1932

Abstract

Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)—three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020722-041304
2023-08-10
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-020722-041304.html?itemId=/content/journals/10.1146/annurev-biodatasci-020722-041304&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bouvier NM, Palese P. 2008. The biology of influenza viruses. Vaccine 26:D49–53
    [Google Scholar]
  2. 2.
    Jahagirdar D, Walters MK, Novotney A, Brewer ED, Frank TD et al. 2021. Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019. Lancet HIV 8:10e633–51
    [Google Scholar]
  3. 3.
    Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry BW et al. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5:111408–17
    [Google Scholar]
  4. 4.
    WHO (World Health Organ.) 2022. Global excess deaths associated with COVID-19, January 2020 - December 2021 Web Resour., WHO Geneva: https://www.who.int/data/stories/global-excess-deaths-associated-with-covid-19-january-2020-december-2021
    [Google Scholar]
  5. 5.
    Knutson V, Aleshin-Guendel S, Karlinsky A, Msemburi W, Wakefield J. 2022. Estimating global and country-specific excess mortality during the COVID-19 pandemic. . arXiv:2205.09081v1 [stat.AP]. https://doi.org/10.48550/arXiv.2205.09081
  6. 6.
    Huang Y, Yang C, Xu X, Xu W, Liu S. 2020. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41:91141–49
    [Google Scholar]
  7. 7.
    Cele S, Karim F, Lustig G, San JE, Hermanus T et al. 2022. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30:2154–62.e5
    [Google Scholar]
  8. 8.
    Ko KKK, Yingtaweesittikul H, Tan TT, Wijaya L, Cao DY et al. 2022. Emergence of SARS-CoV-2 spike mutations during prolonged infection in immunocompromised hosts. Microbiol. Spectr. 10:3e00791–22
    [Google Scholar]
  9. 9.
    Wang Y, Wang D, Zhang L, Sun W, Zhang Z et al. 2021. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med 13:30
    [Google Scholar]
  10. 10.
    Shu Y, McCauley J. 2017. GISAID: global initiative on sharing all influenza data—from vision to reality. Eurosurveillance 22:1330494
    [Google Scholar]
  11. 11.
    Okuno Y, Isegawa Y, Sasao F, Ueda S. 1993. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67:52552–58
    [Google Scholar]
  12. 12.
    Yoshida R, Igarashi M, Ozaki H, Kishida N, Tomabechi D et al. 2009. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLOS Pathog 5:3e1000350
    [Google Scholar]
  13. 13.
    Sui J, Hwang WC, Perez S, Wei G, Aird D et al. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16:3265–73
    [Google Scholar]
  14. 14.
    Wu NC, Wilson IA. 2018. Structural insights into the design of novel anti-influenza therapies. Nat. Struct. Mol. Biol. 25:2115–21
    [Google Scholar]
  15. 15.
    Purtscher M, Trkola A, Gruber G, Buchacher A, Predl R et al. 1994. A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 10:121651–58
    [Google Scholar]
  16. 16.
    McCoy LE, Burton DR. 2017. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 275:111–20
    [Google Scholar]
  17. 17.
    Lee JH, Andrabi R, Su C-Y, Yasmeen A, Julien J-P et al. 2017. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46:4690–702
    [Google Scholar]
  18. 18.
    Zhou T, Georgiev I, Wu X, Yang Z-Y, Dai K et al. 2010. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:5993811–17
    [Google Scholar]
  19. 19.
    Vanshylla K, Fan C, Wunsch M, Poopalasingam N, Meijers M et al. 2022. Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host Microbe 30:169–82.e10
    [Google Scholar]
  20. 20.
    Zhou B, Zhou R, Tang B, Chan JF-W, Luo M et al. 2022. A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge. Nat. Commun. 13:3589
    [Google Scholar]
  21. 21.
    Zimmerman RK, Nowalk MP, Chung J, Jackson ML, Jackson LA et al. 2016. 2014–2015 Influenza vaccine effectiveness in the United States by vaccine type. Clin. Infect. Diseases 63:121564–73
    [Google Scholar]
  22. 22.
    Haynes BF, Wiehe K, Borrrow P, Saunders KO, Korber B et al. 2022. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23:142–58
    [Google Scholar]
  23. 23.
    Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T et al. 2022. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. New Engl. J. Med. 386:161532–46
    [Google Scholar]
  24. 24.
