1932

Abstract

Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020722-120642
2023-08-10
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-020722-120642.html?itemId=/content/journals/10.1146/annurev-biodatasci-020722-120642&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  2. 2.
    Cai Y, Song W, Li J, Jing Y, Liang C et al. 2022. The landscape of aging. Sci. China Life Sci. 65:122354–454
    [Google Scholar]
  3. 3.
    He X, Memczak S, Qu J, Belmonte JCI, Liu GH. 2020. Single-cell omics in ageing: a young and growing field. Nat. Metab. 2:293–302
    [Google Scholar]
  4. 4.
    Zhang W, Qu J, Liu GH, Belmonte JCI. 2020. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21:137–50
    [Google Scholar]
  5. 5.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023. Hallmarks of aging: an expanding universe. Cell 186:243–78
    [Google Scholar]
  6. 6.
    Liu X, Liu Z, Wu Z, Ren J, Fan Y et al. 2023. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186:2287–304.e26
    [Google Scholar]
  7. 7.
    Zhou T, Kiran M, Lui KO, Ding Q. 2022. Decoding liver fibrogenesis with single-cell technologies. Life Med. 1:333–44
    [Google Scholar]
  8. 8.
    Fang X, Jiang M, Zhou M, Shao J, Fang X et al. 2022. Elucidating the developmental dynamics of mouse stromal cells at single-cell level. Life Med. 1:45–48
    [Google Scholar]
  9. 9.
    Zou X, Dai X, Mentis A-FA, Esteban MA, Liu L, Han L. 2022. From monkey single-cell atlases into a broader biomedical perspective. Life Med. 1:254–57
    [Google Scholar]
  10. 10.
    Ma S, Wang S, Ye Y, Ren J, Chen R et al. 2022. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 29:990–1005.e10
    [Google Scholar]
  11. 11.
    Ma S, Sun S, Geng L, Song M, Wang W et al. 2020. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180:984–1001.e22
    [Google Scholar]
  12. 12.
    Tabula Muris Consort 2020. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583:590–95
    [Google Scholar]
  13. 13.
    Sun S, Ma S, Cai Y, Wang S, Ren J et al. 2023. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body. Innovation 4:100380
    [Google Scholar]
  14. 14.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82
    [Google Scholar]
  15. 15.
    Chappell L, Russell AJC, Voet T. 2018. Single-cell (multi)omics technologies. Annu. Rev. Genom. Hum. Genet. 19:15–41
    [Google Scholar]
  16. 16.
    Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:257–72
    [Google Scholar]
  17. 17.
    Strzelecka PM, Damm F. 2021. Haematopoietic ageing through the lens of single-cell technologies. Dis. Models Mech. 14:dmm047340
    [Google Scholar]
  18. 18.
    Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A et al. 2016. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7:11075
    [Google Scholar]
  19. 19.
    Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH et al. 2019. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10:963
    [Google Scholar]
  20. 20.
    Zhang H, Li J, Ren J, Sun S, Ma S et al. 2021. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12:695–716
    [Google Scholar]
  21. 21.
    Wang S, Zheng Y, Li Q, He X, Ren R et al. 2021. Deciphering primate retinal aging at single-cell resolution. Protein Cell 12:889–98
    [Google Scholar]
  22. 22.
    Zhang Y, Zheng Y, Wang S, Fan Y, Ye Y et al. 2023. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell 14:279–93
    [Google Scholar]
  23. 23.
    Jing Y, Zuo Y, Yu Y, Sun L, Yu Z et al. 2022. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging. Protein Cell In press https://doi.org/10.1093/procel/pwac061
    [Crossref] [Google Scholar]
  24. 24.
    Solé-Boldo L, Raddatz G, Schütz S, Mallm J-P, Rippe K et al. 2020. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 3:188
    [Google Scholar]
  25. 25.
    Mogilenko DA, Shpynov O, Andhey PS, Arthur L, Swain A et al. 2021. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54:99–115
    [Google Scholar]
  26. 26.
