1932

Abstract

The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020722-100353
2023-08-10
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-020722-100353.html?itemId=/content/journals/10.1146/annurev-biodatasci-020722-100353&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Weiner MW, Aisen PS, Jack CR Jr., Jagust WJ, Trojanowski JQ et al. 2010. The Alzheimer's Disease Neuroimaging Initiative: progress report and future plans. Alzheimer's Dement 6:202–11
    [Google Scholar]
  2. 2.
    Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E et al. 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage 80:62–79
    [Google Scholar]
  3. 3.
    Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E et al. 2016. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19:1523–36
    [Google Scholar]
  4. 4.
    Schwarz AJ. 2021. The use, standardization, and interpretation of brain imaging data in clinical trials of neurodegenerative disorders. Neurotherapeutics 18:686–708
    [Google Scholar]
  5. 5.
    Sotiras A, Davatzikos C, Paragios N. 2013. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32:1153–90
    [Google Scholar]
  6. 6.
    Li G, Wang L, Yap PT, Wang F, Wu Z et al. 2019. Computational neuroanatomy of baby brains: a review. NeuroImage 185:906–25
    [Google Scholar]
  7. 7.
    Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B et al. 2021. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109:5820–38
    [Google Scholar]
  8. 8.
    Shen D, Wu G, Suk HI. 2017. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19:221–48
    [Google Scholar]
  9. 9.
    Park SC, Park MK, Kang MG. 2003. Super-resolution image reconstruction: a technical overview. IEEE Signal Proc. Mag. 20:21–36
    [Google Scholar]
  10. 10.
    Yi X, Walia E, Babyn P. 2019. Generative adversarial network in medical imaging: a review. Med. Image Anal. 58:101552
    [Google Scholar]
  11. 11.
    Ombao H, Lindquist M, Thompson W, Aston J. 2016. Handbook of Neuroimaging Data Analysis Boca Raton, FL: CRC
  12. 12.
    Nathoo F, Kong L, Zhu H. 2019. A review of statistical methods in imaging genetics. Can. J. Stat. 47:108–31
    [Google Scholar]
  13. 13.
    Shen L, Thompson PM. 2019. Brain imaging genomics: integrated analysis and machine learning. Proc. IEEE 108:125–62
    [Google Scholar]
  14. 14.
    Smith SM, Nichols TE. 2018. Statistical challenges in “big data” human neuroimaging. Neuron 97:263–68
    [Google Scholar]
  15. 15.
    Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T et al. 2017. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20:299–303
    [Google Scholar]
  16. 16.
    Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. 2017. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage 155:530–48
    [Google Scholar]
  17. 17.
    Smith NB, Webb A. 2010. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications Cambridge, UK: Cambridge Univ. Press
  18. 18.
    Tulay EE, Metin B, Tarhan N, Arkan MK. 2019. Multimodal neuroimaging: basic concepts and classification of neuropsychiatric diseases. Clin. EEG Neurosci. 50:20–33
    [Google Scholar]
  19. 19.
    Deco G, Tononi G, Boly M, Kringelbach ML. 2015. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16:430–39
    [Google Scholar]
  20. 20.
    Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J et al. 2016. A multi-modal parcellation of human cerebral cortex. Nature 536:171–78
    [Google Scholar]
  21. 21.
    Hansen MS, Kellman P. 2015. Image reconstruction: an overview for clinicians. J. Magn. Reson. Imaging 41:573–85
    [Google Scholar]
  22. 22.
    Chen Y, Schönlieb CB, Liò P, Leiner T, Dragotti PL et al. 2022. AI-based reconstruction for fast MRI—a systematic review and meta-analysis. Proc. IEEE 110:224–45
    [Google Scholar]
  23. 23.
    Lustig M, Donoho DL, Santos JM, Pauly JM. 2008. Compressed sensing MRI. IEEE Signal Proc. Mag. 25:72–82
    [Google Scholar]
  24. 24.
