1932

Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging tool for neuroradiological diagnosis. Numerous concepts of automated MRI analysis and the use of machine learning have been proposed to assist diagnosis and prognosis. While these academic innovations have proven effective in principle within controlled environments, their application to clinical practice has faced unmet requirements, such as the ability to perform reliably across a heterogeneous population, to work robustly in the presence of comorbidities, and to be invariant to scanner hardware and image quality. The lack of realistic confidence bounds and the inability to handle missing data have also reduced the application of most of these methods outside of academic studies. Mastering the complex challenges in the diagnostic process may help researchers discover novel biological constructs in multimodal data and improve stratification for clinical trials, paving the way for precision medicine. This review presents the state of the art of computerized brain MRI analysis for diagnostic purposes. We critically evaluate the current clinical usefulness of the methods and highlight challenges and future perspectives of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-022620-015538
2020-07-20
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-022620-015538.html?itemId=/content/journals/10.1146/annurev-biodatasci-022620-015538&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC 2011. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology 258:906–14
    [Google Scholar]
  2. 2. 
    Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW et al. 2012. Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn. Reson. Imaging 30:1301–12
    [Google Scholar]
  3. 3. 
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T et al. 2018. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–73
    [Google Scholar]
  4. 4. 
    Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T et al. 2015. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Transl. Med. 7:303ra138
    [Google Scholar]
  5. 5. 
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr et al. 2011. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 7:263–69
    [Google Scholar]
  6. 6. 
    Collins FS, Varmus H. 2015. A new initiative on precision medicine. New Engl. J. Med. 372:793–95
    [Google Scholar]
  7. 7. 
    Lambin P, van Stiphout RG, Starmans MH, Rios-Velazquez E, Nalbantov G et al. 2013. Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10:27–40
    [Google Scholar]
  8. 8. 
    Market Res. Future 2019. Medical imaging market estimated to witness a staggering growth of USD 40 billion at 6.5% of CAGR by 2022. Herald Keeper Jan 22
    [Google Scholar]
  9. 9. 
    Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI et al. 2008. Automatic classification of MR scans in Alzheimer's disease. Brain 131:681–89
    [Google Scholar]
  10. 10. 
    Arbabshirani MR, Plis S, Sui J, Calhoun VD 2017. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145:137–65
    [Google Scholar]
  11. 11. 
    Rathore S, Akbari H, Rozycki M, Abdullah KG, Nasrallah MP et al. 2018. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. . Rep 8:5087
    [Google Scholar]
  12. 12. 
    Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE et al. 2018. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16:142
    [Google Scholar]
  13. 13. 
    Stephan KE, Iglesias S, Heinzle J, Diaconescu AO 2015. Translational perspectives for computational neuroimaging. Neuron 87:716–32
    [Google Scholar]
  14. 14. 
    Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C 2017. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. Neuroimage 155:530–48
    [Google Scholar]
  15. 15. 
    Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA et al. 2017. Computational neuroimaging strategies for single patient predictions. Neuroimage 145:180–99
    [Google Scholar]
  16. 16. 
    Kloppel S, Peter J, Ludl A, Pilatus A, Maier S et al. 2015. Applying automated MR-based diagnostic methods to the memory clinic: a prospective study. J. Alzheimer's Dis. 47:939–54
    [Google Scholar]
  17. 17. 
    Bilgel M, Prince JL, Wong DF, Resnick SM, Jedynak BM 2016. A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging. Neuroimage 134:658–70
    [Google Scholar]
  18. 18. 
    Eavani H, Hsieh MK, An Y, Erus G, Beason-Held L et al. 2016. Capturing heterogeneous group differences using mixture-of-experts: application to a study of aging. Neuroimage 125:498–514
    [Google Scholar]
  19. 19. 
    Varol E, Sotiras A, Davatzikos C 2017. Hydra: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage 145:346–64
    [Google Scholar]
  20. 20. 
    Jack J, Bernstein MA, Fox NC, Thompson P, Alexander G et al. 2008. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magnet. Reson. Imaging 27:685–91
    [Google Scholar]
  21. 21. 
    Abdulkadir A, Mortamet B, Vemuri P, Jack CR Jr, Krueger G, Kloppel S 2011. Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier. Neuroimage 5 8:785–92
    [Google Scholar]
  22. 22. 
    Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA et al. 2017. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161:149–70
    [Google Scholar]
  23. 23. 
    Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I et al. 2018. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–20
    [Google Scholar]
  24. 24. 
    Pomponio R, Erus G, Habes M, Doshi J, Srinivasan D et al. 2019. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208:116450
    [Google Scholar]
  25. 25. 
    Haskins R, Osmotherly PG, Tuyl F, Rivett DA 2014. Uncertainty in clinical prediction rules: the value of credible intervals. J. Orthop. Sports Phys. Ther. 44:85–91
    [Google Scholar]
  26. 26. 
    Klöppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourão-Miranda J, Vemuri P 2012. Diagnostic neuroimaging across diseases. Neuroimage 61:457–63
    [Google Scholar]
  27. 27. 
    Bloch F. 1946. Nuclear induction. Phys. Rev. 70:460
    [Google Scholar]
  28. 28. 
    Perman W, Hilal S, Simon H, Maudsley AA 1984. Contrast manipulation in NMR imaging. Magnet. Reson. Imaging 2:23–32
    [Google Scholar]
  29. 29. 
    Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR 1996. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn. Reson. Med. 36:715–25
    [Google Scholar]
  30. 30. 
    Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR 1996. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn. Reson. Med. 36:726–36
    [Google Scholar]
  31. 31. 
    Wintermark M, Sesay M, Barbier E, Borbély K, Dillon WP et al. 2005. Comparative overview of brain perfusion imaging techniques. Stroke 36:e83–99
    [Google Scholar]
  32. 32. 
    Detre JA, Wang J, Wang Z, Rao H 2009. Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr. Opin. Neurol. 22:348–55
    [Google Scholar]
  33. 33. 
    Springer E, Dymerska B, Cardoso PL, Robinson SD, Weisstanner C et al. 2016. Comparison of routine brain imaging at 3 T and 7 T. Investig. Radiol. 51:469–82
    [Google Scholar]
  34. 34. 
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S et al. 2006. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–28
    [Google Scholar]
  35. 35. 
    Gaonkar B, Erus G, Bryan N, Davatzikos C 2010. Automated segmentation of brain lesions by combining intensity and spatial information. Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro93–96 New York: IEEE
    [Google Scholar]
  36. 36. 
    Lian Y, Song Z. 2014. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis. Chin. Med. J. 127:462–68
    [Google Scholar]
  37. 37. 
    Lu S, Ahn D, Johnson G, Cha S 2003. Peritumoral diffusion tensor imaging of high grade gliomas and metastatic brain tumors. Am. J. Neuroradiol. 24:937–41
    [Google Scholar]
  38. 38. 
    Johansen-Berg H, Rushworth MF. 2009. Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 32:75–94
    [Google Scholar]
  39. 39. 
    Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–69
    [Google Scholar]
  40. 40. 
    Voyvodic JT, Petrella JR, Friedman AH 2009. fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment. J. Magn. Reson. Imaging 29:751–59
    [Google Scholar]
  41. 41. 
    Mourao-Miranda J, Reynaud E, McGlone F, Calvert G, Brammer M 2006. The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. Neuroimage 33:1055–65
    [Google Scholar]
  42. 42. 
    Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Friston KJ 2010. Ten simple rules for dynamic causal modeling. Neuroimage 49:3099–109
    [Google Scholar]
  43. 43. 
    Blystad I, Warntjes JBM, Smedby O, Lundberg P, Larsson EM, Tisell A 2017. Quantitative MRI for analysis of peritumoral edema in malignant gliomas. PLOS ONE 12:e0177135
    [Google Scholar]
  44. 44. 
    Galban CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS et al. 2011. Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin. Cancer Res. 17:4751–60
    [Google Scholar]
  45. 45. 
    Lemm S, Blankertz B, Dickhaus T, Muller KR 2011. Introduction to machine learning for brain imaging. Neuroimage 56:387–99
    [Google Scholar]
  46. 46. 
    Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH et al. 2016. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–47
    [Google Scholar]
  47. 47. 
    Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC 2014. An algorithmic approach to structural imaging in dementia. J. Neurol. Neurosurg. Psychiatry 85:692–98
    [Google Scholar]
  48. 48. 
    Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh MK et al. 2018. Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol. Aging 71:41–50
    [Google Scholar]
  49. 49. 
    Dong A, Toledo JB, Honnorat N, Doshi J, Varol E et al. 2017. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers. Brain 140:735–47
    [Google Scholar]
  50. 50. 