    Wang S, Zheng Y, Li J, Yu Y, Zhang W et al. 2020. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180:585–600.e19
    [Google Scholar]
  27. 27.
    Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R et al. 2019. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–210
    [Google Scholar]
  28. 28.
    Enge M, Arda HE, Mignardi M, Beausang J, Bottino R et al. 2017. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171:321–30.e14
    [Google Scholar]
  29. 29.
    Pálovics R, Keller A, Schaum N, Tan W, Fehlmann T et al. 2022. Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603:309–14
    [Google Scholar]
  30. 30.
    Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88
    [Google Scholar]
  31. 31.
    Evrony GD, Hinch AG, Luo C. 2021. Applications of single-cell DNA sequencing. Annu. Rev. Genom. Hum. Genet. 22:171–97
    [Google Scholar]
  32. 32.
    Li R, Di L, Li J, Fan W, Liu Y et al. 2021. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597:398–403
    [Google Scholar]
  33. 33.
    Blokzijl F, De Ligt J, Jager M, Sasselli V, Roerink S et al. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:260–64
    [Google Scholar]
  34. 34.
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–59
    [Google Scholar]
  35. 35.
    Zhang L, Dong X, Lee M, Maslov AY, Wang T, Vijg J. 2019. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. PNAS 116:9014–19
    [Google Scholar]
  36. 36.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens TH et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 604:517–24
    [Google Scholar]
  37. 37.
    Wang K, Liu H, Hu Q, Wang L, Liu J et al. 2022. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 7:374
    [Google Scholar]
  38. 38.
    Liu Z, Ji Q, Ren J, Yan P, Wu Z et al. 2022. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57:111347–68
    [Google Scholar]
  39. 39.
    Zhao D, Chen S. 2022. Failures at every level: breakdown of the epigenetic machinery of aging. Life Med. 1:81–83
    [Google Scholar]
  40. 40.
    Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome Biol. 14:3156
    [Google Scholar]
  41. 41.
    Trapp A, Kerepesi C, Gladyshev VN. 2021. Profiling epigenetic age in single cells. Nat. Aging 1:1189–201
    [Google Scholar]
  42. 42.
    Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S et al. 2018. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173:1385–97.e14
    [Google Scholar]
  43. 43.
    Zhang Y, Amaral ML, Zhu C, Grieco SF, Hou X et al. 2022. Single-cell epigenome analysis reveals age-associated decay of heterochromatin domains in excitatory neurons in the mouse brain. Cell Res. 32:1008–21
    [Google Scholar]
  44. 44.
    Longo SK, Guo MG, Ji AL, Khavari PA. 2021. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22:627–44
    [Google Scholar]
  45. 45.
    Roy S, Kornberg TB. 2015. Paracrine signaling mediated at cell–cell contacts. Bioessays 37:25–33
    [Google Scholar]
  46. 46.
    Kiss T, Nyúl-Tóth Á, DelFavero J, Balasubramanian P, Tarantini S et al. 2022. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 44:661–81
    [Google Scholar]
  47. 47.
    Allen WE, Blosser TR, Sullivan ZA, Dulac C, Zhuang XW. 2023. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186:194–208.e18
    [Google Scholar]
  48. 48.
    Wang S, Wu M, Tang W, Chen Y, Wu C et al. 2022. Spatiotemporal analysis of human ovarian aging at single-cell resolution. Res. Sq. rs.3.rs-1624864/v1. https://doi.org/10.21203/rs.3.rs-1624864/v1
  49. 49.
    Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH et al. 2021. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using ScoPE2. Genome Biol. 22:50
    [Google Scholar]
  50. 50.
    Wang Z, Sun F, Xiong W. 2022. Fat shapes fate: unlock the destiny of a cell with single-cell metabolomics. Life Med. 1:261–63
    [Google Scholar]
  51. 51.
    Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S et al. 2021. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184:3915–35.e21
    [Google Scholar]
  52. 52.
    Hu Y, Jiang Z, Chen K, Zhou Z, Zhou X et al. 2022. scNanoATAC-seq: a long-read single-cell ATAC sequencing method to detect chromatin accessibility and genetic variants simultaneously within an individual cell. Cell Res. 33:83–86
    [Google Scholar]
  53. 53.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–401
    [Google Scholar]
  54. 54.
    Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS et al. 2015. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12:1058–60
    [Google Scholar]
  55. 55.
    Gao R, Bai S, Henderson YC, Lin Y, Schalck A et al. 2021. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39:599–608
    [Google Scholar]
  56. 56.
    Wang H, Zhang K, Liu Y, Fu Y, Gao S et al. 2017. Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. BMC Biol. 15:114
    [Google Scholar]
  57. 57.
    Kong M, Guo L, Xu W, He C, Jia X et al. 2022. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. Life Med. 1:149–67
    [Google Scholar]
  58. 58.
    Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T et al. 2021. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39:451–61
    [Google Scholar]
  59. 59.
    Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H et al. 2021. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53:403–11
    [Google Scholar]
  60. 60.
    Angermueller C, Lee HJ, Reik W, Stegle O. 2017. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18:67
    [Google Scholar]
  61. 61.
    Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. 2021. Single-cell chromatin state analysis with Signac. Nat. Methods 18:1333–41
    [Google Scholar]
  62. 62.
    Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184:3573–87.e29
    [Google Scholar]
  63. 63.
    Zou Z, Long X, Zhao Q, Zheng Y, Song M et al. 2021. A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56:3383–97
    [Google Scholar]
  64. 64.
    Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H et al. 2017. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14:1083–86
    [Google Scholar]
  65. 65.
    Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J et al. 2021. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184:4168–85.e21
    [Google Scholar]
  66. 66.
    Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D et al. 2019. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLOS Comput. Biol. 15:e1006733
    [Google Scholar]
  67. 67.
    Wu Y, Yang S, Ma J, Chen Z, Song G et al. 2022. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12:134–53
    [Google Scholar]
  68. 68.
    Alghamdi N, Chang W, Dang P, Lu X, Wan C et al. 2021. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res. 31:1867–84
    [Google Scholar]
  69. 69.
    Hsiao CJ, Tung P, Blischak JD, Burnett JE, Barr KA et al. 2020. Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis. Genome Res. 30:611–21
    [Google Scholar]
  70. 70.
    Qiu X, Mao Q, Tang Y, Wang L, Chawla R et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14:979–82
    [Google Scholar]
  71. 71.
    Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502
    [Google Scholar]
  72. 72.
    La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H et al. 2018. RNA velocity of single cells. Nature 560:494–98
    [Google Scholar]
  73. 73.
    Andreatta M, Carmona SJ. 2021. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19:3796–98
    [Google Scholar]
  74. 74.
    Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. 2018. Single sample scoring of molecular phenotypes. BMC Bioinform. 19:404
    [Google Scholar]
  75. 75.
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15:41484–506
    [Google Scholar]
  76. 76.
    Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge J. 2020. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 48:e55
    [Google Scholar]
  77. 77.
    Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R et al. 2021. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12:1088
    [Google Scholar]
  78. 78.
    Browaeys R, Saelens W, Saeys Y. 2020. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17:159–62
    [Google Scholar]
  79. 79.
    Stubbington MJT, Lonnberg T, Proserpio V, Clare S, Speak AO et al. 2016. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13:329–32
    [Google Scholar]
  80. 80.
    Redmond D, Poran A, Elemento O. 2016. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8:80
    [Google Scholar]
  81. 81.
    Canzar S, Neu KE, Tang Q, Wilson PC, Khan AA. 2017. BASIC: BCR assembly from single cells. Bioinformatics 33:425–27
    [Google Scholar]
  82. 82.
