1932

Abstract

Over the last several years, next-generation sequencing and its recent push toward single-cell resolution have transformed the landscape of immunology research by revealing novel complexities about all components of the immune system. With the vast amounts of diverse data currently being generated, and with the methods of analyzing and combining diverse data improving as well, integrative systems approaches are becoming more powerful. Previous integrative approaches have combined multiple data types and revealed ways that the immune system, both as a whole and as individual parts, is affected by genetics, the microbiome, and other factors. In this review, we explore the data types that are available for studying immunology with an integrative systems approach, as well as the current strategies and challenges for conducting such analyses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-012420-122454
2020-07-20
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-012420-122454.html?itemId=/content/journals/10.1146/annurev-biodatasci-012420-122454&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:4812–30.e14
    [Google Scholar]
  2. 2. 
    Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED et al. 2019. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25:101576–88
    [Google Scholar]
  3. 3. 
    Davis MM, Tato CM, Furman D 2017. Systems immunology: just getting started. Nat. Immunol. 18:7725–32
    [Google Scholar]
  4. 4. 
    Patin E, Hasan M, Bergstedt J, Rouilly V, Libri V et al. 2018. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19:3302–14
    [Google Scholar]
  5. 5. 
    Liston A, Goris A. 2018. The origins of diversity in human immunity. Nat. Immunol. 19:3209–10
    [Google Scholar]
  6. 6. 
    Schultze JL. 2015. Teaching “big data” analysis to young immunologists. Nat. Immunol. 16:902–5
    [Google Scholar]
  7. 7. 
    Good Z, Glanville J, Gee MH, Davis MM, Khatri P 2019. Computational and systems immunology: a student's perspective. Trends Immunol 40:8665–68
    [Google Scholar]
  8. 8. 
    Kidd BA, Peters LA, Schadt EE, Dudley JT 2014. Unifying immunology with informatics and multiscale biology. Nat. Immunol. 15:2118–27
    [Google Scholar]
  9. 9. 
    Baranzini SE, Khankhanian P, Patsopoulos NA, Li M, Stankovich J et al. 2013. Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am. J. Hum. Genet. 92:6854–65
    [Google Scholar]
  10. 10. 
    Martin J-E, Assassi S, Diaz-Gallo L-M, Broen JC, Simeon CP et al. 2013. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum. Mol. Genet. 22:194021–29
    [Google Scholar]
  11. 11. 
    Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S et al. 2010. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42:6508–14
    [Google Scholar]
  12. 12. 
    Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD et al. 2017. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549:7670111–15
    [Google Scholar]
  13. 13. 
    Kennedy AE, Ozbek U, Dorak MT 2017. What has GWAS done for HLA and disease associations. ? Int. J. Immunogenet. 44:5195–211
    [Google Scholar]
  14. 14. 
    Trowsdale J, Knight JC. 2013. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 14:301–23
    [Google Scholar]
  15. 15. 
    Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ et al. 2008. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60:11–18
    [Google Scholar]
  16. 16. 
    Unanue ER, Turk V, Neefjes J 2016. Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34:265–97
    [Google Scholar]
  17. 17. 
    Sirota M, Schaub MA, Batzoglou S, Robinson WH, Butte AJ 2009. Autoimmune disease classification by inverse association with SNP alleles. PLOS Genet 5:12e1000792
    [Google Scholar]
  18. 18. 
    Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K et al. 2007. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39:101181–86
    [Google Scholar]
  19. 19. 
    Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J et al. 2019. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1D1005–12
    [Google Scholar]
  20. 20. 
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:7726203–9
    [Google Scholar]
  21. 21. 
    Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R et al. 2013. The transcriptional landscape of αβ T cell differentiation. Nat. Immunol. 14:6619
    [Google Scholar]
  22. 22. 
    Newman AM, Liu CL, Green MR, Gentles AJ, Feng W et al. 2015. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12:5453–57
    [Google Scholar]
  23. 23. 
    Aran D, Hu Z, Butte AJ 2017. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:1220
    [Google Scholar]
  24. 24. 
    Stewart PA, Welsh EA, Slebos RJC, Fang B, Izumi V et al. 2019. Proteogenomic landscape of squamous cell lung cancer. Nat. Commun. 10:3578
    [Google Scholar]
  25. 25. 