    Young AL, Marinescu RV, Oxtoby NP, Bocchetta M, Yong K et al. 2018. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat. Commun. 9:4273
    [Google Scholar]
  51. 51. 
    Donohue MC, Jacqmin-Gadda H, Le Goff M, Thomas RG, Raman R et al. 2014. Estimating long-term multivariate progression from short-term data. Alzheimer's Dement. 10:S400–10
    [Google Scholar]
  52. 52. 
    Dong A, Honnorat N, Gaonkar B, Davatzikos C 2016. Chimera: clustering of heterogeneous disease effects via distribution matching of imaging patterns. IEEE Trans. Med. Imaging 35:612–21
    [Google Scholar]
  53. 53. 
    Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E 2008. Fast unfolding of communities in large networks. J. Stat. Mech. 2008:P10008
    [Google Scholar]
  54. 54. 
    Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788–91
    [Google Scholar]
  55. 55. 
    He K, Zhang X, Ren S, Sun J 2015. Deep residual learning for image recognition. arXiv:1512.03385 [cs.CV]
  56. 56. 
    Simonyan K, Vedaldi A, Zisserman A 2014. Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034v2 [cs.CV]
  57. 57. 
    Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH et al. 2015. MRBrainS challenge: online evaluation framework for brain image segmentation in 3t MRI scans. Comput. Intel. Neurosci. 2015:813696
    [Google Scholar]
  58. 58. 
    Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K et al. 2015. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34:1993–2024
    [Google Scholar]
  59. 59. 
    Kuijf HJ, Biesbroek JM, de Bresser J, Heinen R, Andermatt S et al. 2019. Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge. IEEE Trans. Med. Imaging 38:112556–68
    [Google Scholar]
  60. 60. 
    Yuan X, He P, Zhu Q, Li X 2019. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30:2805–24
    [Google Scholar]
  61. 61. 
    Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial nets. Advances in Neural Information Processing Systems 27 (NIPS 2014), ed. Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger San Diego, CA: NeurIPS
    [Google Scholar]
  62. 62. 
    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1929–58
    [Google Scholar]
  63. 63. 
    Gast J, Roth S. 2018. Lightweight probabilistic deep networks. arXiv:1805.11327v1 [cs.CV]
  64. 64. 
    Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S et al. 2011. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766–81
    [Google Scholar]
  65. 65. 
    Kloppel S, Kotschi M, Peter J, Egger K, Hausner L et al. 2018. Separating symptomatic Alzheimer's disease from depression based on structural MRI. J. Alzheimer's Dis. 63:353–63
    [Google Scholar]
  66. 66. 
    Krumm S, Kivisaari SL, Probst A, Monsch AU, Reinhardt J et al. 2016. Cortical thinning of parahippocampal subregions in very early Alzheimer's disease. Neurobiol. Aging 38:188–96
    [Google Scholar]
  67. 67. 
    Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F et al. 2015. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the caddementia challenge. Neuroimage 111:562–79
    [Google Scholar]
  68. 68. 
    Zhang X, Mormino EC, Sun N, Sperling RA, Sabuncu MR et al. 2016. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease. PNAS 113:E6535–44
    [Google Scholar]
  69. 69. 
    Poulakis K, Pereira JB, Mecocci P, Vellas B, Tsolaki M et al. 2018. Heterogeneous patterns of brain atrophy in Alzheimer's disease. Neurobiol. Aging 65:98–108
    [Google Scholar]
  70. 70. 
    Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D et al. 2017. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 147:736–45
    [Google Scholar]
  71. 71. 
    Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS 2009. Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62:1619–28
    [Google Scholar]
  72. 72. 
    Cole JH, Franke K. 2017. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40:681–90
    [Google Scholar]
  73. 73. 
    Franke K, Luders E, May A, Wilke M, Gaser C 2012. Brain maturation: predicting individual brain age in children and adolescents using structural MRI. Neuroimage 63:1305–12
    [Google Scholar]
  74. 74. 
    Habes M, Janowitz D, Erus G, Toledo JB, Resnick SM et al. 2016. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease patterns. Transl. Psychiatry 6:e775
    [Google Scholar]
  75. 75. 
    Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M et al. 2019. Gray matter age prediction as a biomarker for risk of dementia. PNAS 116:21213–18
    [Google Scholar]
  76. 76. 
    Davatzikos C, Xu F, An Y, Fan Y, Resnick SM 2009. Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the spare-ad index. Brain 132:2026–35
    [Google Scholar]
  77. 77. 