    Rizzetto S, Koppstein DNP, Samir J, Singh M, Reed JH et al. 2018. B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics 34:2846–47
    [Google Scholar]
  83. 83.
    Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A et al. 2015. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25:1860–72
    [Google Scholar]
  84. 84.
    Kirschner K, Chandra T, Kiselev V, Flores-Santa Cruz D, Macaulay IC et al. 2017. Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep. 19:1503–11
    [Google Scholar]
  85. 85.
    Mann M, Mehta A, de Boer CG, Kowalczyk MS, Lee K et al. 2018. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 25:2992–3005.e5
    [Google Scholar]
  86. 86.
    Florian MC, Klose M, Sacma M, Jablanovic J, Knudson L et al. 2018. Aging alters the epigenetic asymmetry of HSC division. PLOS Biol. 16:e2003389
    [Google Scholar]
  87. 87.
    Li H, Zhu L, Wang R, Xie L, Ren J et al. 2022. Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell 13:422–45
    [Google Scholar]
  88. 88.
    Mogilenko DA, Shchukina I, Artyomov MN. 2022. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22:484–98
    [Google Scholar]
  89. 89.
    Leng SX, Pawelec G. 2022. Single-cell immune atlas for human aging and frailty. Life Med. 1:67–70
    [Google Scholar]
  90. 90.
    Verovskaya EV, Dellorusso PV, Passegué E. 2019. Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol. Med. 25:494–515
    [Google Scholar]
  91. 91.
    Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM et al. 2014. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512:198–202
    [Google Scholar]
  92. 92.
    Adelman ER, Huang H-T, Roisman A, Olsson A, Colaprico A et al. 2019. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9:1080–101
    [Google Scholar]
  93. 93.
    Jaiswal S, Ebert BL. 2019. Clonal hematopoiesis in human aging and disease. Science 366:eaan4673
    [Google Scholar]
  94. 94.
    Nam AS, Dusaj N, Izzo F, Murali R, Myers RM et al. 2022. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54:1514–26
    [Google Scholar]
  95. 95.
    Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN et al. 2020. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33:4108326
    [Google Scholar]
  96. 96.
    Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S et al. 2021. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat. Commun. 12:1826
    [Google Scholar]
  97. 97.
    Chen S, Wang Q, Yu H, Capitano ML, Vemula S et al. 2019. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat. Commun. 10:5649
    [Google Scholar]
  98. 98.
    Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M et al. 2018. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–13.e6
    [Google Scholar]
  99. 99.
    Frisch BJ, Hoffman CM, Latchney SE, LaMere MW, Myers J et al. 2019. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 4:10e124213
    [Google Scholar]
  100. 100.
    Oetjen KA, Lindblad KE, Goswami M, Gui G, Dagur PK et al. 2018. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight 3:23e124928
    [Google Scholar]
  101. 101.
    Hennrich ML, Romanov N, Horn P, Jaeger S, Eckstein V et al. 2018. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nat. Commun. 9:4004
    [Google Scholar]
  102. 102.
    Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L et al. 2017. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169:807–23.e19
    [Google Scholar]
  103. 103.
    Saçma M, Pospiech J, Bogeska R, de Back W, Mallm J-P et al. 2019. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat. Cell Biol. 21:1309–20
    [Google Scholar]
  104. 104.
    Tabula Sapiens Consort., Jones RC, Karkanias J, Krasnow MA, Pisco AO et al. 2022. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376:eabl4896
    [Google Scholar]
  105. 105.
    Liu Z, Zhang Z. 2022. Mapping cell types across human tissues. Science 376:695–96
    [Google Scholar]
  106. 106.
    Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A et al. 2022. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376:eabl4290
    [Google Scholar]
  107. 107.
    Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB et al. 2022. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376:eabl5197
    [Google Scholar]
  108. 108.
    Suo C, Dann E, Goh I, Jardine L, Kleshchevnikov V et al. 2022. Mapping the developing human immune system across organs. Science 376:eabo0510
    [Google Scholar]
  109. 109.
