1932

Abstract

Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology—imaging mass spectrometry—generate big hyperspectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-011420-031537
2020-07-20
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-011420-031537.html?itemId=/content/journals/10.1146/annurev-biodatasci-011420-031537&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Petras D, Jarmusch AK, Dorrestein PC 2017. From single cells to our planet—recent advances in using mass spectrometry for spatially resolved metabolomics. Curr. Opin. Chem. Biol. 36:24–31
    [Google Scholar]
  2. 2. 
    Lau AN, Vander Heiden MG 2020. Metabolism in the tumor microenvironment. Annu. Rev. Cancer Biol. 4:17–40
    [Google Scholar]
  3. 3. 
    Buck MD, Sowell RT, Kaech SM, Pearce EL 2017. Metabolic instruction of immunity. Cell 169:4570–86
    [Google Scholar]
  4. 4. 
    Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK 2014. Specialized metabolites from the microbiome in health and disease. Cell Metab 20:5719–30
    [Google Scholar]
  5. 5. 
    Tilg H, Zmora N, Adolph TE, Elinav E 2019. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20:40–54
    [Google Scholar]
  6. 6. 
    Miyazawa H, Aulehla A. 2018. Revisiting the role of metabolism during development. Development 145:19dev131110
    [Google Scholar]
  7. 7. 
    Lu C, Thompson CB. 2012. Metabolic regulation of epigenetics. Cell Metab 16:19–17
    [Google Scholar]
  8. 8. 
    Escoll P, Buchrieser C. 2018. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism?. FEBS J 285:122146–60
    [Google Scholar]
  9. 9. 
    Gaber T, Strehl C, Buttgereit F 2017. Metabolic regulation of inflammation. Nat. Rev. Rheumatol. 13:5267–79
    [Google Scholar]
  10. 10. 
    Eming SA, Wynn TA, Martin P 2017. Inflammation and metabolism in tissue repair and regeneration. Science 356:63421026–30
    [Google Scholar]
  11. 11. 
    Baker M. 2011. Metabolomics: from small molecules to big ideas. Nat. Methods 8:2117–21
    [Google Scholar]
  12. 12. 
    Doerr A. 2018. Mass spectrometry imaging takes off. Nat. Methods 15:32
    [Google Scholar]
  13. 13. 
    Buchberger AR, DeLaney K, Johnson J, Li L 2018. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90:1240–65
    [Google Scholar]
  14. 14. 
    Leung F, Eberlin LS, Schwamborn K, Heeren RMA, Winograd N, Cooks RG 2019. Mass spectrometry-based tissue imaging: the next frontier in clinical diagnostics. ? Clin. Chem. 65:4510–13
    [Google Scholar]
  15. 15. 
    Gilmore IS, Heiles S, Pieterse CL 2019. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12:201–24
    [Google Scholar]
  16. 16. 
    Luberto C, Haley JD, Del Poeta M 2019. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem. Phys. Lipids 219:1–14
    [Google Scholar]
  17. 17. 
    Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C 2018. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr. Opin. Biotechnol. 55:51–59
    [Google Scholar]
  18. 18. 
    Ryan DJ, Spraggins JM, Caprioli RM 2018. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr. Opin. Chem. Biol. 48:64–72
    [Google Scholar]
  19. 19. 
    Spraker JE, Luu GT, Sanchez LM 2020. Imaging mass spectrometry for natural products discovery: a review of ionization methods. Nat. Prod. Rep. 37:150–62
    [Google Scholar]
  20. 20. 
    Vaysse P-M, Heeren RMA, Porta T, Balluff B 2017. Mass spectrometry imaging for clinical research—latest developments, applications, and current limitations. Analyst 142:152690–712
    [Google Scholar]
  21. 21. 
    Editorial 2019. Why the metabolism field risks missing out on the AI revolution. Nat. Metab. 1:10929–30
    [Google Scholar]
  22. 22. 
    Kaddurah-Daouk R, Kristal BS, Weinshilboum RM 2008. Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol. 48:653–83
    [Google Scholar]
  23. 23. 