    Peter J, Scheef L, Abdulkadir A, Boecker H, Heneka M et al. 2014. Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimer's Dement 10:99–108
    [Google Scholar]
  78. 78. 
    Martinez-Ramirez S, Greenberg SM, Viswanathan A 2014. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimer's Res. Ther. 6:33
    [Google Scholar]
  79. 79. 
    Cordonnier C, Al-Shahi Salman R, Wardlaw J 2007. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 130:1988–2003
    [Google Scholar]
  80. 80. 
    Fartaria MJ, Todea A, Kober T, O'Brien K, Krueger G et al. 2018. Partial volume-aware assessment of multiple sclerosis lesions. Neuroimage Clin 18:245–53
    [Google Scholar]
  81. 81. 
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73
    [Google Scholar]
  82. 82. 
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352:987–96
    [Google Scholar]
  83. 83. 
    Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS et al. 1993. Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J. Natl. Cancer Inst. 85:704–10
    [Google Scholar]
  84. 84. 
    Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J et al. 2013. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–69
    [Google Scholar]
  85. 85. 
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W et al. 2001. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95:190–98
    [Google Scholar]
  86. 86. 
    Zinn PO, Sathyan P, Mahajan B, Bruyere J, Hegi M et al. 2012. A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microrna-gene signature. PLOS ONE 7:e41522
    [Google Scholar]
  87. 87. 
    Zhou H, Vallieres M, Bai HX, Su C, Tang H et al. 2017. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-oncology 19:862–70
    [Google Scholar]
  88. 88. 
    Chaddad A, Desrosiers C, Hassan L, Tanougast C 2016. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Br. J. Radiol. 89:20160575
    [Google Scholar]
  89. 89. 
    Czarnek N, Clark K, Peters KB, Mazurowski MA 2017. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J. Neuro-oncol. 132:55–62
    [Google Scholar]
  90. 90. 
    Law M, Young RJ, Babb JS, Peccerelli N, Chheang S et al. 2008. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–98
    [Google Scholar]
  91. 91. 
    Murakami R, Sugahara T, Nakamura H, Hirai T, Kitajima M et al. 2007. Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 243:493–99
    [Google Scholar]
  92. 92. 
    Nicolasjilwan M, Hu Y, Yan C, Meerzaman D, Holder CA et al. 2015. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. 42:212–21
    [Google Scholar]
  93. 93. 
    Shukla G, Bakas S, Rathore S, Akbari H, Sotiras A, Davatzikos C 2017. Radiomic features from multi-institutional glioblastoma MRI offer additive prognostic value to clinical and genomic markers: focus on TCGA-GBM collection. Int. J. Radiat. Oncol. Biol. Phys. 99:e107–8
    [Google Scholar]
  94. 94. 
    Kickingereder P, Burth S, Wick A, Götz M, Eidel O et al. 2016. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–89
    [Google Scholar]
  95. 95. 
    Li Q, Bai H, Chen Y, Sun Q, Liu L et al. 2017. A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 7:14331
    [Google Scholar]
  96. 96. 
    Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M et al. 2016. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18:417–25
    [Google Scholar]
  97. 97. 
    Rathore S, Bakas S, Akbari H, Rozycki M, Davatzikos C 2018. Quantitative imaging predictors of overall survival in glioblastoma patients robust in the presence of inter-scanner variations. Neuro-oncology 20:Suppl. 6vi184
    [Google Scholar]
  98. 98. 
    Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A 2015. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42:6725–35
    [Google Scholar]
  99. 99. 
    Lee J, Jain R, Khalil K, Griffith B, Bosca R et al. 2016. Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma. Am. J. Neuroradiol. 37:37–43
    [Google Scholar]
  100. 100. 
    Chaddad A, Sabri S, Niazi T, Abdulkarim B 2018. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Med. Biol. Eng. Comput. 56:2287–300
    [Google Scholar]
  101. 101. 
    Chato L, Latifi S. 2017. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)9–14 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  102. 102. 
    Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2012) F Pereira, Burges CJC, Bottou L, Weinberger KQ 1097–105 Red Hook, NY: Curran
    [Google Scholar]
  103. 103. 
    Lao J, Chen Y, Li ZC, Li Q, Zhang J et al. 2017. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7:10353
    [Google Scholar]
  104. 104. 
    Walker MD, Strike TA, Sheline GE 1979. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5:1725–31
    [Google Scholar]
  105. 105. 
