1932

Abstract

Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020422-050645
2023-08-10
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-020422-050645.html?itemId=/content/journals/10.1146/annurev-biodatasci-020422-050645&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  2. 2.
    Tang X, Huang Y, Lei J, Luo H, Zhu X. 2019. The single-cell sequencing: new developments and medical applications. Cell Biosci. 9:53
    [Google Scholar]
  3. 3.
    Haque A, Engel J, Teichmann SA, Lönnberg T. 2017. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9:75
    [Google Scholar]
  4. 4.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14
    [Google Scholar]
  5. 5.
    Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  6. 6.
    Lebrigand K, Magnone V, Barbry P, Waldmann R. 2020. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat. Commun. 11:4025
    [Google Scholar]
  7. 7.
    Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:6352661–67
    [Google Scholar]
  8. 8.
    Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M et al. 2012. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9:72–74
    [Google Scholar]
  9. 9.
    Sena JA, Galotto G, Devitt NP, Connick MC, Jacobi JL et al. 2018. Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis. Sci. Rep. 8:13121
    [Google Scholar]
  10. 10.
    Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12:6519–22
    [Google Scholar]
  11. 11.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:61901396–1401
    [Google Scholar]
  12. 12.
    Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. 2015. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33:3285–89
    [Google Scholar]
  13. 13.
    Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20:4207–20
    [Google Scholar]
  14. 14.
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:7561486–90
    [Google Scholar]
  15. 15.
    Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z et al. 2020. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183:41103–16.e20
    [Google Scholar]
  16. 16.
    Bartosovic M, Kabbe M, Castelo-Branco G. 2021. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39:7825–35
    [Google Scholar]
  17. 17.
    Wu SJ, Furlan SN, Mihalas AB, Kaya-Okur HS, Feroze AH et al. 2021. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39:7819–24
    [Google Scholar]
  18. 18.
    Zhu C, Zhang Y, Li YE, Lucero J, Behrens MM, Ren B. 2021. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18:3283–92
    [Google Scholar]
  19. 19.
    Pelizzola M, Ecker JR. 2011. The DNA methylome. FEBS Lett. 585:131994–2000
    [Google Scholar]
  20. 20.
    Li Y, Tollefsbol TO. 2011. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol. Biol. 791:11–21
    [Google Scholar]
  21. 21.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H et al. 2014. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11:8817–20
    [Google Scholar]
  22. 22.
    Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ et al. 2016. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13:3229–32
    [Google Scholar]
  23. 23.
    Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ et al. 2018. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9:781
    [Google Scholar]
  24. 24.
    Lay FD, Kelly TK, Jones PA. 2018. Nucleosome Occupancy and Methylome sequencing (NOMe-seq). Methods Mol. Biol. 1708:267–84
    [Google Scholar]
  25. 25.
    Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:6030687–96
    [Google Scholar]
  26. 26.
    Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M et al. 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:8e20–31
    [Google Scholar]
  27. 27.
    Darmanis S, Gallant CJ, Marinescu VD, Niklasson M, Segerman A et al. 2016. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14:2380–89
    [Google Scholar]
  28. 28.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:9865–68
    [Google Scholar]
  29. 29.
    Peterson VM, Zhang KX, Kumar N, Wong J, Li L et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:10936–39
    [Google Scholar]
  30. 30.
    MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM et al. 2018. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9:4383
    [Google Scholar]
  31. 31.
    Swanson E, Lord C, Reading J, Heubeck AT, Genge PC et al. 2021. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10:e63632
    [Google Scholar]
  32. 32.
    Fan Y, Braut SA, Lin Q, Singer RH, Skoultchi AI. 2001. Determination of transgenic loci by expression FISH. Genomics 71:166–69
    [Google Scholar]
  33. 33.
    Chen J, McSwiggen D, Ünal E. 2018. Single molecule fluorescence in situ hybridization (smFISH) analysis in budding yeast vegetative growth and meiosis. J. Vis. Exp. 135:e57774
    [Google Scholar]
  34. 34.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090
    [Google Scholar]
  35. 35.
    Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. 2022. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14:68
    [Google Scholar]
  36. 36.
    10× Genom 2021. Inside Visium spatial capture technology Tech. Rep. 10× Genom. Inc. Pleasanton, CA: https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR060_Inside_Visium_Spatial_Technology.pdf
  37. 37.
    Hu KH, Eichorst JP, McGinnis CS, Patterson DM, Chow ED et al. 2020. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat. Methods 17:8833–43
    [Google Scholar]
  38. 38.
    Lee Y, Bogdanoff D, Wang Y, Hartoularos GC, Woo JM et al. 2021. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7:17eabg4755
    [Google Scholar]
  39. 39.
    Moreno P, Huang N, Manning JR, Mohammed S, Solovyev A et al. 2021. User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nat. Methods 18:4327–28
    [Google Scholar]
  40. 40.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:115–21
    [Google Scholar]
  41. 41.
    Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34:5525–27
    [Google Scholar]
  42. 42.
    Stegle O, Teichmann SA, Marioni JC. 2015. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16:3133–45
    [Google Scholar]
  43. 43.
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:10P10008
    [Google Scholar]
  44. 44.
    Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9:5233
    [Google Scholar]
  45. 45.
    van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:862579–2605
    [Google Scholar]
  46. 46.
    McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: uniform manifold approximation and projection. J. Open Sour. Softw. 3:29861
    [Google Scholar]
  47. 47.
    Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. 2017. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14:10975–78
    [Google Scholar]
  48. 48.
    Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. 2021. Single-cell chromatin state analysis with Signac. Nat. Methods 18:111333–41
    [Google Scholar]
  49. 49.
    Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H et al. 2021. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53:3403–11
    [Google Scholar]
  50. 50.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:7e47
    [Google Scholar]
  51. 51.
    Zhang Y, Parmigiani G, Johnson WE. 2020. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2:3lqaa078
    [Google Scholar]
  52. 52.
    Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS et al. 2020. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21:12
    [Google Scholar]
  53. 53.
    Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M et al. 2022. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19:41–50
    [Google Scholar]
  54. 54.
    Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36:5421–27
    [Google Scholar]
  55. 55.
    Hie B, Bryson B, Berger B. 2019. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37:6685–91
    [Google Scholar]
  56. 56.
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36:5411–20
    [Google Scholar]
  57. 57.
    Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E et al. 2019. Comprehensive integration of single-cell data. Cell 177:71888–902.e21
    [Google Scholar]
  58. 58.
    Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16:121289–96
    [Google Scholar]
  59. 59.
    Liu J, Gao C, Sodicoff J, Kozareva V, Macosko EZ, Welch JD. 2020. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat. Protoc. 15:113632–62
    [Google Scholar]
  60. 60.
    Pedersen CB, Dam SH, Barnkob MB, Leipold MD, Purroy N et al. 2022. cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies. Nat. Commun. 13: 1698:
    [Google Scholar]
  61. 61.
    Gong B, Zhou Y, Purdom E. 2021. Cobolt: integrative analysis of multimodal single-cell sequencing data. Genome Biol. 22:351
    [Google Scholar]
  62. 62.
    Rappoport N, Shamir R. 2018. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 46:2010546–62
    [Google Scholar]
  63. 63.
    Cantini L, Zakeri P, Hernandez C, Naldi A, Thieffry D et al. 2021. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat. Commun. 12:124
    [Google Scholar]
  64. 64.
    Meng C, Kuster B, Culhane AC, Gholami AM. 2014. A multivariate approach to the integration of multi-omics datasets. BMC Bioinform. 15:162
    [Google Scholar]
  65. 65.
    Lock EF, Hoadley KA, Marron JS, Nobel AB. 2013. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat. 7:1523–42
    [Google Scholar]
  66. 66.
