1932

Abstract

Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-012221-095114
2021-07-20
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-012221-095114.html?itemId=/content/journals/10.1146/annurev-biodatasci-012221-095114&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:52192–97
    [Google Scholar]
  2. 2. 
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:256506–11
    [Google Scholar]
  3. 3. 
    Mushegian AR. 2020. Are there 1031 virus particles on Earth, or more, or fewer?. J. Bacteriol. 202:9e00052–20
    [Google Scholar]
  4. 4. 
    Nasir A, Forterre P, Kim KM, Caetano-Anollés G. 2014. The distribution and impact of viral lineages in domains of life. Front. Microbiol. 5:194
    [Google Scholar]
  5. 5. 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. 2014. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12:7519–28
    [Google Scholar]
  6. 6. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  7. 7. 
    Mi S, Lee X, Li X, Veldman GM, Finnerty H et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:6771785–89
    [Google Scholar]
  8. 8. 
    Horzinek MC. 1997. The birth of virology. Antonie Leeuwenhoek 71:1–215–20
    [Google Scholar]
  9. 9. 
    Keen EC. 2015. A century of phage research: bacteriophages and the shaping of modern biology. BioEssays 37:16–9
    [Google Scholar]
  10. 10. 
    van Helvoort T. 1994. History of virus research in the twentieth century: the problem of conceptual continuity. Hist. Sci. 32:2185–235
    [Google Scholar]
  11. 11. 
    Kruger DH, Schneck P, Gelderblom HR. 2000. Helmut Ruska and the visualisation of viruses. Lancet 355:92161713–17
    [Google Scholar]
  12. 12. 
    Ackermann HW. 1992. Frequency of morphological phage descriptions. Arch. Virol. 124:3–4201–9
    [Google Scholar]
  13. 13. 
    Eisenstark A 1967. Bacteriophage techniques. Methods in Virology, Vol. 1 K Maramorosch, H Koprowski 449–525 New York: Academic
    [Google Scholar]
  14. 14. 
    Ackermann H-W. 2007. 5500 phages examined in the electron microscope. Arch. Virol. 152:2227–43
    [Google Scholar]
  15. 15. 
    Torrella F, Morita RY. 1979. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Environ. Microbiol. 37:4774–78
    [Google Scholar]
  16. 16. 
    Frank H, Moebus K. 1987. An electron microscopic study of bacteriophages from marine waters. Helgol. Meeresunters. 41:4385–414
    [Google Scholar]
  17. 17. 
    Bergh O, Børsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature 340:6233467–68
    [Google Scholar]
  18. 18. 
    Proctor LM, Fuhrman JA. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343:625360–62
    [Google Scholar]
  19. 19. 
    Suttle CA, Chan AM, Cottrell MT. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:6292467–69
    [Google Scholar]
  20. 20. 
    Børsheim KY. 1993. Native marine bacteriophages. FEMS Microbiol. Ecol. 11:3–4141–59
    [Google Scholar]
  21. 21. 
    Klieve AV, Swain RA. 1993. Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Appl. Environ. Microbiol. 59:72299–303
    [Google Scholar]
  22. 22. 
    Swain RA, Nolan JV, Klieve AV. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62:3994–97
    [Google Scholar]
  23. 23. 
    Wommack KE, Ravel J, Hill RT, Chun J, Colwell RR 1999. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65:1231–40
    [Google Scholar]
  24. 24. 
    Steward GF, Montiel JL, Azam F. 2000. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol. Oceanogr. 45:81697–706
    [Google Scholar]
  25. 25. 
    Chen F, Suttle CA. 1995. Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. Environ. Microbiol. 61:41274–78
    [Google Scholar]
  26. 26. 
    Chen F, Suttle CA, Short SM. 1996. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. Environ. Microbiol. 62:82869–74
    [Google Scholar]
  27. 27. 
    Culley AI, Lang AS, Suttle CA. 2003. High diversity of unknown picorna-like viruses in the sea. Nature 424:69521054–57
    [Google Scholar]
  28. 28. 
    Short SM, Suttle CA. 2002. Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl. Environ. Microbiol. 68:31290–96
    [Google Scholar]
  29. 29. 
    Breitbart M, Miyake JH, Rohwer F. 2004. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236:2249–56
    [Google Scholar]
  30. 30. 
    Short CM, Suttle CA. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71:1480–86
    [Google Scholar]
  31. 31. 
    Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:6333–51
    [Google Scholar]
  32. 32. 
    Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM et al. 2002. Genomic analysis of uncultured marine viral communities. PNAS 99:2214250–55
    [Google Scholar]
  33. 33. 
    Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J et al. 2003. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185:206220–23
    [Google Scholar]
  34. 34. 
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA et al. 2006. The marine viromes of four oceanic regions. PLOS Biol 4:11e368
    [Google Scholar]
  35. 35. 
    Culley AI, Lang AS, Suttle CA. 2006. Metagenomic analysis of coastal RNA virus communities. Science 312:57811795–98
    [Google Scholar]
  36. 36. 
    Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. 2013. Expanding the marine virosphere using metagenomics. PLOS Genet 9:12e1003987
    [Google Scholar]
  37. 37. 
    Smits SL, Bodewes R, Ruiz-Gonzalez A, Baumgärtner W, Koopmans MP et al. 2014. Assembly of viral genomes from metagenomes. Front. Microbiol. 5:714
    [Google Scholar]
  38. 38. 
    Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. 2019. Long-read sequencing—a powerful tool in viral transcriptome research. Trends Microbiol 27:7578–92
    [Google Scholar]
  39. 39. 
    Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC et al. 2019. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7:e6800
    [Google Scholar]
  40. 40. 
    Beaulaurier J, Luo E, Eppley JM, Uyl PD, Dai X et al. 2020. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res 30:3437–46
    [Google Scholar]
  41. 41. 
    Roux S, Páez-Espino D, Chen I-MA, Palaniappan K, Ratner A et al. 2020. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res 49:D764–75
    [Google Scholar]
  42. 42. 
    Roux S, Krupovic M, Debroas D, Forterre P, Enault F. 2013. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol 3:12130160
    [Google Scholar]
  43. 43. 
    Zolfo M, Pinto F, Asnicar F, Manghi P, Tett A et al. 2019. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37:121408–12
    [Google Scholar]
  44. 44. 
    Kim K-H, Bae J-W. 2011. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Environ. Microbiol. 77:217663–68
    [Google Scholar]
  45. 45. 
    Székely AJ, Breitbart M. 2016. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol. Lett. 363:6fnw027
    [Google Scholar]
  46. 46. 
    Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, López-Bueno A. 2018. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome 6:119
    [Google Scholar]
  47. 47. 
    Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CMAP et al. 2015. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome 3:64
    [Google Scholar]
  48. 48. 
    Bobay L-M, Touchon M, Rocha EPC 2014. Pervasive domestication of defective prophages by bacteria. PNAS 111:3312127–32
    [Google Scholar]
  49. 49. 
    Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P et al. 2014. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3:e03125
    [Google Scholar]
  50. 50. 
    Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ et al. 2018. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J 12:71706–14
    [Google Scholar]
  51. 51. 
    Labonté JM, Swan BK, Poulos B, Luo H, Koren S et al. 2015. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9:112386–99
    [Google Scholar]
  52. 52. 
    Labonté JM, Pachiadaki M, Fergusson E, McNichol J, Grosche A et al. 2019. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Front. Microbiol. 10:1262
    [Google Scholar]
  53. 53. 
    Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ et al. 2017. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8:15892
    [Google Scholar]
  54. 54. 
    Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS et al. 2014. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513:7517242–45
    [Google Scholar]
  55. 55. 
    Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. 2019. Defining the human gut host-phage network through single-cell viral tagging. Nat. Microbiol. 4:122192–203
    [Google Scholar]
  56. 56. 
    Roux S, Enault F, Hurwitz BL, Sullivan MB. 2015. VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985
    [Google Scholar]
  57. 57. 
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M et al. 2016. Uncovering Earth's virome. Nature 536:425First large-scale study to identify viral sequences across all public metagenomic datasets.
    [Google Scholar]
  58. 58. 
    Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. 2017. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12:81673–82
    [Google Scholar]
  59. 59. 
    Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM et al. 2019. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37:29–37Viral genomics standards developed within the Genomic Standards Consortium framework.
    [Google Scholar]
  60. 60. 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:71043–55
    [Google Scholar]
  61. 61. 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. 2020. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39:57885
    [Google Scholar]
  62. 62. 
    Kieft K, Zhou Z, Anantharaman K. 2020. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90
    [Google Scholar]
  63. 63. 
    Antipov D, Raiko M, Lapidus A, Pevzner PA. 2020. Metaviral SPAdes: assembly of viruses from metagenomic data. Bioinformatics 36:144126–29
    [Google Scholar]
  64. 64. 
    Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit M-A. 2017. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 11:237–47
    [Google Scholar]
  65. 65. 
    Rohwer F, Edwards R. 2002. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184:164529–35
    [Google Scholar]
  66. 66. 
    Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S et al. 2019. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37:6632–39
    [Google Scholar]
  67. 67. 
    Low SJ, Džunková M, Chaumeil P-A, Parks DH, Hugenholtz P. 2019. Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. Nat. Microbiol. 4:81306–15
    [Google Scholar]
  68. 68. 
    Meier-Kolthoff JP, Göker M. 2017. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33:213396–404
    [Google Scholar]
  69. 69. 
    Dougan TJ, Quake SR. 2019. Viral taxonomy derived from evolutionary genome relationships. PLOS ONE 14:8e0220440
    [Google Scholar]
  70. 70. 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36:10996–1004
    [Google Scholar]
  71. 71. 
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. 2016. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40:2258–72Systematic statistical evaluation of various computational approaches to viral host prediction.
    [Google Scholar]
  72. 72. 
    Marbouty M, Baudry L, Cournac A, Koszul R. 2017. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3:2e1602105
    [Google Scholar]
  73. 73. 
    Bickhart DM, Watson M, Koren S, Panke-Buisse K, Cersosimo LM et al. 2019. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biol 20:153
    [Google Scholar]
  74. 74. 
    Godde JS, Bickerton A. 2006. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62:6718–29
    [Google Scholar]
  75. 75. 
    Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K et al. 2016. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun. 7:10613
    [Google Scholar]
  76. 76. 
    Skennerton CT, Imelfort M, Tyson GW. 2013. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res 41:10e105
    [Google Scholar]
  77. 77. 
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:41390–400
    [Google Scholar]
  78. 78. 
    Andersson AF, Banfield JF. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:58791047–50
    [Google Scholar]
  79. 79. 
    Tyson GW, Banfield JF. 2008. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10:1200–7
    [Google Scholar]
  80. 80. 
    Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N et al. 2020. A genomic catalog of Earth's microbiomes. Nat. Biotechnol. 39:499509
    [Google Scholar]
  81. 81. 
    Akhter S, RK Aziz, Edwards RA. 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:16e126
    [Google Scholar]
  82. 82. 
    Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA et al. 2017. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8:15955
    [Google Scholar]
  83. 83. 
    Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O et al. 2016. HostPhinder: a phage host prediction tool. Viruses 8:5116
    [Google Scholar]
  84. 84. 
    Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. 2017. Alignment-free d*2 oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res 45:139–53
    [Google Scholar]
  85. 85. 
    Galiez C, Siebert M, Enault F, Vincent J, Söding J. 2017. WIsH: Who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33:193113–14
    [Google Scholar]
  86. 86. 
    Baláž A, Kajsík M, Budiš J, Szemeš T, Turňa J. 2020. PHERI—phage host exploration pipeline. bioRxiv 2020.05.13.093773. https://doi.org/10.1101/2020.05.13.093773
    [Crossref]
  87. 87. 
    Thingstad TF, Lignell R. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13:19–27
    [Google Scholar]
  88. 88. 
    Bouvier T, del Giorgio PA. 2007. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol. 9:2287–97
    [Google Scholar]
  89. 89. 
    Pal C, Maciá MD, Oliver A, Schachar I, Buckling A. 2007. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:71721079–81
    [Google Scholar]
  90. 90. 
    Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M et al. 2008. Functional metagenomic profiling of nine biomes. Nature 452:7187629–32
    [Google Scholar]
  91. 91. 
    Wilhelm SW, Suttle CA. 1999. Viruses and nutrient cycles in the sea. Bioscience 49:10781–88
    [Google Scholar]
  92. 92. 
    Proctor LM, Fuhrman JA. 1991. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69:1/2133–42
    [Google Scholar]
  93. 93. 
    Danovaro R, Dell'Anno A, Corinaldesi C, Magagnini M, Noble R et al. 2008. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454:72081084–87
    [Google Scholar]
  94. 94. 
    Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:2127–81
    [Google Scholar]
  95. 95. 
    Staniewski MA, Short SM. 2014. Potential viral stimulation of primary production observed during experimental determinations of phytoplankton mortality. Aquat. Microb. Ecol. 71:3239–56
    [Google Scholar]
  96. 96. 
    Summers WC. 2012. The strange history of phage therapy. Bacteriophage 2:2130–33
    [Google Scholar]
  97. 97. 
