1932

Abstract

Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein–protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning–based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020222-025013
2023-08-10
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-020222-025013.html?itemId=/content/journals/10.1146/annurev-biodatasci-020222-025013&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    DiMasi JA, Grabowski HG, Hansen RW. 2016. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47:20–33
    [Google Scholar]
  2. 2.
    Martis EA, Badve RR, Radhakrishnan R. 2011. High-throughput screening: the hits and leads of drug discovery—an overview. J. Appl. Pharm. Sci. 1:2–10
    [Google Scholar]
  3. 3.
    Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW et al. 2020. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663–68
    [Google Scholar]
  4. 4.
    Lyu J, Wang S, Balius TE, Singh I, Levit A et al. 2019. Ultra-large library docking for discovering new chemotypes. Nature 566:224–29
    [Google Scholar]
  5. 5.
    Alon A, Lyu J, Braz JM, Tummino TA, Craik V et al. 2021. Structures of the σ2 receptor enable docking for bioactive ligand discovery. Nature 600:759–64
    [Google Scholar]
  6. 6.
    Vajda S, Beglov D, Wakefield AE, Egbert M, Whitty A. 2018. Cryptic binding sites on proteins: definition, detection, and druggability. Curr. Opin. Chem. Biol. 44:1–8
    [Google Scholar]
  7. 7.
    Kuzmanic A, Bowman GR, Juarez-Jimenez J, Michel J, Gervasio FL. 2020. Investigating cryptic binding sites by molecular dynamics simulations. Acc. Chem. Res. 53:654–61
    [Google Scholar]
  8. 8.
    Oleinikovas V, Saladino G, Cossins BP, Gervasio FL. 2016. Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J. Am. Chem. Soc. 138:14257–63
    [Google Scholar]
  9. 9.
    Cimermancic P, Weinkam P, Rettenmaier TJ, Bichmann L, Keedy DA et al. 2016. Cryptosite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J. Mol. Biol. 428:709–19
    [Google Scholar]
  10. 10.
    Lionta E, Spyrou G, Vassilatis D, Cournia Z. 2014. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14:1923–38
    [Google Scholar]
  11. 11.
    Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. 2012. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 14:133–41
    [Google Scholar]
  12. 12.
    McInnes C. 2007. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11:494–502
    [Google Scholar]
  13. 13.
    Hamza A, Wei NN, Zhan CG. 2012. Ligand-based virtual screening approach using a new scoring function. J. Chem. Inf. Model. 52:963–74
    [Google Scholar]
  14. 14.
    Xu X, Huang M, Zou X. 2018. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys. Rep. 4:1–16
    [Google Scholar]
  15. 15.
    Biesiada J, Porollo A, Velayutham P, Kouril M, Meller J. 2011. Survey of public domain software for docking simulations and virtual screening. Hum. Genom. 5:497
    [Google Scholar]
  16. 16.
    Fan J, Fu A, Zhang L. 2019. Progress in molecular docking. Quant. Biol. 7:83–89
    [Google Scholar]
  17. 17.
    Pagadala NS, Syed K, Tuszynski J. 2017. Software for molecular docking: a review. Biophys. Rev. 9:91–102
    [Google Scholar]
  18. 18.
    Sousa SF, Fernandes PA, Ramos MJ. 2006. Protein-ligand docking: current status and future challenges. Proteins 65:15–26
    [Google Scholar]
  19. 19.
    Gorgulla C, Çınaroğlu SS, Fischer PD, Fackeldey K, Wagner G, Arthanari H. 2021. VirtualFlow ants—ultra-large virtual screenings with artificial intelligence driven docking algorithm based on ant colony optimization. Int. J. Mol. Sci. 22:5807
    [Google Scholar]
  20. 20.
    Liu J, Wang R. 2015. Classification of current scoring functions. J. Chem. Inf. Model. 55:475–82
    [Google Scholar]
  21. 21.