    Patti GJ, Yanes O, Siuzdak G 2012. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13:4263–69
    [Google Scholar]
  24. 24. 
    Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD 2017. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86:277–304
    [Google Scholar]
  25. 25. 
    Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P et al. 2019. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat. Rev. Urol. 16:6339–62
    [Google Scholar]
  26. 26. 
    Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O et al. 2019. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 37:101217–28
    [Google Scholar]
  27. 27. 
    Weiner J 3rd, Maertzdorf J, Sutherland JS, Duffy FJ, Thompson E et al. 2018. Metabolite changes in blood predict the onset of tuberculosis. Nat. Commun. 9:15208
    [Google Scholar]
  28. 28. 
    Garg N, Wang M, Hyde E, da Silva RR, Melnik AV et al. 2017. Three-dimensional microbiome and metabolome cartography of a diseased human lung. Cell Host Microbe 22:5705–16.e4
    [Google Scholar]
  29. 29. 
    Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D et al. 2019. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 178:4901–18.e16
    [Google Scholar]
  30. 30. 
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Glucose feeds the TCA cycle via circulating lactate. Nature 551:7678115–18
    [Google Scholar]
  31. 31. 
    Bodzon-Kulakowska A, Suder P. 2016. Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom. Rev. 35:1147–69
    [Google Scholar]
  32. 32. 
    Dettmer K, Aronov PA, Hammock BD 2007. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26:151–78
    [Google Scholar]
  33. 33. 
    Caprioli RM, Farmer TB, Gile J 1997. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69:234751–60
    [Google Scholar]
  34. 34. 
    Pacholski ML, Winograd N. 1999. Imaging with mass spectrometry. Chem. Rev. 99:102977–3006
    [Google Scholar]
  35. 35. 
    Reyzer ML, Caprioli RM. 2016. The development of imaging mass spectrometry. The Encyclopedia of Mass Spectrometry ML Gross, RM Caprioli 285–304 Boston: Elsevier
    [Google Scholar]
  36. 36. 
    Palmer A, Trede D, Alexandrov T 2016. Where imaging mass spectrometry stands: Here are the numbers. Metabolomics 12:6107
    [Google Scholar]
  37. 37. 
    Movasaghi Z, Rehman S, ur Rehman I 2008. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43:2134–79
    [Google Scholar]
  38. 38. 
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano 14:28–117
    [Google Scholar]
  39. 39. 
    Protsyuk I, Melnik AV, Nothias L-F, Rappez L, Phapale P et al. 2018. 3D molecular cartography using LC-MS facilitated by Optimus and ’ili software. Nat. Protoc. 13:1134–54
    [Google Scholar]
  40. 40. 
    Watrous JD, Alexandrov T, Dorrestein PC 2011. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom. 46:2209–22
    [Google Scholar]
  41. 41. 
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM 2006. Detection technologies. ambient mass spectrometry. Science 311:57671566–70
    [Google Scholar]
  42. 42. 
    Fletcher JS, Kotze HL, Armitage EG, Lockyer NP, Vickerman JC 2013. Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites. Metabolomics 9:3535–44
    [Google Scholar]
  43. 43. 
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F et al. 2017. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14:121175–83
    [Google Scholar]
  44. 44. 
    Robichaud G, Barry JA, Muddiman DC 2014. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J. Am. Soc. Mass Spectrom. 25:3319–28
    [Google Scholar]
  45. 45. 
    Nemes P, Vertes A. 2007. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79:218098–106
    [Google Scholar]
  46. 46. 
    Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W et al. 2007. Clathrate nanostructures for mass spectrometry. Nature 449:71651033–36
    [Google Scholar]
  47. 47. 
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ 2012. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84:1141–48
    [Google Scholar]
  48. 48. 
    Hastie T, Tibshirani R, Friedman J 2013. The Elements of Statistical Learning: Data Mining, Inference, and Prediction New York: Springer
    [Google Scholar]
  49. 49. 
    LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  50. 50. 
