1932

Abstract

Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to -acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-021621-122219
2021-07-20
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-021621-122219.html?itemId=/content/journals/10.1146/annurev-biodatasci-021621-122219&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Knight JC. 2004. Allele-specific gene expression uncovered. Trends Genet. 20:113–16
    [Google Scholar]
  2. 2. 
    Buckland PR. 2004. Allele-specific gene expression differences in humans. Hum. Mol. Genet. 13:R255–60
    [Google Scholar]
  3. 3. 
    Gregg C. 2014. Known unknowns for allele-specific expression and genomic imprinting effects. F1000Prime Rep. 6:75
    [Google Scholar]
  4. 4. 
    Pastinen T. 2010. Genome-wide allele-specific analysis: insights into regulatory variation. Nat. Rev. Genet. 11:533–38
    [Google Scholar]
  5. 5. 
    Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K et al. 2015. Negative feedback buffers effects of regulatory variants. Mol. Syst. Biol. 11:785
    [Google Scholar]
  6. 6. 
    Li X, Kim Y, Tsang EK, Davis JR, Damani FN et al. 2017. The impact of rare variation on gene expression across tissues. Nature 550:239–43
    [Google Scholar]
  7. 7. 
    Lee MP. 2012. Allele-specific gene expression and epigenetic modifications and their application to understanding inheritance and cancer. Biochim. Biophys. Acta Gene Regul. Mech. 1819:739–42
    [Google Scholar]
  8. 8. 
    Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S et al. 2020. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science 369:561–65
    [Google Scholar]
  9. 9. 
    Lo HS, Wang Z, Hu Y, Yang HH, Gere S et al. 2003. Allelic variation in gene expression is common in the human genome. Genome Res. 13:1855–62
    [Google Scholar]
  10. 10. 
    Reddy TE, Gertz J, Pauli F, Kucera KS, Varley KE et al. 2012. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 22:860–69
    [Google Scholar]
  11. 11. 
    Amoah K, Hsiao YHE, Bahn JH, Sun Y, Burghard C et al. 2021. Allele-specific alternative splicing and its functional genetic variants in human tissues. Genome Res 31:35971
    [Google Scholar]
  12. 12. 
    Nembaware V, Wolfe KH, Bettoni F, Kelso J, Seoighe C. 2004. Allele-specific transcript isoforms in human. FEBS Lett. 577:233–38
    [Google Scholar]
  13. 13. 
    Nembaware V, Lupindo B, Schouest K, Spillane C, Scheffler K, Seoighe C. 2008. Genome-wide survey of allele-specific splicing in humans. BMC Genom. 9:265
    [Google Scholar]
  14. 14. 
    Kim J, Bartel DP. 2009. Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nat. Biotechnol. 27:472–77
    [Google Scholar]
  15. 15. 
    Robert F, Pelletier J. 2018. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 9:507
    [Google Scholar]
  16. 16. 
    Li Q, Makri A, Lu Y, Marchand L, Grabs R et al. 2013. Genome-wide search for exonic variants affecting translational efficiency. Nat. Commun. 4:2260
    [Google Scholar]
  17. 17. 
    Zhou ZY, Hu Y, Li A, Li YJ, Zhao H et al. 2018. Genome wide analyses uncover allele-specific RNA editing in human and mouse. Nucleic Acids Res. 46:8888–97
    [Google Scholar]
  18. 18. 
    Do C, Shearer A, Suzuki M, Terry MB, Gelernter J et al. 2017. Genetic–epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol. 18:120
    [Google Scholar]
  19. 19. 
    Cavalli M, Pan G, Nord H, Arzt EW, Wallerman O, Wadelius C. 2016. Allele-specific transcription factor binding in liver and cervix cells unveils many likely drivers of GWAS signals. Genomics 107:248–54
    [Google Scholar]
  20. 20. 
    Cavalli M, Pan G, Nord H, Arzt EW, Wallerman O, Wadelius C. 2019. Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases. Sci. Rep. 9:2695
    [Google Scholar]
  21. 21. 
    Wang H, Lou D, Wang Z. 2019. Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk. Front. Genet. 9:695
    [Google Scholar]
  22. 22. 
    Yang HH, Hu N, Wang C, Ding T, Dunn BK et al. 2010. Influence of genetic background and tissue types on global DNA methylation patterns. PLOS ONE 5:e9355
    [Google Scholar]
  23. 23. 
    Orjuela S, Machlab D, Menigatti M, Marra G, Robinson MD. 2020. DAMEfinder: a method to detect differential allele-specific methylation. Epigenet. Chromatin 13:25
    [Google Scholar]
  24. 24. 