    Yang C, Chen EA, Zhang Y. 2022. Protein–ligand docking in the machine-learning era. Molecules 27:4568
    [Google Scholar]
  22. 22.
    Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. 2015. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 5:405–24
    [Google Scholar]
  23. 23.
    Li J, Fu A, Zhang L. 2019. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci. Comput. Life Sci. 11:320–28
    [Google Scholar]
  24. 24.
    Berman H, Henrick K, Nakamura H. 2003. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 10:980–80
    [Google Scholar]
  25. 25.
    Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S et al. 2020. Single-particle cryo-EM at atomic resolution. Nature 587:152–56
    [Google Scholar]
  26. 26.
    Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PDB viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–23
    [Google Scholar]
  27. 27.
    Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T 2009. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 37:D387–92
    [Google Scholar]
  28. 28.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  29. 29.
    Jumper J, Hassabis D. 2022. Protein structure predictions to atomic accuracy with AlphaFold. Nat. Methods 19:11–12
    [Google Scholar]
  30. 30.
    Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M et al. 2021. Highly accurate protein structure prediction for the human proteome. Nature 596:590–96
    [Google Scholar]
  31. 31.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C et al. 2022. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–44
    [Google Scholar]
  32. 32.
    Hekkelman ML, de Vries I, Joosten RP, Perrakis A. 2022. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20:205–13
    [Google Scholar]
  33. 33.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  34. 34.
    Lee C, Su BH, Tseng YJ. 2022. Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors. Brief. Bioinform. 23:bbac308
    [Google Scholar]
  35. 35.
    Lin Z, Akin H, Rao R, Hie B, Zhu Z et al. 2022. Evolutionary-scale prediction of atomic level protein structure with a language model. bioRxiv 2022.07.20.500902. https://doi.org/10.1101/2022.07.20.500902
    [Crossref]
  36. 36.
    Callaway E. 2022. AlphaFold's new rival? Meta AI predicts shape of 600 million proteins. Nature 611:211–12
    [Google Scholar]
  37. 37.
    Terwilliger TC, Leibschner DL, Croll T, Williams CJ, McCoy AJ et al. 2022. AlphaFold predictions: great hypotheses but no match for experiment. bioRxiv 2022.11.21.517405. https://doi.org/10.1101/2022.11.21.517405
    [Crossref]
  38. 38.
    Mariani V, Biasini M, Barbato A, Schwede T. 2013. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29:2722–28
    [Google Scholar]
  39. 39.
    Rostkowski M, Olsson MH, Søndergaard CR, Jensen JH. 2011. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 11:6
    [Google Scholar]
  40. 40.
    Anandakrishnan R, Aguilar B, Onufriev AV. 2012. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40:W537–41
    [Google Scholar]
  41. 41.
    Ten Brink T, Exner TE 2010. pKa based protonation states and microspecies for protein–ligand docking. J. Comput.-Aided Mol. Des. 24:935–42
    [Google Scholar]
  42. 42.
    Schrödinger LLC. 2021. Maestro Software, Schrödinger LLC New York: https://www.schrodinger.com/products/maestro
  43. 43.
    Abel R, Young T, Farid R, Berne BJ, Friesner RA. 2008. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130:2817–31
    [Google Scholar]
  44. 44.
    Rashin AA, Bukatin MA. 1991. Continuum based calculations of hydration entropies and the hydrophobic effect. J. Phys. Chem. 95:2942–44
    [Google Scholar]
  45. 45.
    Michel J, Tirado-Rives J, Jorgensen WL. 2009. Prediction of the water content in protein binding sites. J. Phys. Chem. B 113:13337–46
    [Google Scholar]
  46. 46.
    Young T, Abel R, Kim B, Berne BJ, Friesner RA. 2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. PNAS 104:808–13
    [Google Scholar]
  47. 47.