    Russell SJ, Norvig P 2009. Artificial Intelligence: A Modern Approach Upper Saddle River, NJ: Prentice Hall. , 3rd ed..
    [Google Scholar]
  51. 51. 
    Rajkomar A, Dean J, Kohane I 2019. Machine learning in medicine. N. Engl. J. Med. 380:141347–58
    [Google Scholar]
  52. 52. 
    Angermueller C, Pärnamaa T, Parts L, Stegle O 2016. Deep learning for computational biology. Mol. Syst. Biol. 12:7878
    [Google Scholar]
  53. 53. 
    Shen D, Wu G, Suk H-I 2017. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19:221–48
    [Google Scholar]
  54. 54. 
    Baldi P. 2018. Deep learning in biomedical data science. Annu. Rev. Biomed. Data Sci. 1:181–205
    [Google Scholar]
  55. 55. 
    Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M et al. 2019. A guide to deep learning in healthcare. Nat. Med. 25:124–29
    [Google Scholar]
  56. 56. 
    Topol EJ. 2019. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25:144–56
    [Google Scholar]
  57. 57. 
    Hosny A, Aerts HJWL. 2019. Artificial intelligence for global health. Science 366:6468955–56
    [Google Scholar]
  58. 58. 
    Alexandrov T. 2012. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinform 13:Suppl. 16S11
    [Google Scholar]
  59. 59. 
    Kompauer M, Heiles S, Spengler B 2016. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14:90–96
    [Google Scholar]
  60. 60. 
    Shimma S, Sugiura Y. 2014. Effective sample preparations in imaging mass spectrometry. Mass Spectrom 3:Spec. IssueS0029
    [Google Scholar]
  61. 61. 
    Sans M, Feider CL, Eberlin LS 2018. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr. Opin. Chem. Biol. 42:138–46
    [Google Scholar]
  62. 62. 
    Johnson CH, Ivanisevic J, Siuzdak G 2016. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17:7451–59
    [Google Scholar]
  63. 63. 
    Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA et al. 2012. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J. Proteom. 75:165106–10
    [Google Scholar]
  64. 64. 
    Norris JL, Cornett DS, Mobley JA, Andersson M, Seeley EH et al. 2007. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int. J. Mass Spectrom. 260:2–3212–21
    [Google Scholar]
  65. 65. 
    Taylor AJ, Dexter A, Bunch J 2018. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal. Chem. 90:95637–45
    [Google Scholar]
  66. 66. 
    O'Donoghue SI, Baldi BF, Clark SJ, Darling AE, Hogan JM et al. 2018. Visualization of biomedical data. Annu. Rev. Biomed. Data Sci. 1:275–304
    [Google Scholar]
  67. 67. 
    Nuñez JR, Anderton CR, Renslow RS 2018. Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data. PLOS ONE 13:7e0199239
    [Google Scholar]
  68. 68. 
    Verbeeck N, Caprioli RM, Van de Plas R 2020. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39:3245–91
    [Google Scholar]
  69. 69. 
    Alexandrov T, Becker M, Deininger S-O, Ernst G, Wehder L et al. 2010. Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering. J. Proteom. Res. 9:126535–46
    [Google Scholar]
  70. 70. 
    Alexandrov T, Kobarg JH. 2011. Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 27:13i230–38
    [Google Scholar]
  71. 71. 
    Hanselmann M, Köthe U, Kirchner M, Renard BY, Amstalden ER et al. 2009. Toward digital staining using imaging mass spectrometry and random forests. J. Proteom. Res. 8:73558–67
    [Google Scholar]
  72. 72. 
    Bemis KD, Harry A, Eberlin LS, Ferreira CR, van de Ven SM et al. 2016. Probabilistic segmentation of mass spectrometry (MS) images helps select important ions and characterize confidence in the resulting segments. Mol. Cell. Proteom. 15:51761–72
    [Google Scholar]
  73. 73. 
    Alexandrov T, Chernyavsky I, Becker M, von Eggeling F, Nikolenko S 2013. Analysis and interpretation of imaging mass spectrometry data by clustering mass-to-charge images according to their spatial similarity. Anal. Chem. 85:2311189–95
    [Google Scholar]
  74. 74. 