    Onuchic V, Lurie E, Carrero I, Pawliczek P, Patel RY et al. 2018. Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. Science 361:eaar3146
    [Google Scholar]
  25. 25. 
    Ng B, White CC, Klein HU, Sieberts SK, McCabe C et al. 2017. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nat. Neurosci. 20:1418–26
    [Google Scholar]
  26. 26. 
    Hug N, Longman D, Cáceres JF. 2016. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44:1483–95
    [Google Scholar]
  27. 27. 
    Kervestin S, Jacobson A. 2012. NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 13:700–12
    [Google Scholar]
  28. 28. 
    Alonso CR. 2005. Nonsense-mediated RNA decay: a molecular system micromanaging individual gene activities and suppressing genomic noise. Bioessays 27:463–66
    [Google Scholar]
  29. 29. 
    Montgomery SB, Lappalainen T, Gutierrez-Arcelus M, Dermitzakis ET. 2011. Rare and common regulatory variation in population-scale sequenced human genomes. PLOS Genet. 7:e1002144
    [Google Scholar]
  30. 30. 
    Park E, Pan Z, Zhang Z, Lin L, Xing Y. 2018. The expanding landscape of alternative splicing variation in human populations. Am. J. Hum. Genet. 102:11–26
    [Google Scholar]
  31. 31. 
    Li YI, Van De Geijn B, Raj A, Knowles DA, Petti AA et al. 2016. RNA splicing is a primary link between genetic variation and disease. Science 352:600–4
    [Google Scholar]
  32. 32. 
    Sheinberger J, Hochberg H, Lavi E, Kanter I, Avivi S et al. 2017. CD-tagging-MS2: detecting allelic expression of endogenous mRNAs and their protein products in single cells. Biol. Methods Protoc. 2:bpx004
    [Google Scholar]
  33. 33. 
    Yang EW, Bahn JH, Hsiao EYH, Tan BX, Sun Y et al. 2019. Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nat. Commun. 10:1338
    [Google Scholar]
  34. 34. 
    Bahrami-Samani E, Xing Y. 2019. Discovery of allele-specific protein-RNA interactions in human transcriptomes. Am. J. Hum. Genet. 104:492–502
    [Google Scholar]
  35. 35. 
    Messemaker TC, van Leeuwen SM, van den Berg PR, ’t Jong AEJ, Palstra RJ et al. 2018. Allele-specific repression of Sox2 through the long non-coding RNA Sox2ot. Sci. Rep. 8:386
    [Google Scholar]
  36. 36. 
    Võsa U, Esko T, Kasela S, Annilo T. 2015. Altered gene expression associated with microRNA binding site polymorphisms. PLOS ONE 10:e0141351
    [Google Scholar]
  37. 37. 
    Johnsson PA, Hartmanis L, Ziegenhain C, Hendriks GJ, Hagemann-Jensen M et al. 2020. Deducing transcriptional kinetics and molecular functions of long non-coding RNAs using allele-sensitive single-cell RNA-sequencing. bioRxiv 2020.05.05.079251. https://doi.org/10.1101/2020.05.05.079251
    [Crossref]
  38. 38. 
    Liu Y, Fischer AD, Pierre CLS, Macias-Velasco JF, Lawson HA, Dougherty JD. 2020. TRAP-based allelic translation efficiency imbalance analysis to identify genetic regulation of ribosome occupancy in specific cell types in vivo. bioRxiv 2020.08.24.265389. https://doi.org/10.1101/2020.08.24.265389
    [Crossref] [Google Scholar]
  39. 39. 
    Soderlund CA, Nelson WM, Goff SA. 2014. Allele workbench: transcriptome pipeline and interactive graphics for allele-specific expression. PLOS ONE 9:e115740
    [Google Scholar]
  40. 40. 
    Van De Geijn B, McVicker G, Gilad Y, Pritchard JK. 2015. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12:1061–63
    [Google Scholar]
  41. 41. 
    Dumont EL, Tycko B, Do C. 2020. CloudASM: an ultra-efficient cloud-based pipeline for mapping allele-specific DNA methylation. Bioinformatics 36:3558–60
    [Google Scholar]
  42. 42. 
    Younesy H, Möller T, Heravi-Moussavi A, Cheng JB, Costello JF et al. 2014. ALEA: a toolbox for allele-specific epigenomics analysis. Bioinformatics 30:1172–74
    [Google Scholar]
  43. 43. 
    Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J et al. 2013. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506–11
    [Google Scholar]
  44. 44. 