    Kim IS, Gao Y, Welte T, Wang H, Liu J et al. 2019. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21:91113–26
    [Google Scholar]
  26. 26. 
    Kim-Hellmuth S, Bechheim M, Pütz B, Mohammadi P, Nédélec Y et al. 2017. Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nat. Commun. 8:1266
    [Google Scholar]
  27. 27. 
    Vora B, Wang A, Kosti I, Huang H, Paranjpe I et al. 2018. Meta-analysis of maternal and fetal transcriptomic data elucidates the role of adaptive and innate immunity in preterm birth. Front. Immunol. 9:933
    [Google Scholar]
  28. 28. 
    Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al. 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D1D991–95
    [Google Scholar]
  29. 29. 
    Heng TSP, Painter MW 2008. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol 9:101091–94
    [Google Scholar]
  30. 30. 
    Rotival M. 2019. Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility. HLA 94:3275–84
    [Google Scholar]
  31. 31. 
    Buenrostro J, Wu B, Chang H, Greenleaf W 2015. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109:21.29.1–9
    [Google Scholar]
  32. 32. 
    Li Y, Tollefsbol TO. 2011. DNA methylation detection: Bisulfite genomic sequencing analysis. Methods Mol. Biol. 791:11–21
    [Google Scholar]
  33. 33. 
    Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:4823–37
    [Google Scholar]
  34. 34. 
    Johnson DS, Mortazavi A, Myers RM, Wold B 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:58301497–502
    [Google Scholar]
  35. 35. 
    Calderon D, Nguyen MLT, Mezger A, Kathiria A, Müller F et al. 2019. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat. Genet. 51:1494–505
    [Google Scholar]
  36. 36. 
    ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74
    [Google Scholar]
  37. 37. 
    Moskowitz DM, Zhang DW, Hu B, Saux SL, Yanes RE et al. 2017. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2:8eaag0192
    [Google Scholar]
  38. 38. 
    Yu B, Zhang K, Milner JJ, Toma C, Chen R et al. 2017. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat. Immunol. 18:5573–82
    [Google Scholar]
  39. 39. 
    Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:7539337–43
    [Google Scholar]
  40. 40. 
    Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM et al. 2018. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res 46:D1D794–801
    [Google Scholar]
  41. 41. 
    Heather JM, Ismail M, Oakes T, Chain B 2018. High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities. Brief. Bioinform. 19:4554–65
    [Google Scholar]
  42. 42. 
    Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR 2014. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32:2158–68
    [Google Scholar]
  43. 43. 
    Schroeder HW. 2006. Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Dev. Comp. Immunol. 30:1–2119–35
    [Google Scholar]
  44. 44. 
    Davis MM, Bjorkman PJ. 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334:6181395–402
    [Google Scholar]
  45. 45. 
    Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak AM 2018. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol. Rev. 284:1167–79
    [Google Scholar]
  46. 46. 
    Yaari G, Kleinstein SH. 2015. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 7:121
    [Google Scholar]
  47. 47. 
    Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV et al. 2015. VDJtools: unifying post-analysis of T cell receptor repertoires. PLOS Comput. Biol. 11:11e1004503
    [Google Scholar]
  48. 48. 
    López-Santibáñez-Jácome L, Avendaño-Vázquez SE, Flores-Jasso CF 2019. The pipeline repertoire for Ig-Seq analysis. Front. Immunol. 10:899
    [Google Scholar]
  49. 49. 
    Bradley P, Thomas PG. 2019. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu. Rev. Immunol. 37:547–70
    [Google Scholar]
  50. 50. 
    Bashford-Rogers RJM, Palser AL, Huntly BJ, Rance R, Vassiliou GS et al. 2013. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 23:111874–84
    [Google Scholar]
  51. 51. 
    Pineda S, Sigdel TK, Liberto JM, Vincenti F, Sirota M, Sarwal MM 2019. Characterizing pre-transplant and post-transplant kidney rejection risk by B cell immune repertoire sequencing. Nat. Commun. 10:1906
    [Google Scholar]
  52. 52. 
    von Büdingen H-C, Kuo TC, Sirota M, van Belle CJ, Apeltsin L et al. 2012. B cell exchange across the blood–brain barrier in multiple sclerosis. J. Clin. Investig. 122:124533–43
    [Google Scholar]
  53. 53. 
    Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S et al. 2014. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl. Med. 6:248248ra106
    [Google Scholar]
  54. 54. 
    Strauli NB, Hernandez RD. 2016. Statistical inference of a convergent antibody repertoire response to influenza vaccine. Genome Med 8:160
    [Google Scholar]
  55. 55. 
    Roskin KM, Simchoni N, Liu Y, Lee J-Y, Seo K et al. 2015. IgH sequences in common variable immune deficiency reveal altered B cell development and selection. Sci. Transl. Med. 7:302302ra135
    [Google Scholar]
  56. 56. 
    Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S et al. 2017. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547:766189–93
    [Google Scholar]
  57. 57. 
    Glanville J, Huang H, Nau A, Hatton O, Wagar LE et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:766194–98
    [Google Scholar]
  58. 58. 
    Gowthaman R, Pierce BG 2019. TCR3d: The T cell receptor structural repertoire database. Bioinformatics 35:5323–25
    [Google Scholar]
  59. 59. 
    Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG 2016. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl. Cancer Inst. 108:11djw144
    [Google Scholar]
  60. 60. 
    Leinonen R, Sugawara H, Shumway M 2011. The Sequence Read Archive. Nucleic Acids Res 39:D19–21
    [Google Scholar]
  61. 61. 
    Rubelt F, Busse CE, Bukhari SAC, Bürckert J-P, Mariotti-Ferrandiz E et al. 2017. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data. Nat. Immunol. 18:121274–78
    [Google Scholar]
  62. 62. 
    Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H et al. 2018. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 5:180015
    [Google Scholar]
  63. 63. 
    Zhang W, Wang L, Liu K, Wei X, Yang K et al. 2020. PIRD: Pan Immune Repertoire Database. Bioinformatics 36:897–903
    [Google Scholar]
  64. 64. 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:5335–36
    [Google Scholar]
  65. 65. 
    Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:10996–98
    [Google Scholar]
  66. 66. 
    Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:7758655–62
    [Google Scholar]
  67. 67. 
    Theriot CM, Young VB. 2015. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. . Microbiol 69:445–61
    [Google Scholar]
  68. 68. 
    Relman DA, Lipsitch M. 2018. Microbiome as a tool and a target in the effort to address antimicrobial resistance. PNAS 115:5112902–10
    [Google Scholar]
  69. 69. 
    Dumas A, Corral D, Colom A, Levillain F, Peixoto A et al. 2018. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front. . Immunol 9:2656
    [Google Scholar]
  70. 70. 
    Chiu L, Bazin T, Truchetet M-E, Schaeverbeke T, Delhaes L, Pradeu T 2017. Protective microbiota: from localized to long-reaching co-immunity. Front. Immunol. 8:1678
    [Google Scholar]
  71. 71. 
    Ding Y-H, Qian L-Y, Pang J, Lin J-Y, Xu Q et al. 2017. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 8:3559915–28
    [Google Scholar]
  72. 72. 
    Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8:11784
    [Google Scholar]
  73. 73. 
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI 2007. The Human Microbiome Project. Nature 449:7164804–10
    [Google Scholar]
  74. 74. 
    Integr. HMP (iHMP) Res. Netw. Consort 2019. The Integrative Human Microbiome Project. Nature 569:7758641–48
    [Google Scholar]
  75. 75. 
    McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A et al. 2018. American Gut: an open platform for citizen science microbiome research. mSystems 3:3e00031–18
    [Google Scholar]
  76. 76. 
    Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E et al. 2019. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51:61060–66
    [Google Scholar]
  77. 77. 
    Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN et al. 2018. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173:61535–48.e16
    [Google Scholar]
  78. 78. 
    Blainey PC, Quake SR. 2014. Dissecting genomic diversity, one cell at a time. Nat. Methods 11:19–21
    [Google Scholar]
  79. 79. 
    Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–96.e15
    [Google Scholar]
  80. 80. 
    Chappell L, Russell AJC, Voet T 2018. Single-cell (multi)omics technologies. Annu. Rev. Genom. Hum. Genet. 19:15–41
    [Google Scholar]
  81. 81. 