    Abel R, Young T, Farid R, Berne BJ, Friesner RA. 2008. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130:92817–31
    [Google Scholar]
  48. 48.
    Morris GM, Huey R, Lindstrom W, Sanner MF et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785–91
    [Google Scholar]
  49. 49.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC et al. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25
    [Google Scholar]
  50. 50.
    Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT et al. 2022. Amber 2022 Software, Univ. Calif. San Franc:.
  51. 51.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr., Nilsson L, Petrella RJ et al. 2009. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30:1545–614
    [Google Scholar]
  52. 52.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E et al. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–802
    [Google Scholar]
  53. 53.
    O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. 2011. Open Babel: an open chemical toolbox. J. Cheminform. 3:33
    [Google Scholar]
  54. 54.
    Landrum G, RDK Contrib 2006. RDKit: open-source cheminformatics Software https://www.rdkit.org
  55. 55.
    Schrödinger LLC. 2021. LigPrep Software, Schrödinger LLC New York: https://www.schrodinger.com/products/ligprep
  56. 56.
    Hoffmann T, Gastreich M. 2019. The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov. Today 24:1148–56
    [Google Scholar]
  57. 57.
    Meier K, Bühlmann S, Arús-Pous J, Reymond JL. 2020. The Generated Databases (GDBs) as a source of 3D-shaped building blocks for use in medicinal chemistry and drug discovery. Chimia 74:241–46
    [Google Scholar]
  58. 58.
    Reymond JL, Awale M. 2012. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem. Neurosci. 3:649–57
    [Google Scholar]
  59. 59.
    Blum LC, Reymond JL. 2009. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131:8732–33
    [Google Scholar]
  60. 60.
    Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL. 2012. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52:2864–75
    [Google Scholar]
  61. 61.
    Bühlmann S, Reymond JL. 2020. ChEMBL-likeness score and database GDBChEMBL. Front. Chem. 8:4–10
    [Google Scholar]
  62. 62.
    Detering C, Claussen H, Gastreich M, Lemmen C. 2010. KnowledgeSpace—a publicly available virtual chemistry space. J. Cheminform. 2:O9
    [Google Scholar]
  63. 63.
    Tomberg A, Boström J. 2020. Can easy chemistry produce complex, diverse, and novel molecules?. Drug Discov. Today 25:122174–81
    [Google Scholar]
  64. 64.
    Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR et al. 2020. ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 60:6065–73
    [Google Scholar]
  65. 65.
    Irwin JJ, Shoichet BK. 2005. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45:177–82
    [Google Scholar]
  66. 66.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. 2012. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52:1757–68
    [Google Scholar]
  67. 67.
    Sterling T, Irwin JJ. 2015. ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model. 55:2324–37
    [Google Scholar]
  68. 68.
    Shivanyuk A, Ryabukhin S, Bogolyubsky A, Mykytenko D, Chupryna A et al. 2007. Enamine real database: making chemical diversity real. Chem. Today 25:58–59
    [Google Scholar]
  69. 69.
    Enamine 2022. REAL Database: the largest enumerated database of synthetically feasible molecules. Web Resour., Enamine, Kiev Ukr: https://enamine.net/compound-collections/real-compounds/real-database
  70. 70.
    Grygorenko OO, Radchenko DS, Dziuba I, Chuprina A, Gubina KE, Moroz YS 2020. Generating multibillion chemical space of readily accessible screening compounds. iScience 23:101681
    [Google Scholar]
  71. 71.
    DeGoey DA, Chen HJ, Cox PB, Wendt MD. 2018. Beyond the rule of 5: lessons learned from AbbVie's drugs and compound collection. J. Med. Chem. 61:2636–51
    [Google Scholar]
  72. 72.
    Enamine 2022. REAL Space: billions of make-on-demand molecules. Web Resour., Enamine, Kiev Ukr: https://enamine.net/compound-collections/real-compounds/real-space-navigator
  73. 73.