    Divya Ganeshan S, Hosseinidoust Z. 2019. Phage therapy with a focus on the human microbiota. Antibiotics 8:3131
    [Google Scholar]
  98. 98. 
    Schmidt C. 2019. Phage therapy's latest makeover. Nat. Biotechnol. 37:6581–86
    [Google Scholar]
  99. 99. 
    Duplessis CA, Stockelman M, Hamilton T, Merril G, Brownstein M et al. 2019. A case series of emergency investigational new drug applications for bacteriophages treating recalcitrant multi-drug resistant bacterial infections: confirmed safety and a signal of efficacy. J. Intensive Crit. Care 5:211
    [Google Scholar]
  100. 100. 
    Kim B-O, Kim ES, Yoo Y-J, Bae H-W, Chung I-Y, Cho Y-H 2019. Phage-derived antibacterials: harnessing the simplicity, plasticity, and diversity of phages. Viruses 11:3268
    [Google Scholar]
  101. 101. 
    Griffiths MW. 2014. Phage-based methods for the detection of bacterial pathogens. Bacteriophages in the Control of Food- and Waterborne Pathogens31–59 Washington, DC: ASM Press
    [Google Scholar]
  102. 102. 
    Schofield DA, Sharp NJ, Westwater C. 2012. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2:2105–283
    [Google Scholar]
  103. 103. 
    Paczesny J, Richter Ł, Hołyst R. 2020. Recent progress in the detection of bacteria using bacteriophages: a review. Viruses 12:8845
    [Google Scholar]
  104. 104. 
    Meile S, Kilcher S, Loessner MJ, Dunne M. 2020. Reporter phage-based detection of bacterial pathogens: design guidelines and recent developments. Viruses 12:9944
    [Google Scholar]
  105. 105. 
    Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A et al. 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:8949–54
    [Google Scholar]
  106. 106. 
    Buttimer C, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34
    [Google Scholar]
  107. 107. 
    Plaza N, Castillo D, Pérez-Reytor D, Higuera G, García K, Bastías R. 2018. Bacteriophages in the control of pathogenic vibrios. Electron. J. Biotechnol. 31:24–33
    [Google Scholar]
  108. 108. 
    Svircev A, Roach D, Castle A. 2018. Framing the future with bacteriophages in agriculture. Viruses 10:5218
    [Google Scholar]
  109. 109. 
    Vu NT, Oh C-S. 2020. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J. 36:3204–17
    [Google Scholar]
  110. 110. 
    Perera MN, Abuladze T, Li M, Woolston J, Sulakvelidze A. 2015. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 52:42–48
    [Google Scholar]
  111. 111. 
    Gutiérrez D, Rodríguez-Rubio L, Fernández L, Martínez B, Rodríguez A, García P. 2017. Applicability of commercial phage-based products against Listeriamonocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control 73:1474–82
    [Google Scholar]
  112. 112. 
    Połaska M, Sokołowska B. 2019. Bacteriophages—a new hope or a huge problem in the food industry. AIMS Microbiol 5:4324–46
    [Google Scholar]
  113. 113. 
    Sullivan MB, Weitz JS, Wilhelm S. 2017. Viral ecology comes of age. Environ. Microbiol. Rep. 9:133–35
    [Google Scholar]
  114. 114. 
    Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA et al. 2020. Giant virus diversity and host interactions through global metagenomics. Nature 578:7795432–36Significant expansion of the global diversity of nucleocytoplasmic large DNA viruses (NCLDVs) from metagenomes.
    [Google Scholar]
  115. 115. 
    Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ et al. 2014. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5:4498
    [Google Scholar]
  116. 116. 
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM et al. 2018. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554:7690118–22
    [Google Scholar]
  117. 117. 
    Roux S, Krupovič M, Daly RA, Borges AL, Nayfach S et al. 2019. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nat. Microbiol. 4:111895–906
    [Google Scholar]
  118. 118. 
    Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P et al. 2019. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4:4693–700
    [Google Scholar]
  119. 119. 
    Paez-Espino D, Zhou J, Roux S, Nayfach S, Pavlopoulos GA et al. 2019. Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7:157
    [Google Scholar]
  120. 120. 
    Lucas W. 2010. Viral capsids and envelopes: structure and function. eLS https://doi.org/10.1002/9780470015902.a0001091.pub2
    [Crossref] [Google Scholar]
  121. 121. 