    Zhu H, Zhang H, Ibrahim JG, Peterson BS. 2007. Statistical analysis of diffusion tensors in diffusion-weighted magnetic resonance imaging data (with discussion). J. Am. Stat. Assoc. 102:1085–102
    [Google Scholar]
  25. 25.
    Yeh CH, Jones DK, Liang X, Descoteaux M, Connelly A. 2021. Mapping structural connectivity using diffusion MRI: challenges and opportunities. J. Magn. Reson. Imaging 53:1666–82
    [Google Scholar]
  26. 26.
    Seghouane AK, Ferrari D. 2019. Robust hemodynamic response function estimation from fNIRS signals. IEEE Trans. Signal Proc. 67:1838–48
    [Google Scholar]
  27. 27.
    Liu T, Nie J, Tarokh A, Guo L, Wong ST. 2008. Reconstruction of central cortical surface from brain MRI images: method and application. NeuroImage 40:991–1002
    [Google Scholar]
  28. 28.
    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. 2012. FSL. NeuroImage 62:782–90
    [Google Scholar]
  29. 29.
    Song S, Zheng Y, He Y. 2017. A review of methods for bias correction in medical images. Biomed. Eng. Rev. https://doi.org/10.18103/bme.v3i1.1550
    [Google Scholar]
  30. 30.
    Yu M, Linn KA, Cook PA, Phillips ML, McInnis M et al. 2018. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39:4213–27
    [Google Scholar]
  31. 31.
    Chen AA, Luo C, Chen Y, Shinohara RT, Shou H. 2021. Privacy-preserving harmonization via distributed ComBat. NeuroImage 248:118822
    [Google Scholar]
  32. 32.
    Bharati S, Mondal M, Podder P, Prasath V. 2022. Deep learning for medical image registration: a comprehensive review. arXiv:2204.11341 [eess.IV]
  33. 33.
    Miller MI, Younes L. 2001. Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41:61–84
    [Google Scholar]
  34. 34.
    Grenander U, Miller MI. 2007. Pattern Theory From Representation to Inference Oxford: Oxford Univ. Press
  35. 35.
    Hesamian MH, Jia W, He X, Kennedy P. 2019. Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32:582–96
    [Google Scholar]
  36. 36.
    Srivastava A, Klassen EP. 2016. Functional and Shape Data Analysis New York: Springer
  37. 37.
    Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. 2021. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18:203–11
    [Google Scholar]
  38. 38.
    Kalavathi P, Prasath V. 2016. Methods on skull stripping of MRI head scan images—a review. J. Digit. Imaging 29:365–79
    [Google Scholar]
  39. 39.
    Eickhoff SB, Yeo B, Genon S. 2018. Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19:672–86
    [Google Scholar]
  40. 40.
    Fischl B. 2012. FreeSurfer. NeuroImage 62:774–81
    [Google Scholar]
  41. 41.
    Wasserthal J, Neher P, Maier-Hein KH. 2018. TractSeg—fast and accurate white matter tract segmentation. NeuroImage 183:239–53
    [Google Scholar]
  42. 42.
    Havaei M, Davy A, Warde-Farley D, Biard A, Courville A et al. 2017. Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31
    [Google Scholar]
  43. 43.
    Toga AW, Thompson PM, Mori S, Amunts K, Zilles K. 2006. Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7:952–66
    [Google Scholar]
  44. 44.
    Nowinski WL. 2021. Evolution of human brain atlases in terms of content, applications, functionality, and availability. Neuroinformatics 19:1–22
    [Google Scholar]
  45. 45.
    Polzehl J, Spokoiny V. 2000. Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. B 62:335–54
    [Google Scholar]
  46. 46.
    Li Y, Zhu H, Shen D, Lin W, Gilmore JH, Ibrahim JG. 2011. Multiscale adaptive regression models for neuroimaging data. J. R. Stat. Soc. B 73:559–78
    [Google Scholar]
  47. 47.
    Buades A, Coll B, Morel JM. 2005. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4:490–530
    [Google Scholar]
  48. 48.