    WuXi AppTec 2022. WuXi AppTec virtual library Web Resour., WuXi AppTec Shanghai: https://www.labnetwork.com/frontend-app/p/#!/library/virtual
  74. 74.
    Bellmann L, Penner P, Gastreich M, Rarey M. 2022. Comparison of combinatorial fragment spaces and its application to ultralarge make-on-demand compound catalogs. J. Chem. Inf. Model. 62:553–66
    [Google Scholar]
  75. 75.
    Sunseri J, Koes DR. 2016. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 44:W442–48
    [Google Scholar]
  76. 76.
    Gorgulla C. 2018. Free energy methods involving quantum physics, path integrals, and virtual screenings: development, implementation and application in drug discovery PhD Thesis, Freie Univ. Berlin Berlin:
  77. 77.
    Stein RM, Kang HJ, McCorvy JD, Glatfelter GC, Jones AJ et al. 2020. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579:609–14
    [Google Scholar]
  78. 78.
    Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM et al. 2022. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610:582–91
    [Google Scholar]
  79. 79.
    Fink EA, Xu J, Hübner H, Braz JM, Seemann P et al. 2022. Structure-based discovery of nonopioid analgesics acting through the α 2A-adrenergic receptor. Science 377:eabn7065
    [Google Scholar]
  80. 80.
    Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31:455–61
    [Google Scholar]
  81. 81.
    Koes DR, Baumgartner MP, Camacho CJ. 2013. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53:1893–904
    [Google Scholar]
  82. 82.
    Alhossary A, Handoko SD, Mu Y, Kwoh CK. 2015. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 31:2214–16
    [Google Scholar]
  83. 83.
    Hassan NM, Alhossary AA, Mu Y, Kwoh C-K. 2017. Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Sci. Rep. 7:15451
    [Google Scholar]
  84. 84.
    Nivedha AK, Thieker DF, Makeneni S, Hu H, Woods RJ. 2016. Vina-Carb: improving glycosidic angles during carbohydrate docking. J. Chem. Theory Comput. 12:892–901
    [Google Scholar]
  85. 85.
    Koebel MR, Schmadeke G, Posner RG, Sirimulla S 2016. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Cheminform. 8:27
    [Google Scholar]
  86. 86.
    Gorgulla C, Fackeldey K, Wagner G, Arthanari H. 2020. Accounting of receptor flexibility in ultra-large virtual screens with VirtualFlow using a grey wolf optimization method. Supercomput. Front. Innovat. 7:4–12
    [Google Scholar]
  87. 87.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. 1982. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161:269–88
    [Google Scholar]
  88. 88.
    DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R. 1988. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 31:722–29
    [Google Scholar]
  89. 89.
    Shoichet BK, Kuntz ID. 1991. Protein docking and complementarity. J. Mol. Biol. 221:327–46
    [Google Scholar]
  90. 90.
    Shoichet BK, Kuntz ID, Bodian DL. 1992. Molecular docking using shape descriptors. J. Comput. Chem. 13:380–97
    [Google Scholar]
  91. 91.
    Meng EC, Shoichet BK, Kuntz ID. 1992. Automated docking with grid-based energy evaluation. J. Comput. Chem. 13:505–24
    [Google Scholar]
  92. 92.
    Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK. 2013. Ligand pose and orientational sampling in molecular docking. PLOS ONE 8:e75992
    [Google Scholar]
  93. 93.
    Ewing TJ, Kuntz ID. 1997. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18:1175–89
    [Google Scholar]
  94. 94.
    Ewing TJ, Makino S, Skillman AG, Kuntz ID. 2001. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des. 15:411–28
    [Google Scholar]
  95. 95.
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID et al. 2006. Development and validation of a modular, extensible docking program: DOCK 5. J. Comput.-Aided Mol. Des. 20:601–19
    [Google Scholar]
  96. 96.