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14
    [Google Scholar]
  82. 82. 
    Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E et al. 2019. Comprehensive integration of single-cell data. Cell 177:71888–902.e21
    [Google Scholar]
  83. 83. 
    Papalexi E, Satija R. 2018. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18:135–45
    [Google Scholar]
  84. 84. 
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D et al. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:6282189–96
    [Google Scholar]
  85. 85. 
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:4381–86
    [Google Scholar]
  86. 86. 
    Street K, Risso D, Fletcher RB, Das D, Ngai J et al. 2018. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom 19:477
    [Google Scholar]
  87. 87. 
    Saelens W, Cannoodt R, Todorov H, Saeys Y 2019. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37:5547–54
    [Google Scholar]
  88. 88. 
    Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:7718–28
    [Google Scholar]
  89. 89. 
    Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17:6666–76
    [Google Scholar]
  90. 90. 
    Psaila B, Mead AJ. 2019. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 133:131427–35
    [Google Scholar]
  91. 91. 
    Ntranos V, Yi L, Melsted P, Pachter L 2019. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat. Methods 16:2163–66
    [Google Scholar]
  92. 92. 
    Ner-Gaon H, Melchior A, Golan N, Ben-Haim Y, Shay T 2017. JingleBells: a repository of immune-related single-cell RNA-sequencing datasets. J. Immunol. 198:93375–79
    [Google Scholar]
  93. 93. 
    Franzén O, Gan L-M, Björkegren JLM 2019. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019 baz046
    [Google Scholar]
  94. 94. 
    Cook CE, Lopez R, Stroe O, Cochrane G, Brooksbank C et al. 2019. The European Bioinformatics Institute in 2018: tools, infrastructure and training. Nucleic Acids Res 47:D1D15–22
    [Google Scholar]
  95. 95. 
    McKinnon KM. 2018. Flow cytometry: an overview. Curr. Protoc. Immunol. 120:1 5.1.1–5.1.11
    [Google Scholar]
  96. 96. 
    Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET 2018. A beginner's guide to analyzing and visualizing mass cytometry data. J. Immunol. 200:13–22
    [Google Scholar]
  97. 97. 
    Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM et al. 2016. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34:6637–45
    [Google Scholar]
  98. 98. 
    Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M et al. 2017. An immune clock of human pregnancy. Sci. Immunol. 2:15eaan2946
    [Google Scholar]
  99. 99. 
    Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N et al. 2013. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5:208208ra145
    [Google Scholar]
  100. 100. 
    Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR 2012. FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 81:9727–31
    [Google Scholar]
  101. 101. 
    Hu Z, Jujjavarapu C, Hughey JJ, Andorf S, Lee H-C et al. 2018. MetaCyto: a tool for automated meta-analysis of mass and flow cytometry data. Cell Rep 24:51377–88
    [Google Scholar]
  102. 102. 
    Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D 2015. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16:285–97
    [Google Scholar]
  103. 103. 
    Verma SS, Ritchie MD. 2018. Another round of “clue” to uncover the mystery of complex traits. Genes 9:261
    [Google Scholar]
  104. 104. 
    López de Maturana E, Alonso L, Alarcón P, Martín-Antoniano IA, Pineda S et al. 2019. Challenges in the integration of omics and non-omics data. Genes 10:3238
    [Google Scholar]
  105. 105. 
    Orrù V, Steri M, Sole G, Sidore C, Virdis F et al. 2013. Genetic variants regulating immune cell levels in health and disease. Cell 155:1242–56
    [Google Scholar]
  106. 106. 
    Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM et al. 2018. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175:61701–15.e16
    [Google Scholar]
  107. 107. 
    Pineda S, Real FX, Kogevinas M, Carrato A, Chanock SJ et al. 2015. Integration analysis of three omics data using penalized regression methods: an application to bladder cancer. PLOS Genet 11:12e1005689
    [Google Scholar]
  108. 108. 
    Poirion O, Zhu X, Ching T, Garmire LX 2018. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage. Nat. Commun. 9:14892
    [Google Scholar]
  109. 109. 