    Budd S, Robinson EC, Kainz B. 2021. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image Anal. 71:102062
    [Google Scholar]
  49. 49.
    Zhou SK, Le HN, Luu K, Nguyen HV, Ayache N. 2021. Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73:102193
    [Google Scholar]
  50. 50.
    Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J et al. 2019. Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage 185:1–11
    [Google Scholar]
  51. 51.
    Schilling KG, Tax CM, Rheault F, Landman BA, Anderson AW et al. 2022. Prevalence of white matter pathways coming into a single white matter voxel orientation: the bottleneck issue in tractography. Hum. Brain Mapp. 43:1196–213
    [Google Scholar]
  52. 52.
    Schilling KG, Rheault F, Petit L, Hansen CB, Nath V et al. 2021. Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage 243:118502
    [Google Scholar]
  53. 53.
    Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M et al. 2018. Mapping population-based structural connectomes. NeuroImage 172:130–45
    [Google Scholar]
  54. 54.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE et al. 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–505
    [Google Scholar]
  55. 55.
    Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N et al. 2020. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11:2624
    [Google Scholar]
  56. 56.
    Riffenburgh RH. 2012. Statistics in Medicine London: Academic
  57. 57.
    Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M et al. 2021. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3:199–217
    [Google Scholar]
  58. 58.
    Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. 2019. Generalisability of results from UK Biobank: comparison with a pooling of 18 cohort studies. medRxiv 19004705. https://doi.org/10.1101/19004705
    [Crossref]
  59. 59.
    Thompson SK. 2012. Sampling Hoboken, NJ: Wiley. , 3rd ed..
  60. 60.
    Xiang S, Yuan L, Fan W, Wang Y, Thompson PM et al. 2014. Bi-level multi-source learning for heterogeneous block-wise missing data. NeuroImage 102:192–206
    [Google Scholar]
  61. 61.
    Little RJA, Rubin DB. 2002. Statistical Analysis With Missing Data Hoboken, NJ: Wiley. , 3rd ed..
  62. 62.
    Ibrahim JG, Molenberghs G. 2009. Missing data methods in longitudinal studies: a review. Test 18:1–43
    [Google Scholar]
  63. 63.
    Dryden I, Mardia K. 1998. Statistical Shape Analysis Chichester, UK: Wiley
  64. 64.
    Marron JS, Dryden IL. 2021. Object Oriented Data Analysis Boca Raton, FL: CRC
  65. 65.
    Huckemann SF, Eltzner B. 2021. Data analysis on nonstandard spaces. WIREs Comput. Stat. 13:e1526
    [Google Scholar]
  66. 66.
    Cornea E, Zhu H, Kim P, Ibrahim JG, Initiative ADN. 2017. Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. B 79:463–82
    [Google Scholar]
  67. 67.
    Wang JL, Chiou JM, Müller HG. 2016. Functional data analysis. Annu. Rev. Stat. Appl. 3:257–95
    [Google Scholar]
  68. 68.
    Dubey P, Müller HG. 2020. Functional models for time-varying random objects. J. R. Stat. Soc. B 82:275–327
    [Google Scholar]
  69. 69.
    Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J et al. 2019. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry 76:739–48
    [Google Scholar]
  70. 70.
    Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. 2016. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18:421–30
    [Google Scholar]
  71. 71.
    Zhao Y, Castellanos FX. 2016. Annual research review: discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders—promises and limitations. J. Child Psychol. Psychiatry 57:421–39
    [Google Scholar]
  72. 72.
    Wellcome Trust Case Control Consort 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78
    [Google Scholar]
  73. 73.
    Watson HJ, Yilmaz Z, Sullivan PF. 2020. The Psychiatric Genomics Consortium: history, development, and the future. Personalized Psychiatry91–101. London: Academic
    [Google Scholar]
  74. 74.
    Thompson PM, Jahanshad N, Ching CR, Salminen LE, Thomopoulos SI et al. 2020. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Trans. Psychiatry 10:100
    [Google Scholar]
  75. 75.
    Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L et al. 2017. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186:1026–34
    [Google Scholar]
  76. 76.
    Bradley VC, Nichols TE. 2022. Addressing selection bias in the UK Biobank neurological imaging cohort. medRxiv 2022.01.13.22269266. https://doi.org/10.1101/2022.01.13.22269266
  77. 77.
    Zhu H, Fan J, Kong L. 2014. Spatially varying coefficient model for neuroimaging data with jump discontinuities. J. Am. Stat. Assoc. 109:1084–98
    [Google Scholar]
  78. 78.
    Li Y, Gilmore JH, Wang J, Styner M, Lin W, Zhu H. 2012. Twinmarm: two-stage multiscale adaptive regression methods for twin neuroimaging data. IEEE Trans. Med. Imaging 31:1100–12
    [Google Scholar]
  79. 79.
    Polzehl J, Voss HU, Tabelow K. 2010. Structural adaptive segmentation for statistical parametric mapping. NeuroImage 52:515–23
    [Google Scholar]
  80. 80.
    Yuan Y, Gilmore JH, Geng X, Martin S, Chen K et al. 2014. FMEM: functional mixed effects modeling for the analysis of longitudinal white matter tract data. NeuroImage 84:753–64
    [Google Scholar]
  81. 81.
    Zhu H, Li R, Kong L. 2012. Multivariate varying coefficient model for functional responses. Ann. Stat. 40:2634–66
    [Google Scholar]
  82. 82.
    Li X, Wang L, Wang HJ, Alzheimer's Dis. Neuroimaging Initiat 2021. Sparse learning and structure identification for ultrahigh-dimensional image-on-scalar regression. J. Am. Stat. Assoc. 116:1994–2008
    [Google Scholar]
  83. 83.
    Zhang D, Li L, Sripada C, Kang J. 2020. Image-on-scalar regression via deep neural networks. arXiv:2006.09911 [stat.ML]
  84. 84.
    Zhang Z, Wang X, Kong L, Zhu H. 2021. High-dimensional spatial quantile function-on-scalar regression. J. Am. Stat. Assoc. 117:5391563–78
    [Google Scholar]
  85. 85.
    Yang H, Baladandayuthapani V, Rao AU, Morris JS. 2020. Quantile function on scalar regression analysis for distributional data. J. Am. Stat. Assoc. 115:90–106
    [Google Scholar]
  86. 86.
    Chen Y, Goldsmith J, Ogden RT. 2019. Functional data analysis of dynamic pet data. J. Am. Stat. Assoc. 114:595–609
    [Google Scholar]
  87. 87.
    Silverman B, Ramsay J. 2005. Functional Data Analysis New York: Springer Sci. Bus. Media
  88. 88.
    Sun W, Reich BJ, Tony Cai T, Guindani M, Schwartzman A 2015. False discovery control in large-scale spatial multiple testing. J. R. Stat. Soc. B 77:59–83
    [Google Scholar]
  89. 89.
    Zhang C, Fan J, Yu T. 2011. Multiple testing via FDRL for large-scale imaging data. Ann. Stat. 39:613–42
    [Google Scholar]
  90. 90.
    Worsley KJ, Taylor JE, Tomaiuolo F, Lerch J. 2004. Unified univariate and multivariate random field theory. NeuroImage 23:S189–95
    [Google Scholar]
  91. 91.
    Adler RJ, Taylor JE. 2007. Random Fields and Geometry New York: Springer Sci. Bus. Media
  92. 92.
    Nichols T, Hayasaka S. 2003. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12:419–46
    [Google Scholar]
  93. 93.
    Eklund A, Nichols TE, Knutsson H. 2016. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. PNAS 113:7900–5
    [Google Scholar]
  94. 94.
    Kosorok MR. 2003. Bootstraps of sums of independent but not identically distributed stochastic processes. J. Multivar. Anal. 84:299–318
    [Google Scholar]
  95. 95.