    Konicek AR, Lefman J, Szakal C 2012. Automated correlation and classification of secondary ion mass spectrometry images using a k-means cluster method. Analyst 137:153479–87
    [Google Scholar]
  75. 75. 
    Inglese P, Correia G, Pruski P, Glen RC, Takats Z 2019. Colocalization features for classification of tumors using desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 91:106530–40
    [Google Scholar]
  76. 76. 
    Fonville JM, Carter CL, Pizarro L, Steven RT, Palmer AD et al. 2013. Hyperspectral visualization of mass spectrometry imaging data. Anal. Chem. 85:31415–23
    [Google Scholar]
  77. 77. 
    Franceschi P, Wehrens R. 2014. Self-organizing maps: a versatile tool for the automatic analysis of untargeted imaging datasets. Proteomics 14:7–8853–61
    [Google Scholar]
  78. 78. 
    Gardner W, Cutts SM, Muir BW, Jones RT, Pigram PJ 2019. Visualizing ToF-SIMS hyperspectral imaging data using color-tagged toroidal self-organizing maps. Anal. Chem. 91:2113855–65
    [Google Scholar]
  79. 79. 
    Abdelmoula WM, Škrášková K, Balluff B, Carreira RJ, Tolner EA et al. 2014. Automatic generic registration of mass spectrometry imaging data to histology using nonlinear stochastic embedding. Anal. Chem. 86:189204–11
    [Google Scholar]
  80. 80. 
    Smets T, Verbeeck N, Claesen M, Asperger A, Griffioen G et al. 2019. Evaluation of distance metrics and spatial autocorrelation in uniform manifold approximation and projection applied to mass spectrometry imaging data. Anal. Chem. 91:95706–14
    [Google Scholar]
  81. 81. 
    Ovchinnikova K, Stuart L, Rakhlin A, Nikolenko S, Alexandrov T 2020. ColocML: Machine learning quantifies co-localization between mass spectrometry images. Bioinformatics In press
    [Google Scholar]
  82. 82. 
    Alexandrov T, Bartels A. 2013. Testing for presence of known and unknown molecules in imaging mass spectrometry. Bioinformatics 29:182335–42
    [Google Scholar]
  83. 83. 
    Palmer A, Ovchinnikova E, Thuné M, Lavigne R, Guével B et al. 2015. Using collective expert judgements to evaluate quality measures of mass spectrometry images. Bioinformatics 31:12i375–84
    [Google Scholar]
  84. 84. 
    Wijetunge CD, Saeed I, Boughton BA, Spraggins JM, Caprioli RM et al. 2015. EXIMS: an improved data analysis pipeline based on a new peak picking method for exploring imaging mass spectrometry data. Bioinformatics 31:193198–206
    [Google Scholar]
  85. 85. 
    Prasad M, Postma G, Morosi L, Giordano S, Giavazzi R et al. 2018. Drug-homogeneity index in mass-spectrometry imaging. Anal. Chem. 90:2213257–64
    [Google Scholar]
  86. 86. 
    Bokhart MT, Nazari M, Garrard KP, Muddiman DC 2018. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J. Am. Soc. Mass Spectrom. 29:18–16
    [Google Scholar]
  87. 87. 
    Ovchinnikova K, Kovalev V, Stuart L, Alexandrov T 2020. OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images. BMC Bioinform 21:129
    [Google Scholar]
  88. 88. 
    McCombie G, Staab D, Stoeckli M, Knochenmuss R 2005. Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem. 77:196118–24
    [Google Scholar]
  89. 89. 
    McDonnell LA, van Remoortere A, van Zeijl RJM, Deelder AM 2008. Mass spectrometry image correlation: quantifying colocalization. J. Proteom. Res. 7:83619–27
    [Google Scholar]
  90. 90. 