    Wang W, Wang M, Yang M, Zeng B, Qiu W et al. 2022. Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res. 32:729–43
    [Google Scholar]
  110. 110.
    Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN et al. 2022. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110:452–69.e14
    [Google Scholar]
  111. 111.
    Ayhan F, Kulkarni A, Berto S, Sivaprakasam K, Douglas C et al. 2021. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 109:2091–105.e6
    [Google Scholar]
  112. 112.
    Shi Z, Geng Y, Liu J, Zhang H, Zhou L et al. 2018. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–64
    [Google Scholar]
  113. 113.
    Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W et al. 2019. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176:1407–19.e14
    [Google Scholar]
  114. 114.
    Barker SJ, Raju RM, Milman NEP, Wang J, Davila-Velderrain J et al. 2021. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci. Transl. Med. 13:eabd7695
    [Google Scholar]
  115. 115.
    Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM et al. 2022. Hyperexcitable arousal circuits drive sleep instability during aging. Science 375:eabh3021
    [Google Scholar]
  116. 116.
    Schlachetzki JCM, Toda T, Mertens J. 2020. When function follows form: nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp. Gerontol. 133:110876
    [Google Scholar]
  117. 117.
    Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A et al. 2019. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–71.e6
    [Google Scholar]
  118. 118.
    Talma N, Gerrits E, Wang B, Eggen BJL, Demaria M. 2021. Identification of distinct and age-dependent p16High microglia subtypes. Aging Cell 20:e13450
    [Google Scholar]
  119. 119.
    Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y et al. 2021. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. Acta Neuropathol. 141:681–96
    [Google Scholar]
  120. 120.
    Jin WN, Shi K, He W, Sun JH, Van Kaer L et al. 2021. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24:61–73
    [Google Scholar]
  121. 121.
    Kiss T, Nyul-Toth A, Balasubramanian P, Tarantini S, Ahire C et al. 2020. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42:429–44
    [Google Scholar]
  122. 122.
    Chen MB, Yang AC, Yousef H, Lee D, Chen W et al. 2020. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30:4418–32.e4
    [Google Scholar]
  123. 123.
    Dani N, Herbst RH, McCabe C, Green GS, Kaiser K et al. 2021. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184:3056–74.e21
    [Google Scholar]
  124. 124.
    Yi W, Lu Y, Zhong S, Zhang M, Sun L et al. 2021. A single-cell transcriptome atlas of the aging human and macaque retina. Natl. Sci. Rev. 8:nwaa179
    [Google Scholar]
  125. 125.
    Sun G, Zheng Y, Fu X, Zhang W, Ren J et al. 2023. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 14:180–201
    [Google Scholar]
  126. 126.
    Wanjare M, Kusuma S, Gerecht S. 2013. Perivascular cells in blood vessel regeneration. Biotechnol. J. 8:434–47
    [Google Scholar]
  127. 127.
    Zhang W, Zhang S, Yan P, Ren J, Song M et al. 2020. A single-cell transcriptomic landscape of primate arterial aging. Nat. Commun. 11:2202
    [Google Scholar]
  128. 128.
    Ge F, Pan Q, Qin Y, Jia M, Ruan C et al. 2021. Single-cell analysis identify transcription factor BACH1 as a master regulator gene in vascular cells during aging. Front. Cell Dev. Biol. 9:786496
    [Google Scholar]
  129. 129.
    He D, Mao A, Zheng C-B, Kan H, Zhang K et al. 2020. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl. Sci. Rev. 7:881–96
    [Google Scholar]
  130. 130.
    Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW et al. 2020. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6:eaax2659
    [Google Scholar]
  131. 131.
    Li J, Zheng Y, Yan P, Song M, Wang S et al. 2021. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl. Sci. Rev. 8:nwaa127
    [Google Scholar]
  132. 132.
    Drozdowski L, Thomson AB. 2006. Aging and the intestine. World J. Gastroenterol. 12:7578–84
    [Google Scholar]
  133. 133.