    Chatterjee S, Bose A. 2005. Generalized bootstrap for estimating equations. Ann. Stat. 33:414–36
    [Google Scholar]
  96. 96.
    Zhu HT, Ibrahim JG, Tang N, Rowe D, Hao X et al. 2007. A statistical analysis of brain morphology using wild bootstrapping. IEEE Trans. Med. Imaging 26:954–66
    [Google Scholar]
  97. 97.
    Li T, Li T, Zhu Z, Zhu H. 2020. Regression analysis of asynchronous longitudinal functional and scalar data. J. Am. Stat. Assoc. 117:5391228–42
    [Google Scholar]
  98. 98.
    Huang M, Nichols T, Huang C, Yang Y, Lu Z et al. 2015. FVGWAS: fast voxelwise genome wide association analysis of large-scale imaging genetic data. NeuroImage 118:613–27
    [Google Scholar]
  99. 99.
    Huang C, Thompson P, Wang Y, Yu Y, Zhang J et al. 2017. FGWAS: functional genome wide association analysis. NeuroImage 159:107–21
    [Google Scholar]
  100. 100.
    Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J et al. 2020. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582:84–88
    [Google Scholar]
  101. 101.
    Bowring A, Maumet C, Nichols TE. 2019. Exploring the impact of analysis software on task fMRI results. Hum. Brain Mapp 40:3362–84
    [Google Scholar]
  102. 102.
    Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186–98
    [Google Scholar]
  103. 103.
    Simpson SL, Bowman FD, Laurienti PJ. 2013. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 7:1–36
    [Google Scholar]
  104. 104.
    Lin L, St. Thomas B, Zhu H, Dunson DB 2017. Extrinsic local regression on manifold-valued data. J. Am. Stat. Assoc. 112:1261–73
    [Google Scholar]
  105. 105.
    Dryden IL, Koloydenko A, Zhou D. 2009. Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3:1102–23
    [Google Scholar]
  106. 106.
    Arnaudon M, Barbaresco F, Yang L 2013. Medians and means in Riemannian geometry: existence, uniqueness and computation. Matrix Information Geometry F Nielsen, R Bhatia 169–98. Berlin: Springer-Verlag
    [Google Scholar]
  107. 107.
    Fletcher PT, Lu C, Pizer SM, Joshi S. 2004. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23:995–1005
    [Google Scholar]
  108. 108.
    Yuan Y, Zhu H, Lin W, Marron JS. 2012. Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. B 74:697–719
    [Google Scholar]
  109. 109.
    Shao L, Lin Z, Yao F. 2022. Intrinsic Riemannian functional data analysis for sparse longitudinal observations. Ann. Stat. 50:1696–721
    [Google Scholar]
  110. 110.
    Chen Y, Lin Z, Müller HG. 2021. Wasserstein regression. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2021.1956937
    [Crossref] [Google Scholar]
  111. 111.
    Pan W, Wang X, Zhang H, Zhu H, Zhu J. 2019. Ball covariance: a generic measure of dependence in Banach space. J. Am. Stat. Assoc. 115:529307–17
    [Google Scholar]
  112. 112.
    Miller MI, Qiu A. 2009. The emerging discipline of computational functional anatomy. NeuroImage 45:S16–39
    [Google Scholar]
  113. 113.
    Chung MK, Dalton KM, Shen L, Evans AC, Davidson RJ. 2007. Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans. Med. Imaging 26:566–81
    [Google Scholar]
  114. 114.
    Zhang Z, Wu Y, Xiong D, Ibrahim JG, Srivastava A, Zhu H. 2023. LESA: longitudinal elastic shape analysis of brain subcortical structures. J. Am. Stat. Assoc. 118:3–17
    [Google Scholar]
  115. 115.
    Shi J, Wang Y. 2019. Hyperbolic Wasserstein distance for shape indexing. IEEE Trans. Pattern Anal. Mach. Intell. 42:1362–76
    [Google Scholar]
  116. 116.
