chem. Biol. 13:968–74
    [Google Scholar]
  102. 101. 
    Ren A, Rajashankar KR, Patel DJ. 2012. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486:85–89
    [Google Scholar]
  103. 102. 
    Jurcik A, Bednar D, Byska J, Marques SM, Furmanova K et al. 2018. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34:3586–88
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-071520-112507
Loading
/content/journals/10.1146/annurev-biochem-071520-112507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error