    Tenenhaus A, Tenenhaus M. 2011. Regularized generalized canonical correlation analysis. Psychometrika 76:2257–84
    [Google Scholar]
  67. 67.
    Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T et al. 2018. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14:6e8124
    [Google Scholar]
  68. 68.
    Chalise P, Fridley BL. 2017. Integrative clustering of multi-level ’omic data based on non-negative matrix factorization algorithm. PLOS ONE 12:5e0176278
    [Google Scholar]
  69. 69.
    Singh A, Shannon CP, Gautier B, Rohart F, Vacher M et al. 2019. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35:173055–62
    [Google Scholar]
  70. 70.
    Wang B, Mezlini AM, Demir F, Fiume M, Tu Z et al. 2014. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11:3333–37
    [Google Scholar]
  71. 71.
    Lock EF, Dunson DB. 2013. Bayesian consensus clustering. Bioinformatics 29:202610–16
    [Google Scholar]
  72. 72.
    Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C et al. 2010. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26:12i237–245
    [Google Scholar]
  73. 73.
    Shen R, Olshen AB, Ladanyi M. 2009. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25:222906–12
    [Google Scholar]
  74. 74.
    Cai Z, Poulos RC, Liu J, Zhong Q. 2022. Machine learning for multi-omics data integration in cancer. iScience 25:2103798
    [Google Scholar]
  75. 75.
    Argelaguet R, Cuomo ASE, Stegle O, Marioni JC. 2021. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39:101202–15
    [Google Scholar]
  76. 76.
    Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM et al. 2018. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71:5858–71.e8
    [Google Scholar]
  77. 77.
    Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy AT et al. 2018. Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. PNAS 115:307723–28
    [Google Scholar]
  78. 78.
    Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. 2021. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Cell Rep. Methods 1:5100071
    [Google Scholar]
  79. 79.
    Adossa N, Khan S, Rytkönen KT, Elo LL. 2021. Computational strategies for single-cell multi-omics integration. Comput. Struct. Biotechnol. J. 19:2588–96
    [Google Scholar]
  80. 80.
    Stein-O'Brien GL, Arora R, Culhane AC, Favorov AV, Garmire LX et al. 2018. Enter the matrix: factorization uncovers knowledge from omics. Trends Genet. 34:10790–805
    [Google Scholar]
  81. 81.
    Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B et al. 2020. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21:111
    [Google Scholar]
  82. 82.
    Jin S, Zhang L, Nie Q. 2020. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol. 21:25
    [Google Scholar]
  83. 83.
    Finak G, McDavid A, Yajima M, Deng J, Gersuk V et al. 2015. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16:278
    [Google Scholar]
  84. 84.
    Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL et al. 2021. Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nat. Methods 18:3272–82
    [Google Scholar]
  85. 85.
    Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V et al. 2022. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40:2163–66
    [Google Scholar]
  86. 86.
    Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. 2018. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15:121053–58
    [Google Scholar]
  87. 87.
    Ashuach T, Gabitto MI, Jordan MI, Yosef N. 2021. MultiVI: deep generative model for the integration of multi-modal data. bioRxiv 2021.08.20.457057. https://doi.org/10.1101/2021.08.20.457057
    [Crossref]
  88. 88.
    Ashuach T, Reidenbach DA, Gayoso A, Yosef N. 2022. PeakVI: A deep generative model for single-cell chromatin accessibility analysis. Cell Rep. Methods 2:3100182
    [Google Scholar]
  89. 89.
    Zuo C, Chen L. 2021. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Brief. Bioinform. 22:4bbaa287
    [Google Scholar]
  90. 90.
    Kim HJ, Lin Y, Geddes TA, Yang JYH, Yang P. 2020. CiteFuse enables multi-modal analysis of CITE-seq data. Bioinformatics 36:144137–43
    [Google Scholar]
  91. 91.
    Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184:133573–87.e29
    [Google Scholar]
  92. 92.