    Siegel RD 2018. Classification of human viruses. Principles and Practices of Pediatric Infectious Diseases SS Long, CG Prober, M Fischer 1044–48.e1. Philadelphia: Elsevier. , 5th ed..
    [Google Scholar]
  25. 25.
    van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK et al. 2000. Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic
    [Google Scholar]
  26. 26.
    Yewdell JW. 2021. Antigenic drift: understanding COVID-19. Immunity 54:122681–87
    [Google Scholar]
  27. 27.
    Lau KA, Wong JJL. 2013. Current trends of HIV recombination worldwide. Infect. Dis. Rep. 5:Suppl. 1e4
    [Google Scholar]
  28. 28.
    Reis MNG, Guimarães ML, Bello G, Stefani MMA. 2019. Identification of new HIV-1 circulating recombinant forms CRF81_cpx and CRF99_BF1 in Central Western Brazil and of unique BF1 recombinant forms. Front. Microbiol. 10:97
    [Google Scholar]
  29. 29.
    Rambaut A, Posada D, Crandall KA, Holmes EC. 2004. The causes and consequences of HIV evolution. Nat. Rev. Genet. 5:52–61
    [Google Scholar]
  30. 30.
    Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C et al. 2022. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603:7902679–86
    [Google Scholar]
  31. 31.
    Jiang N, He J, Weinstein JA, Penland L, Sasaki S et al. 2013. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5:171ra19
    [Google Scholar]
  32. 32.
    Vollmers C, Sit RV, Weinstein JA, Dekker CL, Quake SR. 2013. Genetic measurement of memory B-cell recall using antibody repertoire sequencing. PNAS 110:3313463–68
    [Google Scholar]
  33. 33.
    Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C et al. 2016. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22:121456–64
    [Google Scholar]
  34. 34.
    Abbott RK, Crotty S. 2020. Factors in B cell competition and immunodominance. Immunol. Rev. 296:1120–31
    [Google Scholar]
  35. 35.
    Amanat F, Thapa M, Lei T, Ahmed SMS, Adelsberg DC et al. 2021. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell 184:153936–48.e10
    [Google Scholar]
  36. 36.
    Kirkpatrick E, Qiu X, Wilson PC, Bahl J, Krammer F. 2018. The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci. Rep. 8:10432
    [Google Scholar]
  37. 37.
    Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J et al. 2014. High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci. Rep. 4:4942
    [Google Scholar]
  38. 38.
    Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL et al. 2020. Visualization of the HIV-1 Env glycan shield across scales. PNAS 117:4528014–25
    [Google Scholar]
  39. 39.
    Stewart-Jones GBE, Soto C, Lemmin T, Chuang G-Y, Druz A et al. 2016. Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G. Cell 165:4813–26
    [Google Scholar]
  40. 40.
    Crispin M, Ward AB, Wilson IA. 2018. Structure and immune recognition of the HIV glycan shield. Annu. Rev. Biophys. 47:499–523
    [Google Scholar]
  41. 41.
    McCoy LE, van Gils MJ, Ozorowski G, Messmer T, Briney B et al. 2016. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep 16:92327–38
    [Google Scholar]
  42. 42.
    Muñoz-Alía , Nace RA, Zhang L, Russell SJ. 2021. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep. Med. 2:4100225
    [Google Scholar]
  43. 43.
    Francis T. 1960. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104:6572–78
    [Google Scholar]
  44. 44.
    Kim JH, Skountzou I, Compans R, Jacob J. 2009. Original antigenic sin responses to influenza viruses. J. Immunol. 183:53294–301
    [Google Scholar]
  45. 45.
    Chakradhar S. 2015. Updated, augmented vaccines compete with original antigenic sin. Nat. Med. 21:6540–41
    [Google Scholar]
  46. 46.
    Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO 2016. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354:6313722–26
    [Google Scholar]
  47. 47.
    Tangye SG, Avery DT, Deenick EK, Hodgkin PD. 2003. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170:2686–94
    [Google Scholar]
  48. 48.
    Knight M, Changrob S, Li L, Wilson PC. 2020. Imprinting, immunodominance, and other impediments to generating broad influenza immunity. Immunol. Rev. 296:1191–204
    [Google Scholar]
  49. 49.
    Palm A-KE, Henry C. 2019. Remembrance of things past: long-term B cell memory after infection and vaccination. Front. Immunol. 10:1787
    [Google Scholar]
  50. 50.