    Jasper H. 2020. Intestinal stem cell aging: origins and interventions. Annu. Rev. Physiol. 82:203–26
    [Google Scholar]
  134. 134.
    Tauc HM, Rodriguez-Fernandez IA, Hackney JA, Pawlak M, Ronnen Oron T et al. 2021. Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. eLife 10:e62250
    [Google Scholar]
  135. 135.
    Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK et al. 2020. The human and mouse enteric nervous system at single-cell resolution. Cell 182:1606–22.e23
    [Google Scholar]
  136. 136.
    Zhang T, Xi Q, Wang D, Li J, Wang M et al. 2019. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes. J. Ovarian Res. 12:53
    [Google Scholar]
  137. 137.
    Hou G, Sun QY. 2020. Maternal ageing causes changes in DNA methylation and gene expression profiles in mouse oocytes. Zygote 28:5360–66
    [Google Scholar]
  138. 138.
    Zhang JJ, Liu X, Chen L, Zhang S, Zhang X et al. 2020. Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality. Aging 12:3950–61
    [Google Scholar]
  139. 139.
    Yuan L, Yin P, Yan H, Zhong X, Ren C et al. 2021. Single-cell transcriptome analysis of human oocyte ageing. J. Cell. Mol. Med. 25:136289–303
    [Google Scholar]
  140. 140.
    Nie X, Munyoki SK, Sukhwani M, Schmid N, Missel A et al. 2022. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev. Cell 57:1160–76.e5
    [Google Scholar]
  141. 141.
    Wang X, Cairns BR, Guo J. 2022. When spermatogenesis meets human aging and elevated body mass. Life Med. 1:267–69
    [Google Scholar]
  142. 142.
    Huang D, Zuo Y, Zhang C, Sun G, Jing Y et al. 2022. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein CellIn press https://doi.org/10.1093/procel/pwac057
    [Crossref] [Google Scholar]
  143. 143.
    Makela JA, Koskenniemi JJ, Virtanen HE, Toppari J. 2019. Testis development. Endocr. Rev. 40:857–905
    [Google Scholar]
  144. 144.
    Crowell PD, Fox JJ, Hashimoto T, Diaz JA, Navarro HI et al. 2019. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep. 28:1499–510.e6
    [Google Scholar]
  145. 145.
    Wang L, Liu J, Liu H, Yazawa M, Zhu F. 2022. The secret of youth—how is systemic rejuvenation achieved at the single cell level?. Life Med. 1:258–60
    [Google Scholar]
  146. 146.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al. 2017. The Human Cell Atlas. eLife 6:e27041
    [Google Scholar]
  147. 147.
    Zong W, Kang H, Xiong Z, Ma Y, Jin T et al. 2022. scMethBank: a database for single-cell whole genome DNA methylation maps. Nucleic Acids Res. 50:D380–86
    [Google Scholar]
  148. 148.
    Zhang Y, Zou D, Zhu T, Xu T, Chen M et al. 2022. Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Res. 50:D1016–24
    [Google Scholar]
  149. 149.
    Franzen O, Gan LM, Bjorkegren JLM. 2019. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019:baz046
    [Google Scholar]
  150. 150.
    Cao Y, Zhu J, Jia P, Zhao Z. 2017. scRNASeqDB: a database for RNA-seq based gene expression profiles in human single cells. Genes 8:12368
    [Google Scholar]
  151. 151.
    Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D et al. 2018. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 46:D1083–90
    [Google Scholar]
  152. 152.
    Huhne R, Thalheim T, Suhnel J. 2014. AgeFactDB—the JenAge Ageing Factor Database—towards data integration in ageing research. Nucleic Acids Res. 42:D892–96
    [Google Scholar]
  153. 153.
    Craig T, Smelick C, Tacutu R, Wuttke D, Wood SH et al. 2015. The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Res. 43:D873–78
    [Google Scholar]
  154. 154.
    Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A et al. 2007. AGEMAP: a gene expression database for aging in mice. PLOS Genet. 3:e201
    [Google Scholar]
  155. 155.
    Aging Atlas Consort 2021. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res. 49:D825–30
    [Google Scholar]
  156. 156.
    Wang R, Zhang P, Wang J, Ma L, E W et al. 2022. Construction of a cross-species cell landscape at single-cell level. Nucleic Acids Res. 51:2501–16
    [Google Scholar]
  157. 157.
    Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16:1289–96
    [Google Scholar]
  158. 158.
    Velten B, Braunger JM, Argelaguet R, Arnol D, Wirbel J et al. 2022. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19:179–86
    [Google Scholar]
  159. 159.
    Cao ZJ, Gao G. 2022. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40:1458–66
    [Google Scholar]
  160. 160.
    Lin Y, Wu TY, Wan S, Yang JYH, Wong WH, Wang YXR. 2022. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. Nat. Biotechnol. 40:703–10
    [Google Scholar]
  161. 161.
    Singh SP, Janjuha S, Chaudhuri S, Reinhardt S, Kränkel A et al. 2018. Machine learning based classification of cells into chronological stages using single-cell transcriptomics. Sci. Rep. 8:17156
    [Google Scholar]
  162. 162.
    Arai F, Stumpf PS, Ikushima YM, Hosokawa K, Roch A et al. 2020. Machine learning of hematopoietic stem cell divisions from paired daughter cell expression profiles reveals effects of aging on self-renewal. Cell Syst. 11:640–52.e5
    [Google Scholar]
  163. 163.
    Hajdarovic KH, Yu D, Hassell L-A, Evans SA, Packer S et al. 2022. Single-cell analysis of the aging female mouse hypothalamus. Nat. Aging 2:662–78
    [Google Scholar]
  164. 164.
    Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A. 2019. Artificial intelligence for aging and longevity research: recent advances and perspectives. Ageing Res. Rev. 49:49–66
    [Google Scholar]
  165. 165.
    Ashiqur Rahman S, Giacobbi P, Pyles L, Mullett C, Doretto G, Adjeroh DA 2021. Deep learning for biological age estimation. Brief. Bioinform. 22:1767–81
    [Google Scholar]
  166. 166.
    Rutledge J, Oh H, Wyss-Coray T. 2022. Measuring biological age using omics data. Nat. Rev. Genet. 23:715–27
    [Google Scholar]
  167. 167.
    Zhavoronkov A, Bischof E, Lee K-F. 2021. Artificial intelligence in longevity medicine. Nat. Aging 1:5–7
    [Google Scholar]
  168. 168.
    Zheng Y, Liu X, Le W, Xie L, Li H et al. 2020. A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11:740–70
    [Google Scholar]
  169. 169.
    Huang Z, Chen B, Liu X, Li H, Xie L et al. 2021. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. PNAS 118:e2023216118
    [Google Scholar]
  170. 170.
    Llonch S, Barragán M, Nieto P, Mallol A, Elosua-Bayes M et al. 2021. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 20:e13360
    [Google Scholar]
  171. 171.
    Lu Y, Biancotto A, Cheung F, Remmers E, Shah N et al. 2016. Systematic analysis of cell-to-cell expression variation of T lymphocytes in a human cohort identifies aging and genetic associations. Immunity 45:1162–75
    [Google Scholar]
  172. 172.
    Li J, Wang J, Zhang P, Wang R, Mei Y et al. 2022. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54:1711–20
    [Google Scholar]
  173. 173.
    Philpott M, Watson J, Thakurta A, Brown T, Oppermann U, Cribbs AP. 2021. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. 39:1517–20
    [Google Scholar]
  174. 174.
    Sun Y, Li Q, Kirkland JL. 2022. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. Life Med. 1:103–19
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020722-120642
Loading
/content/journals/10.1146/annurev-biodatasci-020722-120642
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error