    Zou X, Sun Y, Kuntz ID. 1999. Inclusion of solvation in ligand binding free energy calculations using the generalized-born model. J. Am. Chem. Soc. 121:8033–43
    [Google Scholar]
  97. 97.
    Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC et al. 2009. DOCK 6: combining techniques to model RNA–small molecule complexes. RNA 15:1219–30
    [Google Scholar]
  98. 98.
    Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT et al. 2015. DOCK 6: impact of new features and current docking performance. J. Comput. Chem. 36:1132–56
    [Google Scholar]
  99. 99.
    Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM et al. 2021. A practical guide to large-scale docking. Nat. Protoc. 16:4799–832
    [Google Scholar]
  100. 100.
    Sadybekov AA, Sadybekov AV, Liu Y, Iliopoulos-Tsoutsouvas C, Huang XP et al. 2022. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601:452–59
    [Google Scholar]
  101. 101.
    Beroza P, Crawford JJ, Ganichkin O, Gendelev L, Harris SF et al. 2022. Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat. Commun. 13:6447
    [Google Scholar]
  102. 102.
    Gentile F, Agrawal V, Hsing M, Ton AT, Ban F et al. 2020. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Central Sci. 6:939–49
    [Google Scholar]
  103. 103.
    Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. 2020. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform. 39:2000028
    [Google Scholar]
  104. 104.
    Gentile F, Yaacoub JC, Gleave J, Fernandez M, Ton AT et al. 2022. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc. 17:672–97
    [Google Scholar]
  105. 105.
    Yang Y, Yao K, Repasky MP, Leswing K, Abel R et al. 2021. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 17:7106–19
    [Google Scholar]
  106. 106.
    Graff DE, Shakhnovich EI, Coley CW. 2021. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12:7866–81
    [Google Scholar]
  107. 107.
    Lu W, Wu Q, Zhang J, Rao J, Li C, Zheng S. 2022. TANKBind: trigonometry-aware neural networks for drug-protein binding structure prediction. bioRxiv 2022.06.06.495043. https://doi.org/10.1101/2022.06.06.495043
    [Crossref]
  108. 108.
    Durrant JD, McCammon JA. 2011. NNScore 2.0: a neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 51:2897–903
    [Google Scholar]
  109. 109.
    Kimber TB, Chen Y, Volkamer A. 2021. Deep learning in virtual screening: recent applications and developments. Int. J. Mol. Sci. 22:4435
    [Google Scholar]
  110. 110.
    Li H, Sze K, Lu G, Ballester PJ. 2021. Machine-learning scoring functions for structure-based virtual screening. WIREs Comput. Mol. Sci. 11:e1478
    [Google Scholar]
  111. 111.
    Du Y, Fu T, Sun J, Liu S. 2022. MolGenSurvey: a systematic survey in machine learning models for molecule design. arXiv:2203.14500 [cs.LG]. https://doi.org/10.48550/arXiv.2203.14500
    [Crossref]
  112. 112.
    Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA. 2022. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 27:151–64
    [Google Scholar]
  113. 113.
    Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. 2018. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 34:3666–74
    [Google Scholar]
  114. 114.
    Karimi M, Wu D, Wang Z, Shen Y. 2019. Deepaffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35:3329–38
    [Google Scholar]
  115. 115.
    Zhang H, Liao L, Saravanan KM, Yin P, Wei Y. 2019. DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity. PeerJ 7:e7362
    [Google Scholar]
  116. 116.
    Zheng L, Fan J, Mu Y. 2019. Onionnet: a multiple-layer intermolecular-contact-based convolutional neural network for protein–ligand binding affinity prediction. ACS Omega 4:15956–65
    [Google Scholar]
  117. 117.
    Feinberg EN, Sur D, Wu Z, Husic BE, Mai H et al. 2018. PotentialNet for molecular property prediction. ACS Central Sci. 4:1520–30
    [Google Scholar]
  118. 118.