    Natanzon Y, Earp M, Cunningham JM, Kalli KR, Wang C et al. 2018. Genomic analysis using regularized regression in high-grade serous ovarian cancer. Cancer Inform 17: https://doi.org/10.1177/1176935118755341
    [Crossref] [Google Scholar]
  110. 110. 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ 2017. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8:2224
    [Google Scholar]
  111. 111. 
    Chen G, Ning B, Shi T 2019. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 10:317
    [Google Scholar]
  112. 112. 
    Lanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M et al. 2019. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat. Commun. 10:3902
    [Google Scholar]
  113. 113. 
    Chen L, Ge B, Casale FP, Vasquez L, Kwan T et al. 2016. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167:51398–414.e24
    [Google Scholar]
  114. 114. 
    Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X et al. 2019. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25:3487–95
    [Google Scholar]
  115. 115. 
    Ichinohe T, Miyama T, Kawase T, Honjo Y, Kitaura K et al. 2018. Next-generation immune repertoire sequencing as a clue to elucidate the landscape of immune modulation by host-gut microbiome interactions. Front. Immunol. 9:668
    [Google Scholar]
  116. 116. 
    Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W1W98–102
    [Google Scholar]
  117. 117. 
    Pineda S, Sigdel TK, Chen J, Jackson AM, Sirota M, Sarwal MM 2018. Novel non-histocompatibility antigen mismatched variants improve the ability to predict antibody-mediated rejection risk in kidney transplant. Front. Immunol. 8:1687
    [Google Scholar]
  118. 118. 
    McGrail DJ, Federico L, Li Y, Dai H, Lu Y et al. 2018. Multi-omics analysis reveals neoantigen-independent immune cell infiltration in copy-number driven cancers. Nat. Commun. 9:1317
    [Google Scholar]
  119. 119. 
    Pineda S, Sirota M. 2018. Determining significance in the new era for P values. J. Pediatr. Gastroenterol. Nutr. 67:5547–48
    [Google Scholar]
  120. 120. 
    Singh N, Garg N, Pant J 2014. A comprehensive study of challenges and approaches for clustering high dimensional data. Int. J. Comput. Appl. 92:47–10
    [Google Scholar]
  121. 121. 
    Seif G. 2019. The 5 clustering algorithms data scientists need to know. Towards Data Science Febr. 5. https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
    [Google Scholar]
  122. 122. 
    Rappoport N, Shamir R. 2019. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35:183348–56
    [Google Scholar]
  123. 123. 
    Sass S, Buettner F, Mueller NS, Theis FJ 2013. A modular framework for gene set analysis integrating multilevel omics data. Nucleic Acids Res 41:219622–33
    [Google Scholar]
  124. 124. 
    Cunningham JP, Ghahramani Z. 2015. Linear dimensionality reduction: survey, insights, and generalizations. J. Mach. Learn. Res. 16:892859–900
    [Google Scholar]
  125. 125. 
    Zhou W, Altman RB. 2018. Data-driven human transcriptomic modules determined by independent component analysis. BMC Bioinform 19:327
    [Google Scholar]
  126. 126. 
    Ghaemi MS, DiGiulio DB, Contrepois K, Callahan B, Ngo TTM et al. 2019. Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 35:95–103
    [Google Scholar]
  127. 127. 
    Webb S. 2018. Deep learning for biology. Nature 554:555–57
    [Google Scholar]
  128. 128. 
    Chen B, Khodadoust MS, Olsson N, Wagar LE, Fast E et al. 2019. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37:1332–43
    [Google Scholar]
  129. 129. 
    Chen R, Yang L, Goodison S, Sun Y 2019. Deep learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics 2019 btz769
    [Google Scholar]
  130. 130. 
    Martín-Fernández J-A, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J 2015. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15:2134–58
    [Google Scholar]
  131. 131. 
    Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S 2015. The rise of “big data” on cloud computing: review and open research issues. Inform. Syst. 47:98–115
    [Google Scholar]
  132. 132. 
    Bakker OB, Aguirre-Gamboa R, Sanna S, Oosting M, Smeekens SPet al. 2018. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat. Immunol 19:776–86
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-012420-122454
Loading
/content/journals/10.1146/annurev-biodatasci-012420-122454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error