    GTEx Consort 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–60
    [Google Scholar]
  45. 45. 
    Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T. 2015. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16:195
    [Google Scholar]
  46. 46. 
    GTEx Consort 2020. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–30
    [Google Scholar]
  47. 47. 
    Castel SE, Aguet F, Mohammadi P, Ardlie KG, Lappalainen T. 2020. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21:234
    [Google Scholar]
  48. 48. 
    Benitez JA, Cheng S, Deng Q. 2017. Revealing allele-specific gene expression by single-cell transcriptomics. Int. J. Biochem. Cell Biol. 90:155–60
    [Google Scholar]
  49. 49. 
    Tunnacliffe E, Chubb JR. 2020. What is a transcriptional burst?. Trends Genet. 36:288–97
    [Google Scholar]
  50. 50. 
    Reinius B, Mold JE, Ramsköld D, Deng Q, Johnsson P et al. 2016. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA–seq. Nat. Genet. 48:1430–35
    [Google Scholar]
  51. 51. 
    Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E et al. 2009. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25:3207–12
    [Google Scholar]
  52. 52. 
    Lee C, Kang EY, Gandal MJ, Eskin E, Geschwind DH. 2019. Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage. Nat. Neurosci. 22:1521–32
    [Google Scholar]
  53. 53. 
    Rozowsky J, Abyzov A, Wang J, Alves P, Raha D et al. 2011. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7:522
    [Google Scholar]
  54. 54. 
    Raghupathy N, Choi K, Vincent MJ, Beane GL, Sheppard KS et al. 2018. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression. Bioinformatics 34:2177–84
    [Google Scholar]
  55. 55. 
    Wood DL, Nones K, Steptoe A, Christ A, Harliwong I et al. 2015. Recommendations for accurate resolution of gene and isoform allele-specific expression in RNA-seq data. PLOS ONE 10:e0126911
    [Google Scholar]
  56. 56. 
    Pandey RV, Franssen SU, Futschik A, Schlötterer C. 2013. Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data. Mol. Ecol. Resour. 13:740–45
    [Google Scholar]
  57. 57. 
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
    [Google Scholar]
  58. 58. 
    Miao Z, Alvarez M, Pajukanta P, Ko A. 2018. ASElux: an ultra-fast and accurate allelic reads counter. Bioinformatics 34:1313–20
    [Google Scholar]
  59. 59. 
    Manske HM, Kwiatkowski DP. 2009. SNP-o-matic. Bioinformatics 25:2434–35
    [Google Scholar]
  60. 60. 
    Dong L, Wang J, Wang G 2020. BYASE: a python library for estimating gene and isoform level allele-specific expression. Bioinformatics 36:194955–56
    [Google Scholar]
  61. 61. 
    Deonovic B, Wang Y, Weirather J, Wang XJ, Au KF. 2017. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucleic Acids Res. 45:e32
    [Google Scholar]
  62. 62. 
    Harvey CT, Moyerbrailean GA, Davis GO, Wen X, Luca F, Pique-Regi R. 2015. QuASAR: quantitative allele-specific analysis of reads. Bioinformatics 31:1235–42
    [Google Scholar]
  63. 63. 
    Kumasaka N, Knights AJ, Gaffney DJ. 2016. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48:206–13
    [Google Scholar]
  64. 64. 
    Castel SE, Mohammadi P, Chung WK, Shen Y, Lappalainen T. 2016. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat. Commun. 7:12817
    [Google Scholar]
  65. 65. 
    Fan J, Hu J, Xue C, Zhang H, Susztak K et al. 2020. ASEP: gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLOS Genet. 16:e1008786
    [Google Scholar]
  66. 66. 
    Xie J, Ji T, Ferreira MA, Li Y, Patel BN, Rivera RM 2019. Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformat. 20:530
    [Google Scholar]
  67. 67. 
    Liu Z, Gui T, Wang Z, Li H, Fu Y et al. 2016. cisASE: a likelihood-based method for detecting putative cis-regulated allele-specific expression in RNA sequencing data. Bioinformatics 32:3291–97
    [Google Scholar]
  68. 68. 
    Edsgärd D, Iglesias MJ, Reilly SJ, Hamsten A, Tornvall P et al. 2016. GeneiASE: detection of condition-dependent and static allele-specific expression from RNA-seq data without haplotype information. Sci. Rep. 6:21134
    [Google Scholar]
  69. 69. 
    Knowles DA, Davis JR, Edgington H, Raj A, Favé MJ et al. 2017. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14:699–702
    [Google Scholar]
  70. 70. 
    Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz AD et al. 2020. The impact of sex on gene expression across human tissues. Science 369:eaba3066
    [Google Scholar]
  71. 71. 
    de Santiago I, Liu W, Yuan K, O'Reilly M, Chilamakuri CSR et al. 2017. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes. Genome Biol. 18:39
    [Google Scholar]
  72. 72. 
    Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y et al. 2020. Genomic basis for RNA alterations in cancer. Nature 578:129–36
    [Google Scholar]
  73. 73. 
    Li G, Bahn JH, Lee JH, Peng G, Chen Z et al. 2012. Identification of allele-specific alternative mRNA processing via transcriptome sequencing. Nucleic Acids Res. 40:e104
    [Google Scholar]
  74. 74. 
    Bielski CM, Donoghue MT, Gadiya M, Hanrahan AJ, Won HH et al. 2018. Widespread selection for oncogenic mutant allele imbalance in cancer. Cancer Cell 34:852–62
    [Google Scholar]
  75. 75. 
    Luft J, Young RS, Meynert AM, Taylor MS. 2020. Detecting oncogenic selection through biased allele retention in The Cancer Genome Atlas. bioRxiv 2020.07.03.186593. https://doi.org/10.1101/2020.07.03.186593
    [Crossref]
  76. 76. 
    Clayton EA, Khalid S, Ban D, Wang L, Jordan IK, McDonald JF. 2020. Tumor suppressor genes and allele-specific expression: mechanisms and significance. Oncotarget 11:462–79
    [Google Scholar]
  77. 77. 
    Batcha AM, Bamopoulos SA, Kerbs P, Kumar A, Jurinovic V et al. 2019. Allelic imbalance of recurrently mutated genes in acute myeloid leukaemia. Sci. Rep. 9:11796
    [Google Scholar]
  78. 78. 
    Rhee JK, Lee S, Park WY, Kim YH, Kim TM. 2017. Allelic imbalance of somatic mutations in cancer genomes and transcriptomes. Sci. Rep. 7:1653
    [Google Scholar]
  79. 79. 
    Halabi NM, Martinez A, Al-Farsi H, Mery E, Puydenus L et al. 2016. Preferential allele expression analysis identifies shared germline and somatic driver genes in advanced ovarian cancer. PLOS Genet. 12:e1005755
    [Google Scholar]
  80. 80. 
    Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM 2011. A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res. 21:1728–37
    [Google Scholar]
  81. 81. 
    McCoy RC, Wakefield J, Akey JM. 2017. Impacts of neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168:916–27
    [Google Scholar]
  82. 82. 
    Mayba O, Gilbert HN, Liu J, Haverty PM, Jhunjhunwala S et al. 2014. MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biol. 15:405
    [Google Scholar]
  83. 83. 
    Lefebvre JF, Vello E, Ge B, Montgomery SB, Dermitzakis ET et al. 2012. Genotype-based test in mapping cis-regulatory variants from allele-specific expression data. PLOS ONE 7:e38667
    [Google Scholar]
  84. 84. 
    Sun W. 2012. A statistical framework for eQTL mapping using RNA-seq data. Biometrics 68:1–11
    [Google Scholar]
  85. 85. 
    Mohammadi P, Castel SE, Cummings BB, Einson J, Sousa C et al. 2019. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 366:351–56
    [Google Scholar]
  86. 86. 
    Pant PK, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA. 2006. Analysis of allelic differential expression in human white blood cells. Genome Res. 16:331–39
    [Google Scholar]
  87. 87. 
    ’t Hoen PAC, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I et al. 2013. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31:1015–22
    [Google Scholar]
  88. 88. 
    Berger E, Yorukoglu D, Zhang L, Nyquist SK, Shalek AK et al. 2020. Improved haplotype inference by exploiting long-range linking and allelic imbalance in RNA-seq datasets. Nat. Commun. 11:4662
    [Google Scholar]
  89. 89. 
    Marx V. 2017. How to deduplicate PCR. Nat. Methods 14:473–76
    [Google Scholar]
  90. 90. 
    Mendelevich A, Vinogradova S, Gupta S, Mironov AA, Sunyaev S, Gimelbrant AA. 2020. Unexpected variability of allelic imbalance estimates from RNA sequencing. bioRxiv 2020.02.18.948323. https://doi.org/10.1101/2020.02.18.948323
    [Crossref]
  91. 91. 
    Almlöf JC, Lundmark P, Lundmark A, Ge B, Maouche S et al. 2012. Powerful identification of cis-regulatory SNPs in human primary monocytes using allele-specific gene expression. PLOS ONE 7:e52260
    [Google Scholar]
  92. 92. 