    Jiménez J, Skalic M, Martinez-Rosell G, De Fabritiis G. 2018. KDEEP: protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model. 58:287–96
    [Google Scholar]
  119. 119.
    Li Y, Rezaei MA, Li C, Li X. 2019. DeepAtom: a framework for protein-ligand binding affinity prediction. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)303–10. New York: IEEE
    [Google Scholar]
  120. 120.
    Cang Z, Wei GW. 2017. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLOS Comput. Biol. 13:e1005690
    [Google Scholar]
  121. 121.
    Cang Z, Mu L, Wei GW. 2018. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLOS Comput. Biol. 14:e1005929
    [Google Scholar]
  122. 122.
    Gomes J, Ramsundar B, Feinberg EN, Pande VS. 2017. Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv:1703.10603 [cs.LG]. https://doi.org/10.48550/arXiv.1703.10603
    [Crossref]
  123. 123.
    Francoeur PG, Masuda T, Sunseri J, Jia A, Iovanisci RB et al. 2020. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J. Chem. Inf. Model. 60:4200–15
    [Google Scholar]
  124. 124.
    Zhu F, Zhang X, Allen JE, Jones D, Lightstone FC. 2020. Binding affinity prediction by pairwise function based on neural network. J. Chem. Inf. Model. 60:2766–72
    [Google Scholar]
  125. 125.
    Wojciechowski M. 2011. Application of artificial neural network in soil parameter identification for deep excavation numerical model. Comput. Assist. Mech. Eng. Sci. 18:4303–11
    [Google Scholar]
  126. 126.
    Durrant JD, McCammon JA. 2010. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J. Chem. Inf. Model. 50:1865–71
    [Google Scholar]
  127. 127.
    Pereira JC, Caffarena ER, Dos Santos CN 2016. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 56:2495–506
    [Google Scholar]
  128. 128.
    Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR. 2017. Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57:942–57
    [Google Scholar]
  129. 129.
    Imrie F, Bradley AR, van der Schaar M, Deane CM. 2018. Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J. Chem. Inf. Model. 58:2319–30
    [Google Scholar]
  130. 130.
    Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. 2019. Predicting drug–target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59:3981–88
    [Google Scholar]
  131. 131.
    Torng W, Altman RB. 2019. Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59:4131–49
    [Google Scholar]
  132. 132.
    Tanebe T, Ishida T 2019. End-to-end learning based compound activity prediction using binding pocket information. Intelligent Computing Theories and Application (ICIC 2019) DS Huang, KH Jo, ZK Huang 226–34. Cham, Switz: Springer
    [Google Scholar]
  133. 133.
    Morrone JA, Weber JK, Huynh T, Luo H, Cornell WD. 2020. Combining docking pose rank and structure with deep learning improves protein–ligand binding mode prediction over a baseline docking approach. J. Chem. Inf. Model. 60:4170–79
    [Google Scholar]
  134. 134.
    Li F, Wan X, Xing J, Tan X, Li X et al. 2019. Deep neural network classifier for virtual screening inhibitors of (S)-adenosyl-L-methionine (SAM)-dependent methyltransferase family. Front. Chem. 7:324
    [Google Scholar]
  135. 135.
    Skalic M, Martínez-Rosell G, Jiménez J, De Fabritiis G. 2019. PlayMolecule BindScope: large scale CNN-based virtual screening on the web. Bioinformatics 35:1237–38
    [Google Scholar]
  136. 136.
    Tsubaki M, Tomii K, Sese J. 2019. Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35:309–18
    [Google Scholar]
  137. 137.
    Mahmoud AH, Lill JF, Lill MA. 2020. Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix. arXiv:2008.12027 [q-bio.BM]. https://doi.org/10.48550/arXiv.2008.12027
    [Crossref]
  138. 138.