    Chemaitelly H, Ayoub HH, Tang P, Hasan MR, Coyle P et al. 2022. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N. Engl. J. Med. 387:181716–18
    [Google Scholar]
  51. 51.
    Galen JE, Curtiss R. 2014. The delicate balance in genetically engineering live vaccines. Vaccine 32:354376–85
    [Google Scholar]
  52. 52.
    Zhou B, Li Y, Speer SD, Subba A, Lin X, Wentworth DE. 2012. Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine 30:243691–702
    [Google Scholar]
  53. 53.
    Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN et al. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. PNAS 114:35E7348–57
    [Google Scholar]
  54. 54.
    Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:2281–92.e6
    [Google Scholar]
  55. 55.
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:64831260–63
    [Google Scholar]
  56. 56.
    Hsieh C-L, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H-C et al. 2020. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369:65101501–5
    [Google Scholar]
  57. 57.
    Sanders RW, Derking R, Cupo A, Julien J-P, Yasmeen A et al. 2013. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLOS Pathogens 9:9e1003618
    [Google Scholar]
  58. 58.
    Ekiert DC, Bhabha G, Elsliger M-A, Friesen RHE, Jongeneelen M et al. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:5924246–51
    [Google Scholar]
  59. 59.
    Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P. 2012. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86:116179–88
    [Google Scholar]
  60. 60.
    Yassine HM, Boyington JC, McTamney PM, Wei C-J, Kanekiyo M et al. 2015. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21:91065–70
    [Google Scholar]
  61. 61.
    Houser KV, Chen GL, Carter C, Crank MC, Nguyen TA et al. 2022. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat. Med. 28:2383–91
    [Google Scholar]
  62. 62.
    Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X et al. 2015. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349:62541301–6
    [Google Scholar]
  63. 63.
    Krammer F, Pica N, Hai R, Margine I, Palese P. 2013. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87:126542–50
    [Google Scholar]
  64. 64.
    Margine I, Krammer F, Hai R, Heaton NS, Tan GS et al. 2013. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J. Virol. 87:1910435–46
    [Google Scholar]
  65. 65.
    Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y et al. 2018. Molecular mimicry and autoimmunity. J. Autoimmunity 95:100–123
    [Google Scholar]
  66. 66.
    Yang G, Holl TM, Liu Y, Li Y, Lu X et al. 2013. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. J. Exp. Med. 210:2241–56
    [Google Scholar]
  67. 67.
    West AP, Diskin R, Nussenzweig MC, Bjorkman PJ. 2012. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. PNAS 109:30E2083–90
    [Google Scholar]
  68. 68.
    Watson CT, Glanville J, Marasco WA. 2017. The individual and population genetics of antibody immunity. Trends Immunol 38:7459–70
    [Google Scholar]
  69. 69.
    Sangesland M, Torrents de la Peña A, Boyoglu-Barnum S, Ronsard L, Mohamed FAN et al. 2022. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies against influenza virus. Immunity 55:91693–709.e8
    [Google Scholar]
  70. 70.
    Chen F, Tzarum N, Wilson IA, Law M. 2019. VH1–69 antiviral broadly neutralizing antibodies: genetics, structures, and relevance to rational vaccine design. Curr. Opin. Virol. 34:149–59
    [Google Scholar]
  71. 71.
    Pushparaj P, Nicoletto A, Sheward DJ, Das H, Castro Dopico X et al. 2022. Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity 56:1193–206.e7
    [Google Scholar]
  72. 72.
    Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A et al. 2022. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377:6606eabq0839
    [Google Scholar]
  73. 73.
    Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC et al. 2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499:7456102–6
    [Google Scholar]
  74. 74.
    Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park Y-J et al. 2021. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592:7855623–28
    [Google Scholar]
  75. 75.
    Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP et al. 2015. Pneumococcal capsules and their types: past, present, and future. Clin. Microbiol. Rev. 28:3871–99
    [Google Scholar]
  76. 76.
    Carter DM, Darby CA, Lefoley BC, Crevar CJ, Alefantis T et al. 2016. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J. Virol. 90:94720–34
    [Google Scholar]
  77. 77.
    Giles BM, Ross TM. 2011. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 29:163043–54
    [Google Scholar]
  78. 78.
    Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR et al. 2020. A computationally optimized broadly reactive antigen subtype-specific influenza vaccine strategy elicits unique potent broadly neutralizing antibodies against hemagglutinin. J. Immunol. 204:2375–85
    [Google Scholar]
  79. 79.
    Wong TM, Allen JD, Bebin-Blackwell A-G, Carter DM, Alefantis T et al. 2017. Computationally optimized broadly reactive hemagglutinin elicits hemagglutination inhibition antibodies against a panel of H3N2 influenza virus cocirculating variants. J. Virol. 91:24e01581–17
    [Google Scholar]
  80. 80.
    Ross TM, DiNapoli J, Giel-Moloney M, Bloom CE, Bertran K et al. 2019. A computationally designed H5 antigen shows immunological breadth of coverage and protects against drifting avian strains. Vaccine 37:172369–76
    [Google Scholar]
  81. 81.
    Jardine J, Julien J-P, Menis S, Ota T, Kalyuzhniy O et al. 2013. Rational HIV immunogen design to target specific germline B cell receptors. Science 340:6133711–16
    [Google Scholar]
  82. 82.
    Steichen JM, Lin Y-C, Havenar-Daughton C, Pecetta S, Ozorowski G et al. 2019. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science 366:6470eaax4380
    [Google Scholar]
  83. 83.
    Leggat DJ, Cohen KW, Willis JR, Fulp WJ, deCamp AC et al. 2022. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 378:6623eadd6502
    [Google Scholar]
  84. 84.
    Lingwood D, McTamney PM, Yassine HM, Whittle JRR, Guo X et al. 2012. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489:7417566–70
    [Google Scholar]
  85. 85.
    Schmidt AG, Do KT, McCarthy KR, Kepler TB, Liao H-X et al. 2015. Immunogenic stimulus for germline precursors of antibodies that engage the influenza hemagglutinin receptor-binding site. Cell Rep 13:122842–50
    [Google Scholar]
  86. 86.
    Ng KW, Faulkner N, Finsterbusch K, Wu M, Harvey R et al. 2022. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci. Transl. Med. 14:655eabn3715
    [Google Scholar]
  87. 87.
    Hajnik RL, Plante JA, Liang Y, Alameh M-G, Tang J et al. 2022. Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Sci. Transl. Med. 14:662eabq1945
    [Google Scholar]
  88. 88.
    Dai L, Gao GF. 2021. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 21:273–82
    [Google Scholar]
  89. 89.
    Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB 2021. M2e-based influenza vaccines with nucleoprotein: a review. Vaccines 9:7739
    [Google Scholar]
  90. 90.
    Huang D, Tran JT, Olson A, Vollbrecht T, Tenuta M et al. 2020. Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells. Nat. Commun. 11:5850
    [Google Scholar]
  91. 91.
    Nahmad AD, Lazzarotto CR, Zelikson N, Kustin T, Tenuta M et al. 2022. In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice. Nat. Biotechnol. 40:81241–49
    [Google Scholar]
  92. 92.
    Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E et al. 2021. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29:144–57.e9
    [Google Scholar]
  93. 93.
    Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F et al. 2021. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat. Commun. 12:4196
    [Google Scholar]
  94. 94.
    Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD et al. 2020. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182:51295–310.e20
    [Google Scholar]
  95. 95.
    Taft JM, Weber CR, Gao B, Ehling RA, Han J et al. 2022. Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain. Cell 185:214008–22.e14
    [Google Scholar]
  96. 96.
    Maher MC, Bartha I, Weaver S, di Iulio J, Ferri E et al. 2022. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Sci. Transl. Med. 14:633eabk3445
    [Google Scholar]
  97. 97.
    Petrova VN, Russell CA. 2018. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16:47–60
    [Google Scholar]
  98. 98.
    Nobusawa E, Sato K. 2006. Comparison of the mutation rates of human influenza A and B viruses. J. Virol. 80:73675–78
    [Google Scholar]
  99. 99.
    Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. 2015. Extremely high mutation rate of HIV-1 in vivo. PLOS Biol 13:9e1002251
    [Google Scholar]
  100. 100.
    Mansky LM, Temin HM. 1995. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69:85087–94
    [Google Scholar]
  101. 101.
    Abram ME, Ferris AL, Shao W, Alvord WG, Hughes SH. 2010. Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J. Virol. 84:199864–78
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020722-041304
Loading
/content/journals/10.1146/annurev-biodatasci-020722-041304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error