    Nakagawa S, Freckleton RP. 2011. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav. Ecol. Sociobiol. 65:103–16
    [Google Scholar]
  117. 117.
    Alotaibi A. 2020. Deep generative adversarial networks for image-to-image translation: a review. Symmetry 12:101705
    [Google Scholar]
  118. 118.
    Isola P, Zhu JY, Zhou T, Efros AA. 2017. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition1125–34. New York: IEEE
    [Google Scholar]
  119. 119.
    Zhu JY, Park T, Isola P, Efros AA. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE International Conference on Computer Vision2223–32. New York: IEEE
    [Google Scholar]
  120. 120.
    Li Y, Wu FX, Ngom A. 2018. A review on machine learning principles for multi-view biological data integration. Brief. Bioinform. 19:325–40
    [Google Scholar]
  121. 121.
    Zhao J, Xie X, Xu X, Sun S. 2017. Multi-view learning overview: recent progress and new challenges. Inform. Fusion 38:43–54
    [Google Scholar]
  122. 122.
    Zhou G, Cichocki A, Zhang Y, Mandic DP. 2015. Group component analysis for multiblock data: common and individual feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 27:2426–39
    [Google Scholar]
  123. 123.
    Lock EF, Hoadley KA, Marron JS, Nobel AB. 2013. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat. 7:523–42
    [Google Scholar]
  124. 124.
    Shu H, Qu Z, Zhu H. 2022. D-GCCA: decomposition-based generalized canonical correlation analysis for multi-view high-dimensional data. J. Mach. Learn. Res. 23:169
    [Google Scholar]
  125. 125.
    Miotto R, Wang F, Wang S, Jiang X, Dudley JT. 2018. Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19:1236–46
    [Google Scholar]
  126. 126.
    Zugman A, Harrewijn A, Cardinale EM, Zwiebel H, Freitag GF et al. 2022. Mega-analysis methods in enigma: the experience of the generalized anxiety disorder working group. Hum. Brain Mapp. 43:255–77
    [Google Scholar]
  127. 127.
    Patil P, Parmigiani G. 2018. Training replicable predictors in multiple studies. PNAS 115:2578–83
    [Google Scholar]
  128. 128.
    DerSimonian R, Laird N. 2015. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 45:A139–45
    [Google Scholar]
  129. 129.
    Cai C, Chen R, Xie M-G. 2020. Individualized inference through fusion learning. WIREs Comput. Stat. 12:e1498
    [Google Scholar]
  130. 130.
    Li T, Sahu AK, Talwalkar A, Smith V. 2020. Federated learning: challenges, methods, and future directions. IEEE Sign. Proc. Mag. 37:50–60
    [Google Scholar]
  131. 131.
    Huang C, Zhu H. 2022. Functional hybrid factor regression models for handling heterogeneity in imaging studies. Biometrika 109:41133–48
    [Google Scholar]
  132. 132.
    Burke DL, Ensor J, Riley RD. 2017. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat. Med. 36:855–75
    [Google Scholar]
  133. 133.
    Simmonds M, Stewart G, Stewart L. 2015. A decade of individual participant data meta-analyses: a review of current practice. Contemp. Clin. Trials 45:76–83
    [Google Scholar]
  134. 134.
    Kim J, Pan W, Alzheimer's Dis. Neuroimaging Initiat 2015. A cautionary note on using secondary phenotypes in neuroimaging genetic studies. NeuroImage 121:136–45
    [Google Scholar]
  135. 135.
    Zhu W, Yuan Y, Zhang J, Zhou F, Knickmeyer RC et al. 2017. Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's Disease Neuroimaging Initiative study. NeuroImage 146:983–1002
    [Google Scholar]
  136. 136.
    Li J, Cheng K, Wang S, Morstatter F, Trevino RP et al. 2017. Feature selection: a data perspective. ACM Comput. Surv. 50:694
    [Google Scholar]
  137. 137.
    Anowar F, Sadaoui S, Selim B 2021. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 40:100378
    [Google Scholar]
  138. 138.