    Kaddi C, Parry RM, Wang MD 2011. Hypergeometric similarity measure for spatial analysis in tissue imaging mass spectrometry. Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine F-X Wu, M Zaki, S Morishita, Y Pan, S Wong et al.604–7 Los Alamos, CA: IEEE Comput. Sci.
    [Google Scholar]
  91. 91. 
    Ekelöf M, Garrard KP, Judd R, Rosen EP, Xie D-Y et al. 2018. Evaluation of digital image recognition methods for mass spectrometry imaging data analysis. J. Am. Soc. Mass Spectrom. 29:122467–70
    [Google Scholar]
  92. 92. 
    Aaron JS, Taylor AB, Chew T-L 2018. Image co-localization—co-occurrence versus correlation. J. Cell Sci. 131:3jcs211847
    [Google Scholar]
  93. 93. 
    Van de Plas R, Pelckmans K, De Moor B, Waelkens E 2007. Spatial querying of imaging mass spectrometry data: a nonnegative least squares approach Paper presented at the Machine Learning in Computational Biology workshop at the Conference on Neural Information Processing Systems (NIPS 2007) Vancouver, B.C: Dec. 7
    [Google Scholar]
  94. 94. 
    Shariatgorji M, Nilsson A, Goodwin RJA, Källback P, Schintu N et al. 2014. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84:4697–707
    [Google Scholar]
  95. 95. 
    Rzagalinski I, Volmer DA. 2017. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry—a tutorial review. Biochim. Biophys. Acta 1865 7:726–39
    [Google Scholar]
  96. 96. 
    Swales JG, Dexter A, Hamm G, Nilsson A, Strittmatter N et al. 2018. Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging. Anal. Chem. 90:106051–58
    [Google Scholar]
  97. 97. 
    Groseclose MR, Castellino S. 2013. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal. Chem. 85:2110099–106
    [Google Scholar]
  98. 98. 
    Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE et al. 2016. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88:42392–98
    [Google Scholar]
  99. 99. 
    Källback P, Nilsson A, Shariatgorji M, Andrén PE 2016. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88:84346–53
    [Google Scholar]
  100. 100. 
    Palmer AD, Alexandrov T. 2015. Serial 3D imaging mass spectrometry at its tipping point. Anal. Chem. 87:84055–62
    [Google Scholar]
  101. 101. 
    Fletcher JS, Lockyer NP, Vickerman JC 2011. Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom. Rev. 30:1142–74
    [Google Scholar]
  102. 102. 
    Seeley EH, Caprioli RM. 2008. Molecular imaging of proteins in tissues by mass spectrometry. PNAS 105:4718126–31
    [Google Scholar]
  103. 103. 
    Trede D, Schiffler S, Becker M, Wirtz S, Steinhorst K et al. 2012. Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal. Chem. 84:146079–87
    [Google Scholar]
  104. 104. 
    Oetjen J, Aichler M, Trede D, Strehlow J, Berger J et al. 2013. MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J. Proteom. 90:52–60
    [Google Scholar]
  105. 105. 
    Watrous JD, Phelan VV, Hsu C-C, Moree WJ, Duggan BM et al. 2013. Microbial metabolic exchange in 3D. ISME J 7:4770–80
    [Google Scholar]
  106. 106. 
    Seeley EH, Wilson KJ, Yankeelov TE, Johnson RW, Gore JC et al. 2014. Co-registration of multi-modality imaging allows for comprehensive analysis of tumor-induced bone disease. Bone 61:208–16
    [Google Scholar]
  107. 107. 
    Giordano S, Morosi L, Veglianese P, Licandro SA, Frapolli R et al. 2016. 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci. Rep. 6:37027
    [Google Scholar]
  108. 108. 
    Abdelmoula WM, Regan MS, Lopez BGC, Randall EC, Lawler S et al. 2019. Automatic 3D nonlinear registration of mass spectrometry imaging and magnetic resonance imaging data. Anal. Chem. 91:96206–16
    [Google Scholar]
  109. 109. 
    Vos DRN, Jansen I, Lucas M, Paine MRL, de Boer OJ et al. 2019. Strategies for managing multi-patient 3D mass spectrometry imaging data. J. Proteom. 193:184–91
    [Google Scholar]
  110. 110. 