    Masters MR, Mahmoud AH, Wei Y, Lill MA. 2023. Deep learning model for efficient protein–ligand docking with implicit side-chain flexibility. J. Chem. Inf. Model. 63:61695–707
    [Google Scholar]
  139. 139.
    Liao Z, You R, Huang X, Yao X, Huang T, Zhu S 2019. DeepDock: enhancing ligand-protein interaction prediction by a combination of ligand and structure information. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) I Yoo, J Bi, X Hu 311–17. New York: IEEE
    [Google Scholar]
  140. 140.
    Stärk H, Ganea O, Pattanaik L, Barzilay R, Jaakkola T. 2022. EquiBind: geometric deep learning for drug binding structure prediction. Proc. Mach. Learn. Res. 162:20503–21
    [Google Scholar]
  141. 141.
    Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. 2022. DiffDock: diffusion steps, twists, and turns for molecular docking. arXiv:2210.01776 [q-bio.BM]. https://doi.org/10.48550/arXiv.2210.01776
    [Crossref]
  142. 142.
    Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR. 2017. Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57:942–57
    [Google Scholar]
  143. 143.
    Ragoza M, Turner L, Koes DR. 2017. Ligand pose optimization with atomic grid-based convolutional neural networks. arXiv:1710.07400 [stat.ML]. https://doi.org/10.48550/arXiv.1710.07400
    [Crossref]
  144. 144.
    Hochuli J, Helbling A, Skaist T, Ragoza M, Koes DR. 2018. Visualizing convolutional neural network protein-ligand scoring. J. Mol. Graph. Model. 84:96–108
    [Google Scholar]
  145. 145.
    Sunseri J, Koes DR 2021. Virtual screening with Gnina 1.0. Molecules 26:7369
    [Google Scholar]
  146. 146.
    Sunseri J, King JE, Francoeur PG, Koes DR. 2019. Convolutional neural network scoring and minimization in the D3R 2017 Community Challenge. J. Comput.-Aided Mol. Des. 33:19–34
    [Google Scholar]
  147. 147.
    McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R et al. 2021. Gnina 1.0: molecular docking with deep learning. J. Cheminform. 13:1–20
    [Google Scholar]
  148. 148.
    Ding F, Yin S, Dokholyan NV. 2010. Rapid flexible docking using a stochastic rotamer library of ligands. J. Chem. Inf. Model. 50:1623–32
    [Google Scholar]
  149. 149.
    Jiang H, Fan M, Wang J, Sarma A, Mohanty S et al. 2020. Guiding conventional protein–ligand docking software with convolutional neural networks. J. Chem. Inf. Model. 60:4594–602
    [Google Scholar]
  150. 150.
    Jiang H, Wang J, Cong W, Huang Y, Ramezani M et al. 2022. Predicting protein–ligand docking structure with graph neural network. J. Chem. Inf. Model. 62:2923–32
    [Google Scholar]
  151. 151.
    Deleted in proof
  152. 152.
    Nguyen DD, Gao K, Wang M, Wei GW. 2020. MathDL: mathematical deep learning for D3R Grand Challenge 4. J. Comput.-Aided Mol. Des. 34:131–47
    [Google Scholar]
  153. 153.
    Santos-Martins D, Solis-Vasquez L, Tillack AF, Sanner MF, Koch A, Forli S. 2021. Accelerating AutoDock4 with GPUs and gradient-based local search. J. Chem. Theory Comput. 17:1060–73
    [Google Scholar]
  154. 154.
    Tang S, Chen R, Lin M, Lin Q, Zhu Y et al. 2022. Accelerating AutoDock Vina with GPUs. Molecules 27:3041
    [Google Scholar]
  155. 155.
    Yu Y, Cai C, Zhu Z, Zheng H. 2022. Uni-Dock: a GPU-accelerated docking program enables ultra-large virtual screening. ChemRxiv chemrxiv-2022-5t5ts. https://doi.org/10.26434/chemrxiv-2022-5t5ts
    [Crossref]
  156. 156.