    Liu X, Zhang F, Hou Z, Mian L, Wang Z et al. 2021. Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. 35:1857–76
    [Google Scholar]
  139. 139.
    Lin D, Calhoun VD, Wang YP. 2014. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Med. Image Anal. 18:891–902
    [Google Scholar]
  140. 140.
    Zhu H, Shen D, Peng X, Liu LY, Alzheimer's Dis. Neuroimaging Initiat 2017. MWPCR: multiscale weighted principal component regression for high-dimensional prediction. J. Am. Stat. Assoc. 112:1009–21
    [Google Scholar]
  141. 141.
    Crainiceanu CM, Caffo BS, Luo S, Zipunnikov VM, Punjabi NM. 2011. Population value decomposition, a framework for the analysis of image populations. J. Am. Stat. Assoc. 106:775–90
    [Google Scholar]
  142. 142.
    Gong W, Beckmann CF, Smith SM. 2021. Phenotype discovery from population brain imaging. Med. Image Anal. 71:102050
    [Google Scholar]
  143. 143.
    Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. 2020. A survey on contrastive self-supervised learning. Technologies 9:2
    [Google Scholar]
  144. 144.
    Blokland GA, de Zubicaray GI, McMahon KL, Wright MJ. 2012. Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Res. Hum. Genet. 15:351–71
    [Google Scholar]
  145. 145.
    Zhao B, Ibrahim JG, Li Y, Li T, Wang Y et al. 2019. Heritability of regional brain volumes in large-scale neuroimaging and genetic studies. Cereb. Cortex 29:2904–14
    [Google Scholar]
  146. 146.
    Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA et al. 2011. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann. Neurol. 69:928–39
    [Google Scholar]
  147. 147.
    Mascarell Maričić L, Walter H, Rosenthal A, Ripke S, Quinlan EB et al. 2020. The IMAGEN study: a decade of imaging genetics in adolescents. Mol. Psychiatry 25:2648–71
    [Google Scholar]
  148. 148.
    Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL et al. 2018. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562:210–16
    [Google Scholar]
  149. 149.
    Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F et al. 2021. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24:737–45
    [Google Scholar]
  150. 150.
    Zhao B, Luo T, Li T, Li Y, Zhang J et al. 2019. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51:1637–44
    [Google Scholar]
  151. 151.
    Zhao B, Li T, Yang Y, Wang X, Luo T et al. 2021. Common genetic variation influencing human white matter microstructure. Science 372:eabf3736
    [Google Scholar]
  152. 152.
    Zhao B, Li T, Smith SM, Xiong D, Wang X et al. 2022. Common variants contribute to intrinsic human brain functional networks. Nat. Genet. 54:508–17
    [Google Scholar]
  153. 153.
    Jahanshad N, Kochunov PV, Sprooten E, Mandl RC, Nichols TE et al. 2013. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA–DTI working group. NeuroImage 81:455–69
    [Google Scholar]
  154. 154.
    Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76–82
    [Google Scholar]
  155. 155.
    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J et al. 2015. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47:291–95
    [Google Scholar]
  156. 156.
    Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. 2017. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8:1826
    [Google Scholar]
  157. 157.
    Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J et al. 2022. Mendelian randomization. Nat. Rev. Methods Primers 2:16
    [Google Scholar]
  158. 158.
    Sun N, Zhao H. 2020. Statistical methods in genome-wide association studies. Annu. Rev. Biomed. Data Sci. 3:265–88
    [Google Scholar]
  159. 159.
    Le BD, Stein JL. 2019. Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: current status and future directions. Psychiatry Clin. Neurosci. 73:357–69
    [Google Scholar]
  160. 160.
    Yu D, Wang L, Kong D, Zhu H. 2022. Mapping the genetic-imaging-clinical pathway with applications to Alzheimer's disease. J. Am. Stat. Assoc. 117:5401656–68
    [Google Scholar]
  161. 161.