    Wishart DS. 2011. Advances in metabolite identification. Bioanalysis 3:151769–82
    [Google Scholar]
  111. 111. 
    Blaženović I, Kind T, Ji J, Fiehn O 2018. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8:231
    [Google Scholar]
  112. 112. 
    Nash WJ, Dunn WB. 2019. From mass to metabolite in human untargeted metabolomics: recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. Trends Anal. Chem. 120:115324
    [Google Scholar]
  113. 113. 
    Schymanski EL, Ruttkies C, Krauss M, Brouard C, Kind T et al. 2017. Critical Assessment of Small Molecule Identification 2016: automated methods. J. Cheminform. 9:122
    [Google Scholar]
  114. 114. 
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D et al. 2017. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14:157–60
    [Google Scholar]
  115. 115. 
    Alexandrov T, Ovchinnikova K, Palmer A, Kovalev V, Tarasov A et al. 2019. METASPACE: A community-populated knowledge base of spatial metabolomes in health and disease. bioRxiv 539478. https://doi.org/10.1101/539478
    [Crossref]
  116. 116. 
    Xu Y-F, Lu W, Rabinowitz JD 2015. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Anal. Chem. 87:42273–81
    [Google Scholar]
  117. 117. 
    Gathungu RM, Larrea P, SniatynskI MJ, Marur VR, Bowden JA et al. 2018. Optimization of ESI-source parameters for lipidomics reduces misannotation of in-source fragments as precursor ions. Anal. Chem. 90:2213523–32
    [Google Scholar]
  118. 118. 
    da Silva RR, Dorrestein PC, Quinn RA 2015. Illuminating the dark matter in metabolomics. PNAS 112:4112549–50
    [Google Scholar]
  119. 119. 
    Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM 2019. Challenges in identifying the dark molecules of life. Annu. Rev. Anal. Chem. 12:177–99
    [Google Scholar]
  120. 120. 
    Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A 2019. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16:703–15
    [Google Scholar]
  121. 121. 
    Schwamborn K, Caprioli RM. 2010. Molecular imaging by mass spectrometry—looking beyond classical histology. Nat. Rev. Cancer 10:9639–46
    [Google Scholar]
  122. 122. 
    Aichler M, Walch A. 2015. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab. Investig. 95:4422–31
    [Google Scholar]
  123. 123. 
    Prentice BM, Chumbley CW, Caprioli RM 2015. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J. Mass Spectrom. 50:4703–10
    [Google Scholar]
  124. 124. 
    Tillner J, Wu V, Jones EA, Pringle SD, Karancsi T et al. 2017. Faster, more reproducible DESI-MS for biological tissue imaging. J. Am. Soc. Mass Spectrom. 28:102090–98
    [Google Scholar]
  125. 125. 
    Basu SS, Regan MS, Randall EC, Abdelmoula WM, Clark AR et al. 2019. Rapid MALDI mass spectrometry imaging for surgical pathology. NPJ Precis. Oncol 3:17
    [Google Scholar]
  126. 126. 
    Barry JA, Groseclose MR, Fraser DD, Castellino S 2018. Revised preparation of a mimetic tissue model for quantitative imaging mass spectrometry Methods Protoc., Protoc. Exch. https://dx.doi.org/10.1038/protex.2018.104
    [Crossref] [Google Scholar]
  127. 127. 
    Burnum-Johnson KE, Zheng X, Dodds JN, Ash J, Fourches D et al. 2019. Ion mobility spectrometry and the omics: distinguishing isomers, molecular classes and contaminant ions in complex samples. Trends Anal. Chem. 116:292–99
    [Google Scholar]
  128. 128. 
    Levy AJ, Oranzi NR, Ahmadireskety A, Kemperman RHJ, Wei MS, Yost RA 2019. Recent progress in metabolomics using ion mobility-mass spectrometry. Trends Anal. Chem. 116:274–81
    [Google Scholar]
  129. 129. 