    Rathore S, Akbari H, Doshi J, Shukla G, Rozycki M et al. 2018. A radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J. Med. Imaging 5:021219
    [Google Scholar]
  106. 106. 
    Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL et al. 2016. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–80
    [Google Scholar]
  107. 107. 
    Lee WJ, Choi SH, Park CK, Yi KS, Kim TM et al. 2012. Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad. Radiol. 19:1353–61
    [Google Scholar]
  108. 108. 
    Wang S, Martinez-Lage M, Sakai Y, Chawla S, Kim SG et al. 2016. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. Am. J. Neuroradiol. 37:28–36
    [Google Scholar]
  109. 109. 
    Akbari H, Rathore S, Bakas S, Nasrallah M, Rozycki M et al. 2018. Quantitative image analysis and machine learning techniques for distinguishing true progression from pseudoprogression in patients with glioblastoma. J. Neuro-oncol. 20:vi191–92
    [Google Scholar]
  110. 110. 
    Belden CJ, Valdes PA, Ran C, Pastel DA, Harris BT et al. 2011. Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 31:1717–40
    [Google Scholar]
  111. 111. 
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D et al. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–20
    [Google Scholar]
  112. 112. 
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1. EGFR, and NF1. Cancer Cell 17:98–110
    [Google Scholar]
  113. 113. 
    Ellingson BM. 2015. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 15:506
    [Google Scholar]
  114. 114. 
    Kuo MD, Jamshidi N. 2014. Behind the numbers: decoding molecular phenotypes with radiogenomics—guiding principles and technical considerations. Radiology 270:320–25
    [Google Scholar]
  115. 115. 
    Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D et al. 2012. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18:624–29
    [Google Scholar]
  116. 116. 
    Patel SH, Poisson LM, Brat DJ, Zhou Y, Cooper L et al. 2017. T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin. Cancer Res. 23:6078–85
    [Google Scholar]
  117. 117. 
    Chang P, Grinband J, Weinberg BD, Bardis M, Khy M et al. 2018. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 39:1201–207
    [Google Scholar]
  118. 118. 
    Drabycz S, Roldan G, de Robles P, Adler D, McIntyre JB et al. 2010. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–405
    [Google Scholar]
  119. 119. 
    Kanas VG, Zacharaki EI, Thomas GA, Zinn PO, Megalooikonomou V, Colen RR 2017. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput. Methods Programs Biomed. 140:249–57
    [Google Scholar]
  120. 120. 
    Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ 2017. Residual deep convolutional neural network predicts MGMT methylation status. J. Digit. Imaging 30:622–28
    [Google Scholar]
  121. 121. 
    Rathore S, Bakas S, Nasrallah M, Akbari H, Bagley S et al. 2018. Multivariate pattern analysis of de novo glioblastoma patients offers in vivo evaluation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status, compensating for insufficient specimen and assay failures. J. Neuro-oncol. 20:vi186
    [Google Scholar]
  122. 122. 
    Bakas S, Akbari H, Pisapia J, Martinez-Lage M, Rozycki M et al. 2017. In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the ϕ-index. Clin. Cancer Res. 23:4724–34
    [Google Scholar]
  123. 123. 
    Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M et al. 2018. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 34:163–77
    [Google Scholar]
  124. 124. 
    Li Y, Liang Y, Sun Z, Xu K, Fan X et al. 2019. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging. Neuroradiology 61:111229–37
    [Google Scholar]
  125. 125. 
    Li Y, Ji F, Jiang Y, Zhao T, Xu C 2018. Correlation analysis of expressions of PTEN and p53 with the value obtained by magnetic resonance spectroscopy and apparent diffusion coefficient in the tumor and the tumor-adjacent area in magnetic resonance imaging for glioblastoma. J. BUON 23:391–97
    [Google Scholar]
  126. 126. 
    Akkus Z, Ali I, Sedlar J, Agrawal JP, Parney IF et al. 2017. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J. Digit. Imaging 30:469–76
    [Google Scholar]
  127. 127. 
    Rathore S, Chaddad A. 2019. Imaging signature of 1p/19q co-deletion status derived via machine learning in low-grade glioma. Proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology H Mohy-ud-Din, S Rathore 61–69 Cham, Switz: Springer
    [Google Scholar]
  128. 128. 