    Lin Y, Wu T-Y, Wan S, Yang JYH, Wong WH, Wang YXR 2022. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. Nat. Biotechnol. 40:5703–10
    [Google Scholar]
  93. 93.
    Yang Z, Michailidis G. 2016. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 32:11–8
    [Google Scholar]
  94. 94.
    Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177:71873–87.e17
    [Google Scholar]
  95. 95.
    Kriebel AR, Welch JD. 2022. UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization. Nat. Commun. 13:780
    [Google Scholar]
  96. 96.
    Gao C, Liu J, Kriebel AR, Preissl S, Luo C et al. 2021. Iterative single-cell multi-omic integration using online learning. Nat. Biotechnol. 39:81000–7
    [Google Scholar]
  97. 97.
    Zhang Z, Yang C, Zhang X. 2022. scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously. Genome Biol. 23:139
    [Google Scholar]
  98. 98.
    Wen H, Ding J, Jin W, Wang Y, Xie Y, Tang J 2022. Graph neural networks for multimodal single-cell data integration. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining4153–63. New York: Assoc. Comput. Mach.
    [Google Scholar]
  99. 99.
    Wang J, Ma A, Chang Y, Gong J, Jiang Y et al. 2021. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat. Commun. 12:1882
    [Google Scholar]
  100. 100.
    Welch JD, Hartemink AJ, Prins JF. 2017. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 18:138
    [Google Scholar]
  101. 101.
    Amodio M, Krishnaswamy S. 2018. MAGAN: aligning biological manifolds. Proc. Mach. Learn. Res. 80:215–23
    [Google Scholar]
  102. 102.
    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 63:11139–44
    [Google Scholar]
  103. 103.
    Kohonen T. 1990. The self-organizing map. Proc. IEEE 78:91464–80
    [Google Scholar]
  104. 104.
    Johnson WE, Li C, Rabinovic A. 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:1118–27
    [Google Scholar]
  105. 105.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:5495–502
    [Google Scholar]
  106. 106.
    Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Methodol. 58:1267–88
    [Google Scholar]
  107. 107.
    Campbell KR, Steif A, Laks E, Zahn H, Lai D et al. 2019. clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 20:54
    [Google Scholar]
  108. 108.
    Hao Y, Stuart T, Kowalski M, Choudhary S, Hoffman P et al. 2022. Dictionary learning for integrative, multimodal, and scalable single-cell analysis. bioRxiv 2022.02.24.481684. https://doi.org/10.1101/2022.02.24.481684
    [Crossref]
  109. 109.
    Wu KE, Yost KE, Chang HY, Zou J. 2021. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution. Proc. Natl. Acad. Sci. 118:15e2023070118
    [Google Scholar]
  110. 110.
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:12550
    [Google Scholar]
  111. 111.
    McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40:104288–97
    [Google Scholar]
  112. 112.
    Das S, Rai A, Merchant ML, Cave MC, Rai SN. 2021. A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies. Genes 12:121947
    [Google Scholar]
  113. 113.
    Squair JW, Gautier M, Kathe C, Anderson MA, James ND et al. 2021. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12:5692
    [Google Scholar]
  114. 114.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:4381–86
    [Google Scholar]
  115. 115.
    Qiu X, Mao Q, Tang Y, Wang L, Chawla R et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14:10979–82
    [Google Scholar]
  116. 116.
    Kharchenko PV, Silberstein L, Scadden DT. 2014. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11:7740–42
    [Google Scholar]
  117. 117.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:4315545–50
    [Google Scholar]
  118. 118.
    Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. 2015. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1:6417–25
    [Google Scholar]
  119. 119.
    Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S et al. 2003. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34:3267–73
    [Google Scholar]
  120. 120.
    Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE et al. 2009. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:7269108–12
    [Google Scholar]
  121. 121.
    Hänzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform. 14:7
    [Google Scholar]
  122. 122.