    Hinz C, Liggi S, Griffin JL 2018. The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr. Opin. Chem. Biol. 42:42–50
    [Google Scholar]
  130. 130. 
    Zhou Z, Shen X, Tu J, Zhu Z-J 2016. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. Anal. Chem. 88:2211084–91
    [Google Scholar]
  131. 131. 
    Zhou Z, Tu J, Xiong X, Shen X, Zhu Z-J 2017. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal. Chem. 89:179559–66
    [Google Scholar]
  132. 132. 
    Harris RA, Leaptrot KL, May JC, McLean JA 2019. New frontiers in lipidomics analyses using structurally selective ion mobility-mass spectrometry. Trends Anal. Chem. 116:316–23
    [Google Scholar]
  133. 133. 
    Chacon A, Zagol-Ikapitte I, Amarnath V, Reyzer ML, Oates JA et al. 2011. On-tissue chemical derivatization of 3-methoxysalicylamine for MALDI-imaging mass spectrometry. J. Mass Spectrom. 46:8840–46
    [Google Scholar]
  134. 134. 
    Toue S, Sugiura Y, Kubo A, Ohmura M, Karakawa S et al. 2014. Microscopic imaging mass spectrometry assisted by on-tissue chemical derivatization for visualizing multiple amino acids in human colon cancer xenografts. Proteomics 14:7–8810–19
    [Google Scholar]
  135. 135. 
    Dueñas ME, Larson EA, Lee YJ 2019. Toward mass spectrometry imaging in the metabolomics scale: increasing metabolic coverage through multiple on-tissue chemical modifications. Front. Plant Sci. 10:860
    [Google Scholar]
  136. 136. 
    Shariatgorji M, Nilsson A, Fridjonsdottir E, Vallianatou T, Källback P et al. 2019. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 16:101021–28
    [Google Scholar]
  137. 137. 
    Xu F, Zou L, Liu Y, Zhang Z, Ong CN 2011. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom. Rev. 30:61143–72
    [Google Scholar]
  138. 138. 
    Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C et al. 2019. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14:2482–517
    [Google Scholar]
  139. 139. 
    Marco-Ramell A, Palau-Rodriguez M, Alay A, Tulipani S, Urpi-Sarda M et al. 2018. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform 19:11
    [Google Scholar]
  140. 140. 
    Chong J, Soufan O, Li C, Caraus I, Li S et al. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W1W486–94
    [Google Scholar]
  141. 141. 
    Willighagen EL, Alvarsson J, Andersson A, Eklund M, Lampa S et al. 2011. Linking the Resource Description Framework to cheminformatics and proteochemometrics. J. Biomed. Semant. 2:Suppl. 1S6
    [Google Scholar]
  142. 142. 
    Galgonek J, Hurt T, Michlíková V, Onderka P, Schwarz J, Vondrášek J 2016. Advanced SPARQL querying in small molecule databases. J. Cheminform. 8:31
    [Google Scholar]
  143. 143. 
    Lombardot T, Morgat A, Axelsen KB, Aimo L, Hyka-Nouspikel N et al. 2019. Updates in Rhea: SPARQLing biochemical reaction data. Nucleic Acids Res 47:D1D596–600
    [Google Scholar]
  144. 144. 
    Rubakhin SS, Lanni EJ, Sweedler JV 2013. Progress toward single cell metabolomics. Curr. Opin. Biotechnol. 24:195–104
    [Google Scholar]
  145. 145. 
    Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. Science 342:61631243259
    [Google Scholar]
  146. 146. 
    Comi TJ, Do TD, Rubakhin SS, Sweedler JV 2017. Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J. Am. Chem. Soc. 139:113920–29
    [Google Scholar]
  147. 147. 
    Evers TMJ, Hochane M, Tans SJ, Heeren RMA, Semrau S et al. 2019. Deciphering metabolic heterogeneity by single-cell analysis. Anal. Chem. 91:2113314–23
    [Google Scholar]
  148. 148. 