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:71511–20
    [Google Scholar]
  122. 122. 
    Rosario K, Duffy S, Breitbart M. 2009. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J. Gen. Virol. 90:Part 102418–24
    [Google Scholar]
  123. 123. 
    Philippe N, Legendre M, Doutre G, Couté Y, Poirot O et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:6143281–86
    [Google Scholar]
  124. 124. 
    Hatfull GF. 2008. Bacteriophage genomics. Curr. Opin. Microbiol. 11:5447–53
    [Google Scholar]
  125. 125. 
    Koonin EV, Senkevich TG, Dolja VV. 2006. The ancient Virus World and evolution of cells. Biol. Direct. 1:29
    [Google Scholar]
  126. 126. 
    Grazziotin AL, Koonin EV, Kristensen DM. 2017. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res 45:D1D491–98
    [Google Scholar]
  127. 127. 
    Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. 2018. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere 3:2e00069–18
    [Google Scholar]
  128. 128. 
    Brister JR, Ako-Adjei D, Bao Y, Blinkova O 2015. NCBI viral genomes resource. Nucleic Acids Res 43:D571–77
    [Google Scholar]
  129. 129. 
    Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A et al. 2011. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:D576–82
    [Google Scholar]
  130. 130. 
    Russell DA, Hatfull GF. 2017. PhagesDB: the actinobacteriophage database. Bioinformatics 33:5784–86
    [Google Scholar]
  131. 131. 
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB et al. 2012. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40:D593–98
    [Google Scholar]
  132. 132. 
    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. 2017. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5:69
    [Google Scholar]
  133. 133. 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA et al. 2020. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8:64–77
    [Google Scholar]
  134. 134. 
    Marquet M, Hölzer M, Pletz MW, Viehweger A, Makarewicz O et al. 2020. What the Phage: a scalable workflow for the identification and analysis of phage sequences. bioRxiv 2020.07.24.219899. https://doi.org/10.1101/2020.07.24.219899
    [Crossref]
  135. 135. 
    Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. 2008. Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:6863–65
    [Google Scholar]
  136. 136. 
    Bose M, Barber RD. 2006. Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 6:3223–27
    [Google Scholar]
  137. 137. 
    Chare ER, Holmes EC. 2006. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch. Virol. 151:5933–46
    [Google Scholar]
  138. 138. 
    Lefeuvre P, Lett J-M, Varsani A, Martin DP. 2009. Widely conserved recombination patterns among single-stranded DNA viruses. J. Virol. 83:62697–707
    [Google Scholar]
  139. 139. 
    Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. 2011. Recombination in eukaryotic single stranded DNA viruses. Viruses 3:91699–738
    [Google Scholar]
  140. 140. 
    Cumby N, Davidson AR, Maxwell KL. 2012. The moron comes of age. Bacteriophage 2:4225–28
    [Google Scholar]
  141. 141. 
    Krupovic M, Koonin EV. 2014. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep. 4:5347
    [Google Scholar]
  142. 142. 
    Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A et al. 2016. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genom 17:930
    [Google Scholar]
  143. 143. 
    Krupovič M, Bamford DH. 2010. Order to the viral universe. J. Virol. 84:2412476–79
    [Google Scholar]
  144. 144. 
    Krupovič M, Koonin EV 2017. Multiple origins of viral capsid proteins from cellular ancestors. PNAS 114:12E2401–10
    [Google Scholar]
  145. 145. 
    Krupovič M, Dolja VV, Koonin EV. 2019. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17:7449–58
    [Google Scholar]
  146. 146. 
    Int. Comm. Taxon. Viruses Exec. Comm 2020. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol. 5:5668–74
    [Google Scholar]
  147. 147. 
    Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR et al. 2017. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15:3161–68Consensus from ICTV workshop stating that uncultivated viruses can be incorporated into the official taxonomy.
    [Google Scholar]
  148. 148. 
    Simmonds P. 2015. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J. Gen. Virol. 96:61193–206A detailed discussion of the hazards of modern viral taxonomic classification.
    [Google Scholar]
  149. 149. 
    Shapiro JW, Putonti C. 2018. Gene co-occurrence networks reflect bacteriophage ecology and evolution. mBio 9:2e01870–17
    [Google Scholar]
  150. 150. 
    Sullivan MB, Waterbury JB, Chisholm SW. 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424:69521047–51
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-012221-095114
Loading
/content/journals/10.1146/annurev-biodatasci-012221-095114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error