    Fan J, Salathia N, Liu R, Kaeser GE, Yung YC et al. 2016. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13:3241–44
    [Google Scholar]
  123. 123.
    Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H et al. 2017. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14:111083–86
    [Google Scholar]
  124. 124.
    Zhang Y, Ma Y, Huang Y, Zhang Y, Jiang Q et al. 2020. Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Comput. Struct. Biotechnol. J. 18:2953–61
    [Google Scholar]
  125. 125.
    Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP et al. 2020. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21:36
    [Google Scholar]
  126. 126.
    Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4:17
    [Google Scholar]
  127. 127.
    Aguet F, Brown AA, Castel SE, Davis JR, He Y et al. 2017. Genetic effects on gene expression across human tissues. Nature 550:7675204–13
    [Google Scholar]
  128. 128.
    van der Wijst M, de Vries D, Groot H, Trynka G, Hon C et al. 2020. The single-cell eQTLGen consortium. eLife 9:e52155
    [Google Scholar]
  129. 129.
    Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L et al. 2018. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36:189–94
    [Google Scholar]
  130. 130.
    Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ et al. 2013. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31:8748–52
    [Google Scholar]
  131. 131.
    van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA, Franke L. 2018. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50:4493–97
    [Google Scholar]
  132. 132.
    Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG et al. 2022. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 376:6589eabf3041
    [Google Scholar]
  133. 133.
    Saelens W, Cannoodt R, Todorov H, Saeys Y. 2019. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37:5547–54
    [Google Scholar]
  134. 134.
    Tritschler S, Büttner M, Fischer DS, Lange M, Bergen V et al. 2019. Concepts and limitations for learning developmental trajectories from single cell genomics. Development 146:12dev170506
    [Google Scholar]
  135. 135.
    Street K, Risso D, Fletcher RB, Das D, Ngai J et al. 2018. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19:477
    [Google Scholar]
  136. 136.
    Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20:59
    [Google Scholar]
  137. 137.
    Cannoodt R, Saelens W, Saeys Y. 2016. Computational methods for trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46:112496–2506
    [Google Scholar]
  138. 138.
    Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. 2020. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17:2147–54
    [Google Scholar]
  139. 139.
    Efremova M, Teichmann SA. 2020. Computational methods for single-cell omics across modalities. Nat. Methods 17:14–17
    [Google Scholar]
  140. 140.
    Henkel L, Rauscher B, Schmitt B, Winter J, Boutros M. 2020. Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library. BMC Biol. 18:174
    [Google Scholar]
  141. 141.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  142. 142.
    Lynch AW, Theodoris CV, Long HW, Brown M, Liu XS, Meyer CA. 2022. MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nat. Methods 19:91097–108
    [Google Scholar]
  143. 143.
    Xuan C, Wang Y, Zhang B, Wu H, Ding T, Gao J. 2022. scBPGRN: integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network. Comput. Biol. Med. 151:106249
    [Google Scholar]
  144. 144.
    Bachireddy P, Azizi E, Burdziak C, Nguyen VN, Ennis CS et al. 2021. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 37:6109992
    [Google Scholar]
  145. 145.
    Dal Molin A, Di Camillo B. 2019. How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives. Brief. Bioinform. 20:41384–94
    [Google Scholar]
  146. 146.
    Macaulay IC, Ponting CP, Voet T. 2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33:2155–68
    [Google Scholar]
  147. 147.
    Miao Z, Humphreys BD, McMahon AP, Kim J. 2021. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17:11710–24
    [Google Scholar]
  148. 148.
    Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA. 2017. The Human Cell Atlas: from vision to reality. Nature 550:7677451–53
    [Google Scholar]
  149. 149.
    Tabula Sapiens Consort., Jones RC, Karkanias J, Krasnow MA, Pisco AO et al. 2022. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376:6594eabl4896
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020422-050645
Loading
/content/journals/10.1146/annurev-biodatasci-020422-050645
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error