    Kauppi K, Fan CC, McEvoy LK, Holland D, Tan CH et al. 2018. Combining polygenic hazard score with volumetric MRI and cognitive measures improves prediction of progression from mild cognitive impairment to Alzheimer's disease. Front. Neurosci. 12:260
    [Google Scholar]
  162. 162.
    Friston K. 2009. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLOS Biol 7:e1000033
    [Google Scholar]
  163. 163.
    Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C. 2010. Six problems for causal inference from fMRI. NeuroImage 49:1545–58
    [Google Scholar]
  164. 164.
    Lindquist MA. 2012. Functional causal mediation analysis with an application to brain connectivity. J. Am. Stat. Assoc. 107:1297–309
    [Google Scholar]
  165. 165.
    Sobel ME, Lindquist MA. 2020. Estimating causal effects in studies of human brain function: new models, methods and estimands. Ann. Appl. Stat. 14:452–72
    [Google Scholar]
  166. 166.
    Taschler B, Smith SM, Nichols TE. 2022. Causal inference on neuroimaging data with Mendelian randomisation. NeuroImage 258:119385
    [Google Scholar]
  167. 167.
    Knutson KA, Deng Y, Pan W. 2020. Implicating causal brain imaging endophenotypes in Alzheimer's disease using multivariable IWAS and GWAS summary data. NeuroImage 223:117347
    [Google Scholar]
  168. 168.
    Zhao Y, Li L, Caffo BS. 2021. Multimodal neuroimaging data integration and pathway analysis. Biometrics 77:879–89
    [Google Scholar]
  169. 169.
    Li H, Wang Y, Yan G, Sun Y, Tanabe S et al. 2021. A Bayesian state-space approach to mapping directional brain networks. J. Am. Stat. Assoc. 116:1637–47
    [Google Scholar]
  170. 170.
    Imbens GW, Rubin DB. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences Cambridge, UK: Cambridge Univ. Press
  171. 171.
    Pearl J. 2009. Causality. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  172. 172.
    Greenland S, Robins JM, Pearl J. 1999. Confounding and collapsibility in causal inference. Stat. Sci. 14:29–46
    [Google Scholar]
  173. 173.
    Upadhyaya P, Zhang K, Li C, Jiang X, Kim Y. 2021. Scalable causal structure learning: new opportunities in biomedicine. arXiv:2110.07785 [cs.LG]
  174. 174.
    Imbens GW. 2020. Potential outcome and directed acyclic graph approaches to causality: relevance for empirical practice in economics. J. Econ. Lit. 58:1129–79
    [Google Scholar]
  175. 175.
    Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF et al. 2011. Network modelling methods for fMRI. NeuroImage 54:875–91
    [Google Scholar]
  176. 176.
    Burgess S, Small DS, Thompson SG. 2017. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26:2333–55
    [Google Scholar]
  177. 177.
    Zhu X. 2020. Mendelian randomization and pleiotropy analysis. Quant. Biol. 9:2122–32
    [Google Scholar]
  178. 178.
    Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS et al. 2010. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9:119–28
    [Google Scholar]
  179. 179.
    VanderWeele T. 2015. Explanation in Causal Inference: Methods for Mediation and Interaction Oxford: Oxford Univ. Press
  180. 180.
    Kohoutová L, Heo J, Cha S, Lee S, Moon T et al. 2020. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat. Protoc. 15:1399–435
    [Google Scholar]
  181. 181.
    Davatzikos C. 2019. Machine learning in neuroimaging: progress and challenges. NeuroImage 197:652–66
    [Google Scholar]
  182. 182.
    Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction New York: Springer-Verlag
  183. 183.
    Liu R, Zhu H. 2021. Statistical disease mapping for heterogeneous neuroimaging studies (with discussion). Can. J. Stat. 49:10–34
    [Google Scholar]
  184. 184.
    Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press http://www.deeplearningbook.org
/content/journals/10.1146/annurev-biodatasci-020722-100353
Loading
/content/journals/10.1146/annurev-biodatasci-020722-100353
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error