    Fessenden M. 2016. Metabolomics: small molecules, single cells. Nature 540:7631153–55
    [Google Scholar]
  149. 149. 
    Zhang L, Vertes A. 2017. Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew. Chem. 57:174466–77
    [Google Scholar]
  150. 150. 
    Duncan KD, Fyrestam J, Lanekoff I 2019. Advances in mass spectrometry based single-cell metabolomics. Analyst 144:3782–93
    [Google Scholar]
  151. 151. 
    Ali A, Abouleila Y, Shimizu Y, Hiyama E, Emara S et al. 2019. Single-cell metabolomics by mass spectrometry: advances, challenges, and future applications. Trends Anal. Chem. 20:115436
    [Google Scholar]
  152. 152. 
    Krismer J, Sobek J, Steinhoff RF, Fagerer SR, Pabst M, Zenobi R 2015. Screening of Chlamydomonas reinhardtii populations with single-cell resolution by using a high-throughput microscale sample preparation for matrix-assisted laser desorption ionization mass spectrometry. Appl. Environ. Microbiol. 81:165546–51
    [Google Scholar]
  153. 153. 
    Do TD, Comi TJ, Dunham SJB, Rubakhin SS, Sweedler JV 2017. Single cell profiling using ionic liquid matrix-enhanced secondary ion mass spectrometry for neuronal cell type differentiation. Anal. Chem. 89:53078–86
    [Google Scholar]
  154. 154. 
    Neumann EK, Comi TJ, Rubakhin SS, Sweedler JV 2019. Lipid heterogeneity between astrocytes and neurons revealed by single-cell MALDI-MS combined with immunocytochemical classification. Angew. Chem. 58:185910–14
    [Google Scholar]
  155. 155. 
    Rappez L, Stadler M, Sierra SHT, Phapale P, Heikenwalder M, Alexandrov T 2019. Spatial single-cell profiling of intracellular metabolomes in situ. bioRxiv 510222. https://doi.org/10.1101/510222
    [Crossref]
  156. 156. 
    Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M 2019. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16:7411–28
    [Google Scholar]
  157. 157. 
    Angerer P, Simon L, Tritschler S, Wolf FA, Fischer D, Theis FJ 2017. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4:85–91
    [Google Scholar]
  158. 158. 
    Neumann S, Böcker S. 2010. Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal. Bioanal. Chem. 398:7–82779–88
    [Google Scholar]
  159. 159. 
    Nguyen DH, Nguyen CH, Mamitsuka H 2018. Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches. Brief. Bioinform. 20:2028–43
    [Google Scholar]
  160. 160. 
    Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM et al. 2015. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 31:142418–20
    [Google Scholar]
  161. 161. 
    Ràfols P, Torres S, Ramírez N, Del Castillo E, Yanes O et al. 2017. rMSI: an R package for MS imaging data handling and visualization. Bioinformatics 33:152427–28
    [Google Scholar]
  162. 162. 
    Gamboa-Becerra R, Ramírez-Chávez E, Molina-Torres J, Winkler R 2015. MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum). Anal. Bioanal. Chem. 407:195673–84
    [Google Scholar]
  163. 163. 
    Rübel O, Greiner A, Cholia S, Louie K, Bethel EW et al. 2013. OpenMSI: a high-performance web-based platform for mass spectrometry imaging. Anal. Chem. 85:2110354–61
    [Google Scholar]
  164. 164. 
    Föll MC, Moritz L, Wollmann T, Stillger MN, Vockert N et al. 2019. Accessible and reproducible mass spectrometry imaging data analysis in Galaxy. bioRxiv 628719. https://doi.org/10.1101/628719
    [Crossref]
  165. 165. 
    Kale NS, Haug K, Conesa P, Jayseelan K, Moreno P et al. 2016. MetaboLights: an open-access database repository for metabolomics data. Curr. Protoc. Bioinform. 53:14 13 1–18
    [Google Scholar]
  166. 166. 
    Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M et al. 2015. Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry. GigaScience 4:20
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-011420-031537
Loading
/content/journals/10.1146/annurev-biodatasci-011420-031537
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error