    Fan M, Wang J, Jiang H, Feng Y, Mahdavi M et al. 2021. GPU-accelerated flexible molecular docking. J. Phys. Chem. B 125:1049–60
    [Google Scholar]
  157. 157.
    Ding X, Wu Y, Wang Y, Vilseck JZ, Brooks CL 3rd 2020. Accelerated CDOCKER with GPUs, parallel simulated annealing, and fast Fourier transforms. J. Chem. Theory Comput. 16:3910–19
    [Google Scholar]
  158. 158.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785–91
    [Google Scholar]
  159. 159.
    Solis Vasquez L 2019. Accelerating molecular docking by parallelized heterogeneous computing—a case study of performance, quality of results, and energy-efficiency using CPUs, GPUs, and FPGAs PhD Thesis, Tech. Univ. Darmstadt Darmstadt, Ger:.
  160. 160.
    Solis-Vasquez L, Santos-Martins D, Koch A, Forli S. 2020. Evaluating the energy efficiency of OpenCL-accelerated AutoDock molecular docking. 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)162–66. New York: IEEE
    [Google Scholar]
  161. 161.
    Eberhardt J, Santos-Martins D, Tillack AF, Forli S. 2021. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61:3891–98
    [Google Scholar]
  162. 162.
    Wu Y. 2022. Development and application of CDOCKER docking methodology PhD Thesis, MIT Cambridge, MA:
  163. 163.
    Gagnon JK, Law SM, Brooks CL 3rd 2016. Flexible CDOCKER: development and application of a pseudo-explicit structure-based docking method within CHARMM. J. Comput. Chem. 37:753–62
    [Google Scholar]
  164. 164.
    Doerr S, Harvey M, Noé F, De Fabritiis G. 2016. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12:1845–52
    [Google Scholar]
  165. 165.
    Doerr S, Giorgino T, Martínez-Rosell G, Damas JM, De Fabritiis G. 2017. High-throughput automated preparation and simulation of membrane proteins with HTMD. J. Chem. Theory Comput. 13:4003–11
    [Google Scholar]
  166. 166.
    Senapathi T, Suruzhon M, Barnett CB, Essex J, Naidoo KJ. 2020. BRIDGE: an open platform for reproducible high-throughput free energy simulations. J. Chem. Inf. Model. 60:5290–95
    [Google Scholar]
  167. 167.
    Yoo P, Sakano M, Desai S, Islam MM, Liao P, Strachan A 2021. Neural network reactive force field for C, H, N, and O systems. NPJ Comput. Mater. 7:9
    [Google Scholar]
  168. 168.
    Zubatyuk R, Smith JS, Leszczynski J, Isayev O. 2019. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. Sci. Adv. 5:eaav6490
    [Google Scholar]
  169. 169.
    Guterres H, Im W. 2020. Improving protein-ligand docking results with high-throughput molecular dynamics simulations. J. Chem. Inf. Model. 60:2189–98
    [Google Scholar]
  170. 170.
    Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM et al. 2021. TeraChem: a graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. WIREs Comput. Mol. Sci. 11:e1494
    [Google Scholar]
  171. 171.
    Kowalski K, Bair R, Bauman NP, Boschen JS, Bylaska EJ et al. 2021. From NWChem to NWChemEx: evolving with the computational chemistry landscape. Chem. Rev. 121:4962–98
    [Google Scholar]
  172. 172.
    Gorgulla C, Nigam A, Koop M, Cinaroglu SS, Secker Cet al 2023. VirtualFlow 2.0—the next generation drug discovery platform enabling adaptive screens of 69 billion molecules. bioRxiv 2023.04.25.537981 https://doi.org/10.1101/2023.04.25.537981
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020222-025013
Loading
/content/journals/10.1146/annurev-biodatasci-020222-025013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error