    Mohammadi P, Castel SE, Brown AA, Lappalainen T. 2017. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome Res. 27:1872–84
    [Google Scholar]
  93. 93. 
    Choi K, Raghupathy N, Churchill GA. 2019. A Bayesian mixture model for the analysis of allelic expression in single cells. Nat. Commun. 10:5188
    [Google Scholar]
  94. 94. 
    Shen-Orr SS, Gaujoux R 2013. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 25:571–78
    [Google Scholar]
  95. 95. 
    Fan J, Wang X, Xiao R, Li M 2020. Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data. bioRxiv 2020.08.26.267815. https://doi.org/10.1101/2020.08.26.267815
    [Crossref]
  96. 96. 
    Pinter SF, Colognori D, Beliveau BJ, Sadreyev RI, Payer B et al. 2015. Allelic imbalance is a prevalent and tissue-specific feature of the mouse transcriptome. Genetics 200:537–49
    [Google Scholar]
  97. 97. 
    Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK et al. 2015. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat. Genet. 47:353–60
    [Google Scholar]
  98. 98. 
    Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW et al. 2002. Allelic variation in human gene expression. Science 297:1143
    [Google Scholar]
  99. 99. 
    Lind L, Fors N, Hall J, Marttala K, Stenborg A. 2005. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arterioscler. Thromb. Vasc. Biol. 25:2368–75
    [Google Scholar]
  100. 100. 
    Balliu B, Durrant M, de Goede O, Abell N, Li X et al. 2019. Genetic regulation of gene expression and splicing during a 10-year period of human aging. Genome Biol. 20:230
    [Google Scholar]
  101. 101. 
    Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. 2007. Widespread monoallelic expression on human autosomes. Science 318:1136–40
    [Google Scholar]
  102. 102. 
    Savova V, Chun S, Sohail M, McCole RB, Witwicki R et al. 2016. Genes with monoallelic expression contribute disproportionately to genetic diversity in humans. Nat. Genet. 48:231–37
    [Google Scholar]
  103. 103. 
    Vigneau S, Vinogradova S, Savova V, Gimelbrant A. 2018. High prevalence of clonal monoallelic expression. Nat. Genet. 50:1198–99
    [Google Scholar]
  104. 104. 
    Reinius B, Sandberg R. 2018. Reply to ‘High prevalence of clonal monoallelic expression’. . Nat. Genet. 50:1199–200
    [Google Scholar]
  105. 105. 
    Izzi B, Pistoni M, Cludts K, Akkor P, Lambrechts D et al. 2016. Allele-specific DNA methylation reinforces PEAR1 enhancer activity. Blood 128:1003–12
    [Google Scholar]
  106. 106. 
    McKean DM, Homsy J, Wakimoto H, Patel N, Gorham J et al. 2016. Loss of RNA expression and allele-specific expression associated with congenital heart disease. Nat. Commun. 7:12824
    [Google Scholar]
  107. 107. 
    Falkenberg KD, Braverman NE, Moser AB, Steinberg SJ, Klouwer FC et al. 2017. Allelic expression imbalance promoting a mutant PEX6 allele causes Zellweger spectrum disorder. Am. J. Hum. Genet. 101:965–76
    [Google Scholar]
  108. 108. 
    de Klein N, van Dijk F, Deelen P, Urzua CG, Claringbould A et al. 2020. Imbalanced expression for predicted high-impact, autosomal-dominant variants in a cohort of 3,818 healthy samples. bioRxiv 2020.09.19.30009. https://doi.org/10.1101/2020.09.19.300095
    [Crossref]
  109. 109. 
    Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F et al. 2018. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat. Genet. 50:1327–34
    [Google Scholar]
  110. 110. 
    Huang F, Bielski C, Rinne M, Hahn W, Sellers W et al. 2015. TERT promoter mutations and monoallelic activation of TERT in cancer. Oncogenesis 4:e176
    [Google Scholar]
  111. 111. 
    GTEx Consort 2017. Genetic effects on gene expression across human tissues. Nature 550:204–13
    [Google Scholar]
  112. 112. 
    Zou J, Hormozdiari F, Jew B, Castel SE, Lappalainen T et al. 2019. Leveraging allelic imbalance to refine fine-mapping for eQTL studies. PLOS Genet. 15:e1008481
    [Google Scholar]
  113. 113. 
    Chiba H, Kakuta Y, Kinouchi Y, Kawai Y, Watanabe K et al. 2018. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease. PLOS ONE 13:e0194036
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-021621-122219
Loading
/content/journals/10.1146/annurev-biodatasci-021621-122219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error