    Wang Y, Fan X, Zhang C, Zhang T, Peng X et al. 2014. Identifying radiographic specificity for phosphatase and tensin homolog and epidermal growth factor receptor changes: a quantitative analysis of glioblastomas. Neuroradiology 56:1113–20
    [Google Scholar]
  129. 129. 
    Ryoo I, Choi SH, Kim JH, Sohn CH, Kim SC et al. 2013. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles. PLOS ONE 8:e71704
    [Google Scholar]
  130. 130. 
    Bakas S, Rathore S, Nasrallah M, Akbari H, Binder Z et al. 2018. Non-invasive in vivo signature of IDH1 mutational status in high grade glioma, from clinically-acquired multi-parametric magnetic resonance imaging, using multivariate machine learning. J. Neuro-oncol. 20:vi184–85
    [Google Scholar]
  131. 131. 
    Bruno MA, Walker EA, Abujudeh HH 2015. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics 35:1668–76
    [Google Scholar]
  132. 132. 
    Berlin L. 2007. Radiologic errors and malpractice: a blurry distinction. Am. J. Roentgenol. 189:517–22
    [Google Scholar]
  133. 133. 
    Kohl SAA, Romera-Paredes B, Meyer C, de Fauw J, Ledsam JR et al. 2018. A probabilistic U-net for segmentation of ambiguous images. arXiv:1806.05034 [cs.CV]
  134. 134. 
    Venkatraghavan V, Bron EE, Niessen WJ, Klein S 2019. Disease progression timeline estimation for Alzheimer's disease using discriminative event based modeling. Neuroimage 186:518–32
    [Google Scholar]
  135. 135. 
    Doshi-Velez F, Kim B. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608 [stat.ML]
  136. 136. 
    Du Mengnan, Liu N, Hu X 2019. Techniques for interpretable machine learning. arXiv:1808.00033 [cs.LG]
  137. 137. 
    Mårtensson G, Ferreira D, Cavallin L, Muehlboeck JS, Wahlund LO et al. 2019. AVRA: automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks. Neuroimage Clin 23:101872
    [Google Scholar]
  138. 138. 
    Sperling R, Mormino E, Johnson K 2014. The evolution of preclinical Alzheimer's disease: implications for prevention trials. Neuron 84:608–22
    [Google Scholar]
  139. 139. 
    Duara R, Loewenstein DA, Potter E, Barker W, Raj A et al. 2011. Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates. Am. J. Geriatr. Psychiatry 19:951–60
    [Google Scholar]
  140. 140. 
    Golde TE. 2009. The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol. Neurodegener. 4:8
    [Google Scholar]
  141. 141. 
    Mills KL, Goddings AL, Herting MM, Meuwese R, Blakemore SJ et al. 2016. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141:273–81
    [Google Scholar]
  142. 142. 
    Mills KL, Tamnes CK. 2014. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev. Cogn. Neurosci. 9:172–90
    [Google Scholar]
  143. 143. 
    Cheng L, Ramchandran S, Vatanen T, Lietzén N, Lahesmaa R et al. 2019. An additive gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nat. Commun. 10:1798
    [Google Scholar]
  144. 144. 
    Ramchandran S, Koskinen M, Lähdesmäki H 2019. Latent gaussian process with composite likelihoods for data-driven disease stratification. arXiv:1909.01614 [stat.ML]
  145. 145. 
    Lorenzi M, Filippone M, Frisoni GB, Alexander DC, Ourselin S 2019. Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease. Neuroimage 190:56–68
    [Google Scholar]
  146. 146. 
    Fedorov A, Johnson J, Damaraju E, Ozerin A, Calhoun V, Plis S 2017. End-to-end learning of brain tissue segmentation from imperfect labeling. Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN)3785–92 https://doi.org/10.1109/IJCNN.2017.7966333
    [Crossref] [Google Scholar]
  147. 147. 
    Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M et al. 2017. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4:170117
    [Google Scholar]
  148. 148. 
    Poldrack RA, Barch DM, Mitchell JP, Wager TD, Wagner AD et al. 2013. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform. 7:12
    [Google Scholar]
  149. 149. 
    Eickhoff S, Nichols TE, van Horn JD, Turner JA 2016. Sharing the wealth: Neuroimaging data repositories. Neuroimage 124:1065–68
    [Google Scholar]
  150. 150. 
    Ekman U, Ferreira D, Westman E 2018. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment. Sci. Rep. 8:8431
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-022620-015538
Loading
/content/journals/10.1146/annurev-biodatasci-022620-015538
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error